
EECS	675:	Multicore	&	GPU	Programming	 Name:	 _________________________	
Spring	2020;	Exam	2	
Page	1	 KUID:	 _________________________	
	

 

Do	not	log	into	our	regular	class	zoom	session.	We	will	not	be	meeting	today.	
	
This	exam	is	written	as	if	it	were	a	normal	fifty-minute	exam.	You	will	have	from	9:00	am	–	
12:00	noon	to	finish	it,	simply	as	a	precaution	against	any	unforeseen	problems.	You	are	
encouraged	to	finish	it	as	promptly	as	possible	so	that	you	can	be	assured	it	can	be	submitted	
by	noon.	No	extensions	will	be	given.	
	
Exam	2	Ground	Rules	
1.	 This	exam	is	closed	book,	closed	notes,	and	closed	computer	(other	than	a	word	

processor	to	write	your	answers).	You	are	not	to	communicate	in	any	way	with	any	
person	other	than	me	while	working	on	this	exam.	You	cannot	use	your	computer	to	
compile	or	run	OpenMPI,	CUDA,	or	OpenCL	code	of	any	sort.	Nor	can	you	use	it	to	log	in	to	
a	remote	machine	for	any	purpose.	

2.	 You	cannot	access	google	or	any	other	remote	resource	accessible	over	the	internet,	
including	the	class	web	site	and	links	contained	therein.	

3.	 The	only	exception	to	these	two	rules	is	that	you	are	allowed	to	email	me	questions	you	
may	have	regarding	the	exam	while	taking	it,	and	you	are	of	course	allowed	to	read	my	
responses	back	to	you.	I	will	be	most	responsive	from	9:00-11:00;	I	have	another	class	at	
11:00,	so	responses	during	the	final	hour	that	you	have	to	work	on	the	exam	may	or	may	
not	come	to	you	in	time.	

	 My	email	address	is:	jrmiller@ku.edu	

	
I	assert	that	I	have	not	violated	any	of	the	Ground	Rules	listed	above	and	that	I	have	not	had	
any	communication	of	any	sort	with	anyone	else	during	the	time	period	allotted	for	the	exam.	
The	work	represented	in	this	exam	is	mine	and	mine	alone.	

	

__________________________________________________________________________	 __________________________	
Signature	(electronic	is	OK	if	you	do	not	return	a	scanned	exam)	 Date	

(Unsigned	exams	will	be	given	a	grade	of	zero.)	
	



EECS	675:	Multicore	&	GPU	…	 Exam	2	 Page	2	
	

 

1.	 (15)	If	a	process	in	an	MPI	communicator	world	of	size	N	needs	to	send	a	message	to	all	
other	processes	in	the	world,	that	process	can	issue	N-1	MPI_Send	(or	MPI_Isend)	
calls,	or	it	can	use	MPI_Bcast	(or	MPI_Ibcast).		There	are	at	least	two	reasons	why	
either	of	the	broadcast	choices	is	better	than	either	of	the	send	choices.	One	is	obvious	at	
the	program	source	code	level	in	terms	of	the	code	you	write,	the	other	is	due	to	the	
specifics	of	the	internal	implementation	of	the	broadcast	methods.	What	are	these	two	
reasons?	

	
	 Source	code	level:	[Your	answer	here]	
	
	 Internal	implementation:	[Your	answer	here]	
	
2.	 (7)	In	project	2,	there	were	two	types	of	queries	you	were	to	support.	For	both	types	of	

queries,	it	was	important	that	the	rank	0	process	use	a	single	collective	communication	
call	to	transmit	required	data	to	all	processes	in	the	communicator	world.	

	
	 To	implement	those	in	the	first	group	(“sr”:	scatter-reduce),	the	rank	0	process	was	to	

use	MPI_Scatter	(or	MPI_Iscatter)	to	scatter	the	entire	2D	array	of	data	to	the	
other	processes	in	the	world.	Tasks	in	this	category	included	finding	min,	max,	and	
average	values	found	in	a	single	column	of	the	data	array.	In	this	case,	each	rank	process	
handled	a	portion	of	the	requested	single	column.	

	
	 To	implement	those	in	the	second	group	(“bg”:	broadcast-gather),	the	rank	0	process	was	

to	use	MPI_Bcast	(or	MPI_Ibcast)	to	broadcast	the	entire	2D	array	of	data	to	the	
other	processes	in	the	world.	Tasks	in	this	category	included	finding	min,	max,	and	
average	values	found	in	several	columns	of	the	data	array.	In	this	case,	each	rank	process	
was	to	handle	the	entirety	of	one	of	the	requested	columns,	and	hence	N	was	required	to	
be	the	number	of	columns	whose	min,	max,	or	average	was	requested.	

	
	 In	the	project	assignment,	I	posed	the	question:	“Do	you	know	why	I	specified	"scatter"	for	

the	queries	in	#4,	but	"broadcast"	for	the	queries	in	#5?	Obviously	I	want	you	to	get	
experience	with	both,	but	there	is	more	to	it	than	that.”.	

	
	 So	what	was	the	“more	to	it	than	that”?	
	
	 [Your	answer	here]	
	
	 	



EECS	675:	Multicore	&	GPU	…	 Exam	2	 Page	3	
	

 

3.	 (21)	I	am	implementing	an	algorithm	using	OpenMPI	that	uses	two	large	input	data	sets	
and	produces	an	output	data	set	from	them.	Let’s	call	the	input	data	sets	DS1	and	DS2;	the	
output	data	set	will	be	called	DS3	and	will	be	of	the	same	size	as	DS2.	

	
	 The	rank	0	process	is	responsible	for	reading	the	two	input	data	sets	and	transmitting	

relevant	portions	of	them	to	the	other	processes	in	the	world.	The	nature	of	the	algorithm	
is	such	that	all	processes	need	the	entirety	of	DS1,	but	each	process	needs	only	a	slice	of	
DS2,	producing	the	corresponding	slice	of	the	output	data	set	DS3.	

	
	 The	general	structure	of	the	algorithm	from	the	perspective	of	the	rank	0	process	is:	
	

1.	 Read	DS1	and	DS2.	
2.	 Transmit	DS1	to	all	rank	processes.	
3.	 Transmit	the	relevant	portions	of	DS2	to	the	processes	in	the	world.	

(Assume	that	all	ranks	will	get	subsets	of	DS2	of	the	same	size.)	
4.	 All	ranks	(including	rank	0)	perform	their	task	using	DS1	and	their	

assigned	portion	of	DS2,	generating	their	portion	of	the	output	data	set	DS3.	
5.	 Rank	0	accepts	from	the	other	rank	processes	their	portion	of	the	resulting	

data	set	DS3.	
	

	 We	have	studied	the	following	collective	communication	APIs:	
	

MPI_Bcast,	MPI_Ibcast,	MPI_Scatter,	MPI_Iscatter,	MPI_Scatterv,	
MPI_Iscatterv,	MPI_Gather,	MPI_Igather,	MPI_Gatherv,	
MPI_Igatherv,	MPI_Reduce,	MPI_Ireduce,	MPI_Alltoall,	
MPI_Allgather,	MPI_Allreduce.	
	

	 For	each	of	steps	2,	3,	and	5	above,	state	which	of	these	collective	communication	calls	
would	be	used	–	including	whether	the	immediate	or	blocking	version	is	used.	And	state	
why.	

	
	 Step	2:	[Your	answer	here]	
	 Step	3:	[Your	answer	here]	
	 Step	5:	[Your	answer	here]	
	
	
4.	 (7)	Why	is	there	an	MPI_Gatherv	and	an	MPI_Scatterv,	but	there	is	no	

MPI_Bcastv?	
	
	 [Your	answer	here]	
	
	 	



EECS	675:	Multicore	&	GPU	…	 Exam	2	 Page	4	
	

 

5.	 Both	CUDA	and	OpenCL	kernel	launches	are	structured	as	a	two-level	hierarchy:	(i)	a	1D,	
2D,	or	3D	array	of	thread	blocks	(CUDA)	or	Work	Groups	(OpenCL),	and	(ii)	a	1D,	2D,	or	
3D	array	of	threads	comprising	the	threads	of	a	single	thread	block	(CUDA)	or	Work	
Group	(OpenCL).	The	threads	at	this	second	level	are	further	segmented	into	groups	of	32	
threads	called	warps	(CUDA)	or	wavefronts	(OpenCL).	

	
	 (a)	(10)	We	refer	to	GPUs	as	SIMD	machines.	What	does	SIMD	mean	in	terms	of	how	the	

kernels	execute,	and	to	what	grouping	summarized	above	–	(i),	(ii),	or	warp/wavefront	–	
does	the	term	primarily	apply?	

	
	 [Your	answer	here]	
	
	 (b)	(8)	The	GPU	is	structured	as	several	(15	is	not	uncommon)	Streaming	

Multiprocessors	(SMs),	each	with	several	hundred	cores.	What	level	of	the	groupings	
summarized	above	is	used	by	the	GPU	scheduler	when	assigning	work	to	the	collection	of	
SMs?	That	is,	the	top-level	GPU	scheduler	will	assign	X	to	SMs	in	a	round-robin	fashion.	
Will	X	be	an	entire	computational	grid,	a	thread	block	(work	group),	a	warp/wavefront,	
or	an	individual	thread?	

	
	 [Your	answer	here]	
	
	 (c)	(8)	Once	X	has	been	assigned,	can	it	be	migrated	to	another	SM?	Bonus	(3	extra	

points):	why	or	why	not?	
	
	 [Your	answer	here]	
	
6.	 (8)	What	is	meant	by	the	term	thread	divergence,	and	why	are	we	concerned	with	that	in	

GPU	programming?	
	
	 [Your	answer	here]	
	
7.	 (8)	Each	thread	in	a	computational	grid	has	both	a	“local	ID”	and	a	“global	ID”.	What	is	the	

difference	between	these	two	IDs?	
	
	 [Your	answer	here]	
	
8.	 (8)	We	observed	that	the	OpenCL	data	type	returned	from	the	OpenCL	API	call	to	

dynamically	allocate	memory	on	the	GPU	was	cl_mem	rather	than	an	ordinary	pointer	as	
the	corresponding	CUDA	calls	return.	Explain	what	the	cl_mem	data	type	encapsulates	
with	respect	to	the	general	computational	environment	assumed	by	OpenCL.	

	
	 [Your	answer	here]	


