Configuring Block/Grid Dimensions

Goal: Maximize throughput and utilization of SMs on GPU

CUDA terms “grid”, “block”, “warp”, “thread”, and “SM” are used here; the OpenCL

»n « » « »n o«

equivalents are “NDRange”, “work group”, “wavefront”, “work item”, and “CU”, respectively.
Dimensionality of grid and block

. Decide based on the application whether these should be 1D, 2D, or 3D.

. Remember that the number of threads in a block is the product of the block size in
each dimension.

General Strategies

. Do adequate work per thread to amortize overhead.
. The grid should be sufficiently large to get multiple blocks per SM.

If there are enough blocks, whether a SM can actually have more than one block
resident and executing at a time depends on its resource requirements including (i)
shared memory per block, (ii) registers per block, and (iii) threads per block.

[f the number of blocks is fewer than number of SMs, the GPU may be able to execute
another kernel at the same time on a different set of SMs if it is on another stream
(CUDA) or queue (OpenCL).

. The number of threads in a block must be a multiple of the warp size (typically 32 on
today’s GPUs). Further, it should be at least (k * warp size) where k is the number of
warp schedulers on each SM.

Numerical Targets

. Occupancy of a SM (see book, pp. 416-417)
occupancy = numberWarpsOnSM / maxWarpsPerSM (target: occupancy 2 1)
Denominator is just maxThreadsPerSM/warpSize.

Numerator is influenced by resource requirements such as those mentioned above.
Caveats

. Some parts of the formula given in the book (reproduced below) and its
implementation assume some data whose values may be difficult to obtain.

. There are CUDA - OpenCL differences in terms of how and what data can be queried
as well. (We will see a sample of these differences shortly.)

. Hence these formulas and code examples represent rough initial guidelines.




One Implementation of the numerical targets for Block size

numWarpSchedulers * warpSize

regsPerBlock
regsPerThread

sharedMem
sharedMemPerThread

maxThreadsPerSM

threadsPerBlock = min

. Notes:
° “regsPerBlock” is maximum allowed registers per block - a GPU-specific limit.
“sharedMem” is maximum shared memory allowed by the GPU per block.

. Then round threadsPerBlock down, if necessary, to multiple of warp size

. Then compute total number of blocks (or global work size) using
ceil (totalNumThreads/threadsPerBlock) .

. See/run Barlas’ executionConfHeur. cu.

=>» This code will fail if the supplied parameters are such that the loop condition is
initially false.

= Areminder that this is just one idea of a starting point for this type of runtime
kernel configuration!



