
Shader-Based	OpenGL:	An	Intermediate	Summary	

•	 Vertex	Array	Objects	(VAOs)	and	Vertex	Buffer	Objects	(VBOs)	

°	 Names	generated	using	glGenVertexArrays,	glGenBuffers	

°	 Memory	allocated	and	data	sent	from	CPU	to	GPU	using	glBufferData	

°	 Memory	in	an	existing	VBO	can	be	modified	using	glBufferSubData	

°	 Names	and	memory	deallocated	using	glDeleteVertexArrays,	glDeleteBuffers	

•	 VAOs	and	VBOs:	Packaging	of	“per-vertex”	attribute	(PVA)	definition	

°	 VBOs	are	used	to	store	PVAs	(including	geometry)	on	the	GPU.	

‡	 Recall	PVAs	are	those	whose	values	might	change	from	one	vertex	to	another.	

‡	 The	PVA	base	type	must	be	some	floating	point	type	and	may	be	scalar	(i.e.,	a	1-
tuple),	2-,	3-,	4-tuple,	and	matrix	values	

°	 VAOs	encapsulate	a	collection	of	VBOs	and	related	state:	

‡	 “Enabled”	status	of	VBOs	(i.e.,	whether	glEnableVertexAttribArray	or	
glDisableVertexAttribArray	was	specified	for	the	PVA	in	this	VAO)	

‡	 Attribute	array	storage	structure	specification	(i.e.,	information	specified	via	
glVertexAttribPointer	for	enabled	VBOs)	

•	 CPU-side	specification	of	attribute	values:	

°	 Per-vertex:	Two	choices:	

‡	 Passed	in	VBOs;	enabled	and	described,	respectively,	via	
glEnableVertexAttribArray	and	glVertexAttribPointer.	

	 (In	our	framework,	this	is	normally	done	during	execution	of	a	ModelView	
constructor.)	

‡	 If	a	PVA	is	constant	throughout	a	given	primitive,	then	its	VBO	can	be	disabled	
via	glDisableVertexAttribArray,	and	the	attribute	can	be	set	during	the	
display	callback	using	glVertexAttrib*.	

	 (In	our	framework,	the	glDisableVertexAttribArray	call	is	normally	done	
during	execution	of	a	ModelView	constructor,	and	no	glVertexAttribPointer	
call	will	be	made	for	that	PVA;	the	glVertexAttrib*	call	is	then	normally	done	
during	execution	of	a	ModelView::render	method.)	

°	 Per-primitive	via	glUniform*	(typically	during	execution	of	a	
ModelView::render	method	during	a	display	callback)	



glGenVertexArrays	and	glGenBuffers	

•	 Generates	one	(or	more)	previously	unused	VAO	or	VBO	name(s)	

	

glBindVertexArray(vao)	

•	 Closes	the	previously	“open”	VAO,	if	any.	

•	 Creates	the	VAO,	if	this	is	the	first	time	its	name	has	been	passed	to	
glBindVertexArray.	

•	 Opens	the	VAO	for	usage/editing:	

°	 Reestablishes	all	the	settings	as	they	were	the	last	time	this	VAO	was	open,	including	
reestablishing	all	its	VBOs.	

°	 Makes	this	VAO	“open”,	hence	allowing	changes	to	its	state.	

	

glBindBuffer(target, vbo)	

•	 Closes	the	previously	“open”	VBO	bound	to	the	given	target,	if	any.	

•	 Creates	the	VBO,	if	this	is	the	first	time	its	name	has	been	passed	to	glBindBuffer.	

•	 Adds	this	VBO	to	the	currently	open	VAO.	

•	 Opens	the	VBO	for	usage/editing:	

°	 Reestablishes	all	the	settings	as	they	were	the	last	time	this	VBO	was	bound.	

°	 Makes	this	VBO	“open”	(and	bound	to	target),	hence	allowing	changes	to	its	state,	
e.g.,via	glBufferSubData.	

	 	



The	Model-Render-Edit	Processes	

Applies	to	Both	2D	and	3D	

•	 Typical	creation	process	(e.g.,	during	a	ModelView	constructor	call)	

glGenVertexArrays(…)	
glBindVertexArray(…)	

Here	or	inside	the	pseudo	“for	loop”	that	follows:	

	 glGenBuffers(…)	

for	each	VBO	to	be	associated	with	the	currently	open	VAO:	

	 glBindBuffer(…)	–	associates	this	VBO	with	the	currently	bound	VAO	

	 glBufferData(…)	–	allocate	storage	and	(optionally)	copy	data	from	CPU	to	GPU	

	 glVertexAttribPointer(…)	–	define	a	“template”	for	the	raw	data	in	the	buffer	

	 glEnableVertexAttribArray(…)	–	enable	use	of	this	VBO	for	the	given	PVA	

•	 Typical	rendering	process	(e.g.,	during	a	display	callback;	i.e.,	a	ModelView::render	method)	

<perform	any	required	initial	processing;	establish	desired	per-primitive	uniforms>	

glBindVertexArray(…)	

one	or	more	calls	to	such	routines	as	glDrawArrays(…),	glDrawElements(…)	

•	 Typical	modification	process	(e.g.,	during	an	event	callback)	

glBindVertexArray(…)	

for	each	VBO	associated	with	this	VAO	that	needs	to	be	modified:	

	 glBindBuffer(…)	

	 glBufferSubData(…)	–	overwrite	all	or	part	of	the	buffer	without	changing	its	size	

•	 Be	sure	you	understand	(i.e.,	both	for	projects	and	exams)	

°	 The	“times”	at	which	we	have	been	calling	these	functions:	initialization,	
modification	in	response	to	events,	rendering	during	display	callbacks,	etc.	

°	 All	about	the	differences	between	per-primitive	and	per-vertex	attributes.	

°	 The	differences	between	glGenXxxs	and	glBindXxx	


