Projection Matrix Summary

0. Recall, we build all 4x4 matrices here as a product: \(\mathbf{M}_{ec-lds} = \mathbf{M}_{wv} \ast \mathbf{M}_{proj} \) where:

- \(\mathbf{M}_{wv} \) does the window-viewport map into the -1...+1 logical device space of OpenGL
- \(\mathbf{M}_{proj} \) does the 3D to 2D projection with preservation of (at least relative) depth.

1. **Orthogonal** *(Given: \(x_{\min}, x_{\max}, y_{\min}, y_{\max}, z_{\min}, z_{\max} \), all specified in eye coordinates with \(x_{\min} < x_{\max}, y_{\min} < y_{\max}, \) and \(z_{\min} < z_{\max} \))*

 \(\mathbf{M}_{proj} \) is the identity matrix since there is nothing that needs to be done. \(\mathbf{M}_{wv} \) simply maps \((x_{\min}, x_{\max}, y_{\min}, y_{\max}, z_{\min}, z_{\max}) \) to \((-1, 1, -1, 1, 1, -1)\). (Note the reversal in the z direction.)

 This yields three pairs of equations with two unknowns:

 \[
 \begin{align*}
 a_x x_{\min} + b_x &= -1 \\
 a_x x_{\max} + b_x &= 1 \\
 a_y y_{\min} + b_y &= -1 \\
 a_y y_{\max} + b_y &= 1 \\
 a_z z_{\min} + b_z &= 1 \\
 a_z z_{\max} + b_z &= -1
 \end{align*}
 \]

 Solving for \(a_x, b_x, a_y, b_y, a_z, \) and \(b_z \), we get:

 \[
 \begin{align*}
 a_x &= 2/(x_{\max} - x_{\min}); \\
 b_x &= -(x_{\max} + x_{\min})/(x_{\max} - x_{\min}) \\
 a_y &= 2/(y_{\max} - y_{\min}); \\
 b_y &= -(y_{\max} + y_{\min})/(y_{\max} - y_{\min}) \\
 a_z &= -2/(z_{\max} - z_{\min}); \\
 b_z &= (z_{\max} + z_{\min})/(z_{\max} - z_{\min})
 \end{align*}
 \]

 Hence

 \[
 \mathbf{M}_{wv} = \begin{pmatrix}
 a_x & 0 & 0 & b_x \\
 0 & a_y & 0 & b_y \\
 0 & 0 & a_z & b_z \\
 0 & 0 & 0 & 1
 \end{pmatrix}
 \]

 Finally, \(\mathbf{M}_{ec-lds} = \mathbf{M}_{wv} \mathbf{M}_{proj} = \mathbf{M}_{wv} \mathbf{I} = \mathbf{M}_{wv} \).

2. **Oblique** *(Given: \(z_{pp}, x_{\min}, x_{\max}, y_{\min}, y_{\max}, z_{\min}, z_{\max} \) and \(\mathbf{d} = (d_x, d_y, d_z) \), the common direction of projection, all specified in eye coordinates with \(x_{\min} < x_{\max}, y_{\min} < y_{\max}, z_{\min} < z_{\max} \), and \(d_z \neq 0 \))*

 \(\mathbf{M}_{proj} \) can be shown to be:

 \[
 \mathbf{M}_{proj} = \begin{pmatrix}
 1 & 0 & -d_x/d_z & z_{pp}d_x/d_z \\
 0 & 1 & -d_y/d_z & z_{pp}d_y/d_z \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{pmatrix}
 \]

 Clearly \(\mathbf{M}_{wv} \) is the same for oblique as for orthogonal, hence:
where $a_x, b_x, a_y, b_y, a_z,$ and b_z are as given in equation (1) above.

3. Perspective (Given: $z_{pp}, x_{min}, x_{max}, y_{min}, y_{max}, z_{min}, z_{max}$ all specified in eye coordinates with $x_{min}<x_{max}; y_{min}<y_{max}; z_{min}<z_{max}<0; \text{and } z_{pp}<0$)

We derive M_{proj} (and, in particular, the portions of the transformation involving the eye coordinate z direction) so that mapping to the z range of LDS space is included in M_{proj}. Thus we get:

$$M_{wv} = \begin{pmatrix} a_x & 0 & 0 & b_x \\ 0 & a_y & 0 & b_y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad M_{proj} = \begin{pmatrix} z_{pp} & 0 & 0 & 0 \\ 0 & z_{pp} & 0 & 0 \\ 0 & 0 & a_z & b_z \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

where $a_x, b_x, a_y,$ and b_y are as given in equation (1) above. The a_z and b_z terms can be shown to be:

$$\alpha_z = \frac{z_{min} + z_{max}}{z_{max} - z_{min}}; \quad \beta_z = \frac{2z_{min} z_{max}}{z_{max} - z_{min}}$$

Finally:

$$M_{ec-ids} = M_{wv} M_{proj} = \begin{pmatrix} a_x & 0 & 0 & b_x \\ 0 & a_y & 0 & b_y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} z_{pp} & 0 & 0 & 0 \\ 0 & z_{pp} & 0 & 0 \\ 0 & 0 & a_z & b_z \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} a_x z_{pp} & 0 & b_x & 0 \\ 0 & a_y z_{pp} & b_y & 0 \\ 0 & 0 & a_z & b_z \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

In principle, this matrix should be fine, but there is a clipping issue we will discuss that forces us to use the negated version of this matrix. Basically we need to be sure that the w component that results when this matrix is used is positive for any points in the view frustum. Since this matrix will set $w = z$, all visible points will have negative w. Negating the matrix prevents that without altering how points are projected since negating all 16 elements will just produce a different (but projectively equivalent) point. Hence:

$$M_{ec-ids} = \begin{pmatrix} -a_x z_{pp} & 0 & -b_x & 0 \\ 0 & -a_y z_{pp} & -b_y & 0 \\ 0 & 0 & -a_z & -b_z \\ 0 & 0 & -1 & 0 \end{pmatrix}$$