
Configuring	Block/Grid	Dimensions	
Goal:	Maximize	throughput	and	utilization	of	SMs	on	GPU	

CUDA	terms	“grid”,	“block”,	“warp”,	“thread”,	and	“SM”	are	used	here;	the	OpenCL	
equivalents	are	“NDRange”,	“work	group”,	“wavefront”,	“work	item”,	and	“CU”,	respectively.	

Dimensionality	of	grid	and	block	

•	 Decide	based	on	the	application	whether	these	should	be	1D,	2D,	or	3D.	

•	 Remember	that	the	number	of	threads	in	a	block	is	the	product	of	the	block	size	in	
each	dimension.	

General	Strategies	

•	 Do	adequate	work	per	thread	to	amortize	overhead.	

•	 The	grid	should	be	sufficiently	large	to	get	multiple	blocks	per	SM.	

	 If	there	are	enough	blocks,	whether	a	SM	can	actually	have	more	than	one	block	
resident	and	executing	at	a	time	depends	on	its	resource	requirements	including	(i)	
shared	memory	per	block,	(ii)	registers	per	block,	and	(iii)	threads	per	block.	

	 If	the	number	of	blocks	is	fewer	than	number	of	SMs,	the	GPU	may	be	able	to	execute	
another	kernel	at	the	same	time	on	a	different	set	of	SMs	if	it	is	on	another	stream	
(CUDA)	or	queue	(OpenCL).	

•	 The	number	of	threads	in	a	block	must	be	a	multiple	of	the	warp	size	(typically	32	on	
today’s	GPUs).	Further,	it	should	be	at	least	(k	*	warp	size)	where	k	is	the	number	of	
warp	schedulers	on	each	SM.	

Numerical	Targets	

•	 Occupancy	of	a	SM	(see	book,	pp.	416-417)	

occupancy	=	numberWarpsOnSM	/	maxWarpsPerSM	(target:	occupancy	à	1)	

Denominator	is	just	maxThreadsPerSM/warpSize.	

Numerator	is	influenced	by	resource	requirements	such	as	those	mentioned	above.	

Caveats	

•	 Some	parts	of	the		formula	given	in	the	book	(reproduced	below)	and	its	
implementation	assume	some	data	whose	values	may	be	difficult	to	obtain.	

•	 There	are	CUDA	–	OpenCL	differences	in	terms	of	how	and	what	data	can	be	queried	
as	well.	(We	will	see	a	sample	of	these	differences	shortly.)	

•	 Hence	these	formulas	and	code	examples	represent	rough	initial	guidelines.	



One	Implementation	of	the	numerical	targets	for	Block	size	

		

	

	

•	 Notes:	

°	 “regsPerBlock”	is	maximum	allowed	registers	per	block	–	a	GPU-specific	limit.	

°	 “sharedMem”	is	maximum	shared	memory	allowed	by	the	GPU	per	block.	

•	 Then	round	threadsPerBlock	down,	if	necessary,	to	multiple	of	warp	size	

•	 Then	compute	total	number	of	blocks	(or	global	work	size)	using	
ceil(totalNumThreads/threadsPerBlock).	

•	 See/run	Barlas’	executionConfHeur.cu.	

è	 This	code	will	fail	if	the	supplied	parameters	are	such	that	the	loop	condition	is	
initially	false.	

è	 A	reminder	that	this	is	just	one	idea	of	a	starting	point	for	this	type	of	runtime	
kernel	configuration!	

		

threadsPerBlock =min

numWarpSchedulers *warpSize
regsPerBlock

regsPerThread
sharedMem

sharedMemPerThread
maxThreadsPerSM

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟


