Shader-Based OpenGL: An Intermediate Summary

Vertex Array Objects (VAOs) and Vertex Buffer Objects (VBOs)

o

Names generated using glGenvertexArrays, glGenBuffers

o

Memory allocated and data sent from CPU to GPU using g1BufferData

o

Memory in an existing VBO can be modified using g1Buffersubbata

o

Names and memory deallocated using glbeletevVertexArrays, glDeleteBuffers

VAOs and VBOs: Packaging of “per-vertex” attribute (PVA) definition

o

VBOs are used to store PVAs (including geometry) on the GPU.

+ Recall PVAs are those whose values might change from one vertex to another.

¥ The PVA base type must be some floating point type and may be scalar (i.e., a 1-
tuple), 2-, 3-, 4-tuple, and matrix values

° VAOs encapsulate a collection of VBOs and related state:
+ “Enabled” status of VBOs (i.e., whether g1EnablevertexaAttribArray or
glDisableVertexAttribArray was specified for the PVA in this VAO)

+ Attribute array storage structure specification (i.e., information specified via
glVertexAttribPointer for enabled VBOs)

CPU-side specification of attribute values:

° Per-vertex: Two choices:

+ Passed in VBOs; enabled and described, respectively, via
glEnableVertexAttribArray and glVertexAttribPointer.

(In our framework, this is normally done during execution of a Mode1View
constructor.)

+ IfaPVAis constant throughout a given primitive, then its VBO can be disabled
via glDisableVertexAttribArray, and the attribute can be set during the
display callback using givertexattrib®.

(In our framework, the gipisableVertexAttribArray call is normally done
during execution of a Mode 1View constructor, and no glvertexAttribPointer
call will be made for that PVA; the glvertexattrib® call is then normally done
during execution of a Mode1View: : render method.)

Per-primitive via g1uniforn* (typically during execution of a
ModelView: : render method during a display callback)

glGenVertexArrays and glGenBuffers

Generates one (or more) previously unused VAO or VBO name(s)

glBindVertexArray (vao)
Closes the previously “open” VAQ, if any.

Creates the VAQ, if this is the first time its name has been passed to
glBindVertexArray.

Opens the VAO for usage/editing:

° Reestablishes all the settings as they were the last time this VAO was open, including
reestablishing all its VBOs.

° Makes this VAO “open”, hence allowing changes to its state.

glBindBuffer (target, vbo)
Closes the previously “open” VBO bound to the given target, if any.
Creates the VBO, if this is the first time its name has been passed to glBindBuffer.
Adds this VBO to the currently open VAO.
Opens the VBO for usage/editing:
° Reestablishes all the settings as they were the last time this VBO was bound.

° Makes this VBO “open” (and bound to target), hence allowing changes to its state,
e.g.,via glBufferSubData.

The Model-Render-Edit Processes
Applies to Both 2D and 3D

Typical creation process (e.g., during a Mode 1View constructor call)

glGenVertexArrays (..)
glBindVertexArray (..)

Here or inside the pseudo “for loop” that follows:

glGenBuffers(..)
for each VBO to be associated with the currently open VAO:

glBindBuffer (..) — associates this VBO with the currently bound VAO
glBufferData (..) — allocate storage and (optionally) copy data from CPU to GPU
glVertexAttribPointer (..) — define a “template” for the raw data in the buffer

glEnableVertexAttribArray (..) —enable use of this VBO for the given PVA
Typical rendering process (e.g, during a display callback; i.e., aModelView: : render method)

<perform any required initial processing; establish desired per-primitive uniforms>

glBindVertexArray (..)
one or more calls to such routines as glbrawArrays (..), glDrawElements (..)

Typical modification process (e.g., during an event callback)

glBindVertexArray (..)

for each VBO associated with this VAO that needs to be modified:

glBindBuffer(..)

glBufferSubData (..) — overwrite all or part of the buffer without changing its size

Be sure you understand (i.e., both for projects and exams)

o

The “times” at which we have been calling these functions: initialization,
modification in response to events, rendering during display callbacks, etc.

o

All about the differences between per-primitive and per-vertex attributes.

o

The differences between g1cenXxxs and g1BindXxx

