
8/12/19

EECS 672 Fall 2019: Introductory Concepts 1

EECS 672

James R. Miller
Department of

Electrical Engineering and Computer Science
The University of Kansas

Fall 2019

Basic Graphics System Concepts

Model
• 3D Geometry
• Attributes (colors,

texture, etc.)

Processing
• Line of sight; field of

view
• Descriptions of light

sources

Image on Display

• Impose convenient reference “model coordinate” (MC) system
• All geometry must be linear (points, lines, triangles)
• Common tool: Piecewise Linear Approximation (PLA)
• Often use nested model coordinate systems

Model
• 3D Geometry
• Attributes (colors,

texture, etc.)

Processing
• Line of sight; field of

view
• Descriptions of light

sources

Image on Display

8/12/19

EECS 672 Fall 2019: Introductory Concepts 2

• Attributes may be “per-vertex” or “per-primitive”
• Coordinate data is simply one type of attribute (typically “per-vertex”).
• Attributes can be interpreted in any way in the GLSL program running on the GPU

Model
• 3D Geometry
• Attributes (colors,

texture, etc.)

Processing
• Line of sight; field of

view
• Descriptions of light

sources

Image on Display

• Model coordinate (MC) space is infinite in extent
• Ultimately need to map to integer pixels: 0≤x<xres ; 0≤y<yres
• 2D applications: scale/translate followed by clipping.

Model
• 3D Geometry
• Attributes (colors,

texture, etc.)

Processing
• Line of sight; field of

view
• Descriptions of light

sources

Image on Display

• Slightly more involved in 3D:
• Line of sight for orientation (yields “Eye Coordinates” (EC); still infinite extent)
• 3Dè2D projection & clipping (“projection” subsumes 2D scale/translate)
• Simulated lighting environment

Model
• 3D Geometry
• Attributes (colors,

texture, etc.)

Processing
• Line of sight; field of

view
• Descriptions of light

sources

Image on Display

8/12/19

EECS 672 Fall 2019: Introductory Concepts 3

Model
• 3D Geometry
• Attributes (colors,

texture, etc.)

Processing
• Line of sight; field of

view
• Descriptions of light

sources

Image on Display

• We need an understanding of the relevant physical aspects of the display.
• How are images produced?
• What is required (e.g., to support animated graphics)?

Interactive Displays

ò Many different types

ò For our purposes, all have two characteristics in common

ò Physically they are an array of colored dots

ò Once “illuminated”, a dot maintains its “lit color” for a very
short time (typically about 1/60 second)

ò Cannot require the application to completely reproduce the
scene 60 sec-1 from the 3D model/view è too much
computation for non-trivial scene geometry.

ò Instead we use a “Frame Buffer”: a simple low-level
representation that permits 60 sec-1 refresh with no CPU
computation.

Role of the Frame Buffer

8/12/19

EECS 672 Fall 2019: Introductory Concepts 4

Frame Buffer

ò Frame Buffer is a matrix of digital values

ò FrameBuffer[r][c] holds the color for the pixel in row r, column c of the
display window:

ò Color: R, G, B (e.g., one byte each)

ò A separate processor redraws the screen 60 sec-1 from this simple low-level
representation.

ò Optionally one or more of the following can be maintained in parallel
when creating a Frame Buffer representation:

ò Alpha (translucency)

ò Depth (distance from observer’s eye)

ò Stencil (mask describing what pixels are writeable)

ò …

Model
• 3D Geometry
• Attributes (colors,

texture, etc.)

Processing
• Line of sight; field of

view
• Descriptions of light

sources

Image on Display
• Frame buffer: matrix of

colors

• “Processing” yields a Frame Buffer representation of the scene. (CPU-GPU)
• Two issues:

• Scan conversion (continuous geometry è discrete pixels)
• Aliasing/anti-aliasing

• Frame buffer represents one “still” image.

Model-Processing-Image
ò The operations discussed for Model-Processing-Image

generation were not explicitly assigned to processors (i.e.,
CPU versus GPU).

ò Primary reason: responsibilities can be dynamically
distributed. For example, within a single program some pieces
of a scene may be more or less completely handled on the
CPU, others primarily on the GPU.

ò Even within the GPU, operations may be done in different
shader programs, based on type of geometry and desired
rendering algorithms.

ò We will ease our way into these and other possibilities as we
progress through the course.

8/12/19

EECS 672 Fall 2019: Introductory Concepts 5

Animations?

ò Animation, simulations, and/or user-controlled view
changes need to be perceived as being “smooth”.

ò Each frame of an animated sequence must be generated
by (i) clearing the frame buffer, and (ii) redrawing the
scene with updated model and view specifications.

ò When using a single frame buffer, there will usually be a
noticeable “flashing” between frames.

ò “Double buffering” eliminates this problem and allows
smooth motion.

What’s Next?

ò With this brief background, we will begin our study of
graphics using OpenGL by examining a series of example
programs that can be accessed from:

http://people.eecs.ku.edu/~jrmiller/Courses/OpenGL/OpenGL.html

VERSIONS: GL: 4.5.0 NVIDIA 384.130
GLSL: 4.50 NVIDIA
GLFW: 3.1.2 X11 GLX clock_gettime /dev/js XI Xf86vm shared

Current OpenGL versions on EECS Workstations:

