Knowledge Discovery in Academic Drug Discovery Programs: Opportunities and Challenges: an ACM BCB Tutorial

Luke Huan
Electrical Engineering and Computer Science
http://people.eecs.ku.edu/~jhuan/
Group Members and Collaborators

Aaron Smalter, Brian Quanz, Hongliang Fei, Leo Zhang, Jia Yi,
Department of EECS, University of Kansas

Dr. Alex Tropsha, UNC
School of pharmacy

Dr. Gerald H. Lushington, KU Molecular Graphics and Modeling Laboratory, KU

Dr. Leming Shi, FDA

Dr. Deepak Bandyopadhyay, GSK
Acknowledgments

The work is partially supported by

- National Science Foundation, “CAREER: Mining Genome-wide Chemical-Structure Activity Relationships in Emergent Chemical Genomics Databases”, (IIS 0845951)
- National Human Genome Research Institute “KU Special Chemistry Center” (U54 HG005031, $20M)
- National Center for Research Resources, “KU Bioinformatics Computing Facility Core Renovation and Improvement” (RR031125, $4.7M)
- University of Kansas Faculty General Research Fund
Why Talking about Drug Discovery in an ACM Conference?

- Drug discovery is highly data driven
 - Chemical structure
 - Protein sequence, structure, and expression
 - Genome and gene
 - Biological network
 - Pharmacokinetetics and pharmacodynamics
- We see many different data types
 - Vector, semi-structured, time-series, spatial-temporal, images, video, hypertext, literature
- Data analysis and data management challenges are from all aspects
 - Large volume, high dimensional, high noise, large amount of missing values, non iid data, structured input and output, unlabeled data
 - Multi-instance (label, class, task)
- Spans the full data analysis cycles
 - Data collection, data cleansing, data semantics, data integration, data representation
 - Model inference, model selection, modal average, model interpretation
- Huge society and health impacts
- Data are increasingly becoming public available
Outline

- Drug Discovery Pipeline
- Drug Discovery Related Programs in Public Sectors
- Chemical Structure Based Prediction Problems with Kernel Methods
- Non-structured Based Prediction
Part I: Drug Discovery Pipeline

- Overview of Drug Discovery and Development
- Pre-discovery of Drugs
 - Target identification/validation, assay development, hit identification, lead identification, early safety tests, lead optimization, preclinical testing
- Drug Discovery
 - Investigational new drug (IND), clinical trials phase I, II, and III, new drug application (NDA), manufacturing, post-market analysis
- Concluding Remarks
What is a drug?

- Majority of them are chemical substances
- Modulate the function of its biological target(s) and hence treat diseases
- If oral taken, MW < 500
- Selective on its action
Overview: Drug Discovery and Development

- **Highly Interdisciplinary**: Recent advances in genomics, proteomics and computational power present new ways to understand human diseases at the molecular level.

- **High Attrition Rate**: For every 5,000-10,000 compounds that enter the research and development (R&D) pipeline, ultimately only one receives approval.

- **Complex**: Success requires immense resources — the best scientific minds, highly sophisticated technology, complex project management, and sometimes, luck.
Overview: Drug Discovery and Development

- Goal: a safe and effective new treatment to patients
- Pre-discovery:
 - understand a disease
 - Basic causes of disease at the level of genes, proteins and cells
 - understand emerge “targets” of potential new drugs
- Discovery and development
 - Validate these targets
 - Discover the right molecules to interact with the target
 - Test the new compounds in the lab and clinic for safety and efficacy
 - Gain FDA approval and distribute the new drug in the market
Figure adopted from the brochure of INNOVATION.ORG “Drug Discovery and Development: Understanding the R&D Process”.
Process: **Drug Discovery and Development**

- This whole process takes an average of **10-15 years**.

Figure adopted from: M.A. Cooper, Optical biosensors in drug discovery, *Nat. Rev. Drug Discov.* 1, 515-528 (2002)
Pre-discovery: Understanding diseases

- NOT in the drug discovery and development pipeline
- Understand the diseases to be treated as well as possible, and to unravel the underlying cause of the condition.
 - How the genes are altered;
 - How that affects the proteins they encode;
 - How those proteins interact with each other in living cells;
 - How those affected cells change the specific tissue they are in;
 - How the disease affects the entire patient.
- With new tools and insights, this research takes many years of work and, too often, leads to frustrating dead ends.
Pre-discovery: Cooperation of Many Sectors

- Many sectors contribute in building the basic science foundations.
 - **Major biopharmaceutical companies** are the primary source of R&D funding for new medicines, both for projects in their own laboratories as well as for research licensed from other sectors.
 - **Smaller companies** also drive innovation, conducting basic research, drug discovery, preclinical experiments and, in some cases, clinical trials.
 - **The NIH** provides leadership and funding support to universities, medical schools, research centers and other nonprofit institutions, and stimulates basic research and early-stage development of technologies that enable further targeted drug discovery and development.
Drug Discovery: Target Identification

- With enough understanding of the underlying cause of a disease, one or a few related “targets” for a potential new medicine will be identified.
- A target is generally a single molecule, such as a gene or protein, which is involved in a particular disease.

Drug Discovery: Target Selection

- It is critical to pick a target that is “drugable,” i.e., one that can potentially interact with and be affected by a drug molecule.
- Many other factors need also to be considered.

Figure adopted from: J. Knowles et al. Target Selection in Drug Discovery, Nat. Rev. Drug Discov. 2, 63-69 (2002)
Drug Discovery: Hit Identification

- Given the identified drug targets, small molecules that may act on the targets to alter the disease course will be searched for.

- There are a few ways to find a hit compound:
 - **Nature:** Many interesting and useful compounds for fighting disease exist in nature, e.g. bacteria found in soil and moldy plants both led to important new treatments.
 - **De novo:** Small molecules can be created from scratch using computers. Sophisticated computer modeling to predict what type of molecule may work.
 - **Biotechnology:** Scientists can also genetically engineer living systems to produce disease-fighting biological molecules.
 - **High-throughput Screening**
Drug Discovery: Assay Development

- **High-throughput Screening** is the most common way that leads are usually found.
 - Advances in robotics and computational power allow researchers to test hundreds of thousands of compounds against the target to identify any that might be promising.

Cited from the Internet: http://www.osip.com/scires_coretech
Drug Discovery: Lead Identification

- Newly invented pharmacologically active moieties may have poor drug-likeness and may require chemical modification to become drug-like enough to be tested biologically or clinically.

- **A lead compound** is a starting point for chemical modifications in order to improve potency, selectivity, or pharmacokinetic parameters.

Drug Discovery: Early Safety Test

- Lead compounds go through a series of tests (ADME/Tox) to provide an early assessment of the safety of the lead compound.
- Successful drugs must be:
 - Absorbed into the bloodstream;
 - Distributed to the proper site of action in the body;
 - Metabolized efficiently and effectively;
 - Excreted from the body successfully;
 - Demonstrated to be not Toxic.
- These studies help researchers prioritize lead compounds early in the discovery process. ADME/Tox studies are performed in living cells, in animals and via computational models.
Drug Discovery: Lead Optimization

- Lead compounds that survive the initial screening are then “optimized,” or altered to make them more effective and safer.
- By changing the structure of a compound, its properties can be changed, e.g. making it less likely to interact with other chemical pathways and thus reducing the potential for side effects.
- Even at this early stage, researchers begin to think about how the drug will be made, considering formulation and large-scale manufacturing.
- The resulting compound is the candidate drug.
Case Histories of Lead Optimization

Combinatorial variation of the two substituents on the central urea generated a potent lead (red). Lead optimization focused on improving potency and \textit{in vivo} activity (blue).

The hydroxamate zinc-binding functionality typical of many HDAC inhibitors (red). Lead optimization to the clinical candidate NVPLAQ824 concentrated on improvements to \textit{in vivo} activity and tolerability (blue).

Drug Discovery: Preclinical Testing

- With one or more optimized compounds, lab and animal testing is used to determine if the drug is safe enough in humans:
 - The FDA requires extremely thorough testing before the candidate drug can be studied in humans;
 - *in vitro* and *in vivo* tests (in living cell cultures and animal models) are carried out to understand how the drug works and what its safety profile looks like.
 - First scale up: how to make large enough quantities of the drug for clinical trials.
 - From 5,000 to 10,000 compounds, one to five molecules, called “candidate drugs,” will be studied in clinical trials.
Drug Development: Investigational New Drug (IND)

- Before any clinical trial can begin, the researchers must file an IND application with the FDA.
 - Results of the preclinical work;
 - Candidate drug’s chemical structure and how it is thought to work in the body;
 - A listing of any side effects and manufacturing information.
- The IND also provides a detailed clinical trial plan that outlines how, where and by whom the studies will be performed.
- The FDA reviews the application to make sure people participating in the clinical trials will not be exposed to unreasonable risks.
Drug Development: Clinical Trials

- All clinical trials must be reviewed and approved by the Institutional Review Board (IRB) at the institutions where the trials will take place.
- This process includes the development of appropriate informed consent, which will be required of all clinical trial participants.
- Statisticians and others are constantly monitoring the data as it becomes available. The trial can be stopped at any time if problems arise.
- Comprehensive regular reports must be provided to the FDA and the IRB on the progress of clinical trials.
Drug Development: Clinical Trials (cont’)

- To provide the highest level of confidence in the validity of results, many drug trials are placebo-controlled, randomized and double-blinded:
 - Placebo-controlled: Some subjects will receive the new drug candidate and others will receive a placebo. (In some instances, the drug candidate may be tested against another treatment rather than a placebo.)
 - Randomized: Each of the study subjects in the trial is assigned randomly to one of the treatments.
 - Double-blinded: Neither the researchers nor the subjects know which treatment is being delivered until the study is over.
- More subjects enrolled in a trial results in greater statistical significance of the results, but is also more expensive and difficult to undertake.
Data source: DiMasi et al., J Health Economics 2003;22(2):151-185
Clinical Cost by Therapeutic Category

Data source: DiMasi et al., J Health Economics 2003;22(2):151-185
Drug Development: Phase 0 Clinical Trial

- The FDA has recently endorsed the “Phase 0 trial” (microdosing).

- Phase 0 tests a small drug dose in fewer human volunteers.
 - The goal is to quickly weed out drug candidates that are metabolically or biologically ineffective.
Drug Development: Phase I Clinical Trial

- Initial testing in a small group of healthy volunteers for safety
 - These studies are usually conducted with about 20 to 100 healthy volunteers.
 - The main goal of a Phase 1 trial is to discover if the drug is safe in humans.
 - Researchers look at the pharmacokinetics of a drug: How is it absorbed? How is it metabolized and eliminated from the body? Does it cause side effects? Does it produce desired effects?
 - These closely monitored trials are designed to help researchers determine what the safe dosing range is and if it should move on to further development.

Figure adopted from the brochure of INNOVATION.ORG “Drug Discovery and Development: Understanding the R&D Process”.
Drug Development: Phase II Clinical Trial

- **Phase 2a and 2b Trials:** Sometimes combined with a Phase I trial

 - Phase 2a trial is aimed not only at understanding the safety of a potential drug, but also getting an early read on efficacy and dosage in a small group of patients.

 - The resulting Phase 2b trial would be designed to build on these results in a larger group of patients for the sake of designing a rigorous and focused Phase III trial.

Figure adopted from the brochure of INNOVATION.ORG “Drug Discovery and Development: Understanding the R&D Process”.
Drug Development: Phase II Clinical Trial

- Test in a small group of patients to show efficacy and safety
 - Evaluate the candidate drug’s effectiveness in about 100 to 500 patients with the disease or condition under study;
 - Examine the possible short-term side effects (adverse events) and risks associated with the drug.
 - Answer these questions:
 - Is the drug working by the expected mechanism?
 - Does it improve the condition in question?
 - What is the optimal dose strength and schedules for using the drug?
 - If the drug continues to show promise, it will proceed to the much larger Phase III trials.
Drug Development: Phase III Clinical Trial

- Test in a large group of patients to show safety and efficacy
 - Study the drug candidate in a larger number of patients: about 1,000-5,000;
 - Generate statistically significant data about safety, efficacy and the overall benefit-risk relationship of the drug;
 - Key in determining whether the drug is safe and effective;
 - Provides the basis for labeling instructions to help ensure proper use of the drug (e.g., information on potential interactions with other medicines).
Drug Development: Phase III Clinical Trial

- **Test in a large group of patients to show safety and efficacy**

 - Phase 3 trials are both the costliest and longest trials.

 - Hundreds of sites around the United States and the world participate in the study to get a large and diverse group of patients.

 - Other critical studies, e.g., plans for full-scale production, and preparation of the complex application required for FDA approval.
Drug Development: New Drug Application (NDA)

- If the results of all three phases of clinical trials show that the drug is both safe and effective, a NDA with the FDA requesting approval to market the drug.

 - It can be as long as 100,000 pages or more;

 - The NDA includes all of the information from the previous years of work, as well as the proposals for manufacturing and labeling of the new medicine;

 - The FDA can either approve or deny the NDA. It may issue an “approvable” letter requesting more information or studies before approval can be given;

 - Review of an NDA may include an evaluation by an advisory committee. Committees vote on whether the FDA should approve an application, and under what conditions.
Drug Development: New Drug Application

• The FDA reviews all the data carefully to determine if the medicine should be approved after addressing three major concerns:

 • No drug has zero risk, so the FDA must determine whether the benefits of the drug outweigh the risks;

 • Based on its assessment of risk and benefit, the FDA must decide what information the package should contain to guide physicians in the use of the new drug;

 • The FDA must assess whether the methods used to manufacture the drug and ensure its quality are adequate to preserve the drug's identity, strength and purity.
Drug Development: Manufacturing

- Making a high-quality drug compound on a large scale is non-trivial.

- Each facility must meet strict FDA guidelines for Good Manufacturing Practices (GMP).

Cited from the Internet: http://www.pharmiran.com/history.asp
What if Phase III Fails?

Figure adopted from the brochure of INNOVATION.ORG “Drug Discovery and Development: Understanding the R&D Process”.
Post-approval R&D Cost

Data source: DiMasi et al., J Health Economics 2003;22(2):151-185
Post-approval Clinical Trial: Phase IV

- Research on a new medicine continues even after approval.

- As a much larger number of patients begin to use the drug, companies must continue to monitor it carefully and submit periodic reports, including cases of adverse events, to the FDA.

- In addition, phase V clinical trials can be set up to evaluate long-term safety or how the new medicine affects a specific subgroup of patients.
Post-approval Clinical Trial: Phase IV

- Some drugs have been withdrawn from the market because of risks to the patients, and unexpected adverse effects were not detected during Phase III clinical trials and were only apparent from the wider patient community.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Time Withdrawn</th>
<th>Risk/Reason of Being Withdrawn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thioridazine</td>
<td>2005, U.K.</td>
<td>cardiotoxicity</td>
</tr>
<tr>
<td>Pemoline</td>
<td>2005, U.S.</td>
<td>hepatotoxicity</td>
</tr>
<tr>
<td>Ximelagatran</td>
<td>2006</td>
<td>hepatotoxicity (liver damage).</td>
</tr>
<tr>
<td>Tegaserod</td>
<td>2007</td>
<td>imbalance of cardiovascular ischemic events, including heart attack and stroke.</td>
</tr>
<tr>
<td>Aprotinin</td>
<td>2007</td>
<td>increased risk of complications or death; permanently withdrawn except for research use</td>
</tr>
<tr>
<td>Inhaled insulin</td>
<td>2007, U.K.</td>
<td>national restrictions on prescribing, doubts over long term safety and too high a cost</td>
</tr>
<tr>
<td>Lumiracoxib</td>
<td>2007-2008</td>
<td>serious side effects, mainly liver damage</td>
</tr>
<tr>
<td>Rimonabant</td>
<td>2008</td>
<td>severe depression and suicide</td>
</tr>
<tr>
<td>Efalizumab</td>
<td>2009</td>
<td>increased risk of progressive multifocal leukoencephalopathy</td>
</tr>
<tr>
<td>Sibutramine</td>
<td>2010, Europe</td>
<td>increased cardiovascular risk. This drug continues to be available in the U.S.</td>
</tr>
<tr>
<td>Gemtuzumab ozogamicin</td>
<td>2010, U.S.</td>
<td>increased risks of veno-occlusive disease and no benefit in acute myeloid leukemia (AML)</td>
</tr>
<tr>
<td>Rosiglitazone</td>
<td>2010, Europe</td>
<td>increased risk of heart attacks and death. This drug continues to be available in the U.S.</td>
</tr>
</tbody>
</table>

The Most Recent Case

- “After extensive discussions with the FDA, Pfizer has decided to withdraw the NDA effective October 15, 2010.”

 - Press release from Pfizer
 - http://www.pfizer.com/home/
Concluding Remarks

- Each success is built on many, many prior failures.
- Advances in understanding human biology and diseases are opening up exciting new possibilities for breakthrough medicines.
- Researchers face great challenges in understanding and applying these advances to the treatment of diseases.

<table>
<thead>
<tr>
<th>Duration</th>
<th>Stage</th>
<th>Goal: Understand the disease and choose a target molecules.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Various</td>
<td>Pre-discovery</td>
<td>How: Scientists in pharmaceutical research companies, government, academic and for-profit research institutions contribute to basic research.</td>
</tr>
<tr>
<td>3~6 years</td>
<td>Discovery</td>
<td>Goal: Find a drug candidate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How: Create a new molecule or select an existing molecules as the starting point. Perform tests on that molecule and then optimize (change its structure) it to make it work better</td>
</tr>
<tr>
<td></td>
<td>Preclinical</td>
<td>Goal: Test extensively to determine if the drug is safe enough for human testing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How: Researchers test the safety and effectiveness in the lab and in animal models.</td>
</tr>
</tbody>
</table>

Table adopted from the online brochure from INNOVATION.ORG: “Drug Discovery and Development” 2007
IND
Goal: Obtain FDA approval to test the drug in humans.
How: FDA reviews all preclinical testing and plans for clinical testing to determine if the drug is safe enough to move to human trials.

Clinical Trials
Goal: Test in humans to determine if the drug is safe and effective.
How: Candidate drug is tested in clinical setting in three phases of trials, beginning with tests in a small group of healthy volunteers and moving into larger groups of patients.

Review
Goal: FDA reviews all results to determine if the drug can be approved for patients to use.
How: The FDA reviews hundreds of thousands of pages of information, including all clinical and preclinical findings, proposed labeling and manufacturing plans. They may solicit the opinion of an independent advisory committee.

Manufacturing
Goal: Formulation, scale up and production of the new medicine

Ongoing Studies
Goal: Monitor the drug as it is used in the larger population to catch any unexpected serious side effects.

Total
How much: $800 million - $1 billion
How long: 10 – 15 years

Table adopted from the online brochure from INNOVATION.ORG: “Drug Discovery and Development” 2007
Bottleneck in Drug Discovery

Figure 1

Sources: PhRMA 2007; FDA, 2007
Part II: Drug Discovery Related Programs in the Public Sectors

- NSF ChemXSeer develops digital library and database allowing for intelligent search of documents in the chemistry domain and data obtained from chemical kinetics.
- NIH Roadmap Molecular Libraries and Imaging project aims to profile millions of chemicals and their interactions with biological systems each year.
- EPA routinely performs testing of chemicals and evaluate their toxicities.
- Large pharmaceutical companies screening and profiling millions of chemicals each year.
- FDA is investigating new technology for evaluating the interactions between chemicals and biological systems.
- Results are freely available in the PubChem database.
Molecular Probe Discovery

- NIH Roadmap Molecular Libraries and Chemical Probes Program
 - A research program designed to develop small organic molecules that can be used as chemical probes to study the functions of genes, cells & biochemical pathways,
 - Goal: providing new ways to explore the functions of major components of cells in the functions of major components of cells in health & disease
MLPCN

- US National Institute of Health (NIH) Molecular Libraries Probe Production Centers Network MLPCN Program with 9 centers
 - **Comprehensive Centers**: Provide all three services: assay, cheminformatics/informatics, and medicinal chemistry within a single site. Broad, Burnham, NCGC, and Scripps are comprehensive centers.
 - **Specialized Screening Centers**: Handle specialized types of assays including handling assay informatics. Johns Hopkins, Southern Research Institute, and UNM are specialized screening centers.
 - **Specialized Chemistry Centers**: Focus on providing medicinal chemistry and cheminformatics support for performing structure-activity relationships that is typically needed to produce useful chemical probes from screening hits. These are located at Kansas and Vanderbilt.
- $500M/6 years
Chemical Probe

- A potent, selective, and cell-permeable small molecule that modulate a specific biochemical or cellular functions provides a useful tool for biomedical and biological research.

- Comparing to gene knock-out/in techniques and RNAi techniques, small molecule probes can target a specific site of a cell’s chemical machinery, thus provides information on a specific step in a network of cell functions.
Probe & Drug?

- Ideal Probe? (S. Frye, NCB, pp. 159-162, March 2010)
 - Target selectivity: paralogs, orthologs, genes in the same pathway, genes important for pharmacodynamics
 - Connection between the cellular phenotype and the molecular mechanism: pharmacology,
 - Toxicity and stability
 - Availability and synthesis feasibility
Probe & Drug?

- Not as top priorities:
 - Oral bioavailability
 - Tendency to be metabolized
 - Half-time
 - Cost of manufacture
 - ...
PubChem Web Portal

- All screening and compound data from the MLI phases are freely available to the public via a web portal called PubChem
 - Annotated information about the bioactivities of small molecules
 - Chemical structures and compound probe information
 - A fast chemical structure similarity search tool.
Exploratory Analysis

- Exploring the utility of MLPCN data (screening results, target proteins, and small molecules) in the future therapeutic exploration
- Comparison and analysis of MLPCN targets and drug targets
 - Novelty of MLPCN targets
 - MLPCN targets are a promising source for new drug targets
- MLPCN screening compounds vs. approved drugs, metabolites, and natural products
 - Increase its drug-likeness and biogenic bias
Fact Sheets (as of Jan 2009)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Bioassays</td>
<td>1,306</td>
</tr>
<tr>
<td>Number of Target-based Bioassays</td>
<td>672</td>
</tr>
<tr>
<td>Number of Cell-based Bioassays</td>
<td>634</td>
</tr>
<tr>
<td>Number of Bioassays with Active Compounds</td>
<td>1,126</td>
</tr>
<tr>
<td>Number of Active Compounds in all assays</td>
<td>151,930</td>
</tr>
<tr>
<td>Number of Bioassay-Compound Pairs</td>
<td>555,859</td>
</tr>
<tr>
<td>Number of Bioassay Pairs with at least one shared compounds</td>
<td>124,442</td>
</tr>
</tbody>
</table>

Zhang, Lushington, and Huan, Characterizing the Diversity and Biological Relevance of the MLPCN Assay Manifold and Screening Set, Journal of Chemical Information and Modeling, Vol. 51, No. 6, pp. 1205-1215, 2011
Some Terminologies

- **MLPCN targets**: 200 distinct protein extracted from 680 target-based bioassay from MLPCN screening

- **MLPCN screening set**: a compound set collected from 23 bioassays deposited between May 1 – July 22, 2009
 - A compound is selected if it was tested in 21 of the 23 assays (i.e. 90%)
 - 279,768 compounds obtained

- **Random ChemNavigator set**: 279,768 compounds randomly extracted from the ChemNavigator compound collections
 - ChemNavigator: a library of commercially available small molecules
PubChem BioAssays

Purposes of Cell-based Assays
- Cell Death: 17%
- Anticancer (in vitro & mice): 17%
- Tumor Growth Inhibition: 15%
- SMM on Stem Cell: 10%
- Anti-viral & microbial: 3%
- Cell Growth: 3%
- Miscellaneous: 36%

Organisms of MLPCN targets
- Homo sapiens: 81%
- Bacterial: 6%
- Animal: 6%
- Viral: 4%
- Other: 2%
MLPCN Targets

- 289 target proteins are extracted from 680 target-based bioassays
- 200 distinct proteins are obtained from converting 215 gene symbols
- 113 MLPCN targets are identified as enzymes
MLPCN Targets and Drug Targets

- Needleman-Wunsch global alignment (gap open = 11, extension = 1) between MLPCN targets and drug targets
- 500 human proteins randomly selected from GenBank as control set
Degree Distribution and Subcellular Localization

Membrane

Multiple-location

Nucleus
Degree Distribution and Subcellular Localization

- Cytoplasm
- Extracellular
- Organelle
Drug Likeness of MLPCN Compounds

- For each compound in MLPCN or ChemNavigator, identify its nearest neighboring compounds in approved drugs (most similar)
- Compound similarity: Daylight fingerprint FP2 and Tanimoto coefficients
MLPCN Compounds vs. ChemNavigator Compounds
MLPCN Compounds vs. Approved Drugs

[Graphs and images showing comparisons between MLPCN compounds and approved drugs]
Summary (not in a definite sense)

- The MLPCN screening set is found to be a well-chosen subset of
 - Available drug-like small molecules
 - A highly diverse compound collection with greater biogenic bias than a comparable-sized set of commercially available compounds,
 - Incorporation of more metabolite-like chemotypes.

- Enhance the screening set diversity by exploring regions of chemical space that are under-populated in the MLPCN set relative to other biogenic compound collections
 - Potentially enhance the quality of resulting bioassay data in ways suitable for advancing both basic research and rational drug discovery.
Part III: Kernels for Chemical Activity Prediction

- Chemical Activity Prediction
- Chemical Graphs and Features
- Kernels for Structured Data
- Kernels for Chemical Graphs
 - Path-based: random or all sequences of specific length
 - Semi-structured: subtrees and cycles
 - General subgraphs, alignment
Chemical Activity Prediction

- Activity is observed chemical function
 - Toxicity, binding affinity, intestinal absorption, etc.
 - Important for screening candidate drugs
- Functional activity depends on structure
 - Compounds with 'similar' structure might have similar function
 - ‘Similar' structures, with similar activity, may share common structure features
Chemical Graphs

- Use graph representation for chemical activity prediction to retain rich expressivity
- Transformation of chemicals to graphs is straightforward.
 - Atoms correspond to vertices.
 - Bonds correspond to edges.
 - Vertices and edges are labeled with atom element and bond type, among other properties.
Chemical Classification

- Machine learning tools typically require a numeric sample-feature matrix as the input representation.
- The classification of chemical graphs requires some way to embed them in a suitable space, either explicitly or implicitly.
Embedding Graphs for Classification

Decision boundary

Positive samples

Negative samples

Boundary margins

10/12/10
Chemical Features

- The features describing a chemical graph embed it in a spatial representation.
- Chemical features take many forms, such as those describing an entire molecule, or those describing particular atoms.
Examples of Features

[8, 5, ...]

of atoms # of bonds . . .

Molecular

[8, 12.35, 1.67, -1.09, 0, 0.02]

atomic number electrophilic state # free electrons
atomic mass electro affinity partial charge

Atomic
Kernel Methods

- Instead of explicitly computing features, compare chemical graphs using a kernel function.
- This kernel matrix of pair-wise similarities embeds chemical graphs into a space suitable for classification.
- The kernel function between two objects replaces the inner product of two feature vectors in the classifier optimization problem.
- Shift from finding good classifier to finding good kernel function.
Kernel Space Visualizations
R-Convolution Kernel

- Kernels between chemical graphs are defined as cases of a general kernel between structured data, the R-Convolution Kernel.
- The difference in kernel functions depends on the method used to decompose complex graph structures into simpler ones.
R-Convolution Definitions

\[x \in X \text{ be a composite object} \]
\[\vec{x} = x_1, \ldots, x_D \in X_1 \times \ldots \times X_D \text{ are its parts} \]
\[\mathcal{R} \text{ defined on } X_1 \times \ldots \times X_D \times X \]
\[\mathcal{R}(\vec{x}, x) \text{ true iff } \vec{x} \text{ are the parts of } x \]
\[\mathcal{R}^{-1}(x) = \{ \vec{x} : \mathcal{R}(\vec{x}, x) \} \]
R-Convolution Equation

\[k_{\mathcal{R}}(x, y) = \sum_{\bar{x} \in \mathcal{R}^{-1}(x), \bar{y} \in \mathcal{R}^{-1}(y)} \prod_{d=1}^{D} K_d(x_d, y_d) \]

Kernel between composite objects \(x \) and \(y \)
Sum over the parts of \(x \) and \(y \)
Product of kernels between parts of \(x \) and \(y \)
Recursive Decomposition

- The R-convolution kernel framework allows for recursive application.
- For example, a kernel between chemical graphs may depend on a kernel between linear molecular fragments, which may in turn depend on a kernel between individual atoms.
Recursive Decomposition

\[k_R(x, y) = \sum_{\bar{x} \in R^{-1}(x), \bar{y} \in R^{-1}(y)} \prod_{d=1}^{D} K_d(x_d, y_d) \]

\[k_R(x, y) = \sum_{\bar{x} \in R^{-1}(x), \bar{y} \in R^{-1}(y)} \prod_{d=1}^{D} K_d(x_d, y_d) \]
Range of Decompositions

Simple
- numeric vectors
- strings
- sets
- multi sets

Comple
- graphs
- trees
- cycles
Path-based Kernels

- Construct kernels by computing shared path substructures
- Examples:
Finding Shared Paths

10/12/10
Marginalized Kernel (Mahé et al. 2005)

- Randomly generate a set of paths of a specified length from a chemical graph.
- Compute similarity for two chemical graphs based on the number of shared random paths.
Spectrum Kernel (Leslie 2002)

- Generate all paths in a chemical graph up to or exactly equal to a specified length.
- Again, compute the similarity between two chemical graphs according to the number of common paths.
Kernels with non-path Features

- Kernels with non-path features
- Examples:
Cyclic Kernel (Horvath 2004)

- Index chemical graphs as a set of cyclic patterns.
- Such patterns are common in organic molecules.
- Example cycle patterns:
Subtree Kernel (Mahé 2006)

- Like cycles, subtrees or branching patterns are common in biology, particularly in lipid-type molecules.
- Subtrees are mined and chemical graphs are indexed by their presence or absence.
- Many small molecules are already trees:

![Chemical structures](attachment:image.png)
General Graph Kernels

- Some kernels take advantage of the rich chemical graph structure and perform as little decomposition as possible.
- Examples:
Subgraph Kernels

- Decompose chemical graphs into the most general substructure.
- Can mine patterns and compute similarity based on shared patterns.
- Many aspects of chemical activity are determined by functional groups or pharmacophores that can be represented as subgraphs and incorporated into a kernel. (Mahé 2006)
Subgraph Examples

\[(P)\]

\[(Q)\]

\[(S)\]

\[(A_1)\] \[(A_2)\] \[(A_3)\] \[(A_4)\] \[(A_5)\] \[(A_6)\]
Frequent Patterns in Chemical Graphs
Many molecular properties are determined by the existence of specific patterns that can attach to chemical scaffolds in a modular way.

The 3-dimensional arrangement of these pharmacophores is also incorporated for chemical activity prediction.
Optimal Assignment Kernel (Frohlich 2006)

- Instead of using a decomposition, two chemical graphs are aligned by matching vertices from one graph to the other.
- Computes a maximum weighted bipartite graph between two sets of vertices, but is not positive semi-definite as originally published.
- Uses a recursive matching function to align groups of vertices.
Bipartite Graph

Chemical Graph A

Bipartite Graph

Chemical Graph B
Matching Vertices and Patterns
Protein-Chemical Interaction

Samlter & Huan, IEEE/ACM Transaction of Bioinformatics and Computational Biology, 2010
Additional Chemical Features

- Not limited to structure – much more data sometimes available
 - In fact common structure will not always reveal common effect
 - Whole picture of biological systems needed in reality

- Different ways of characterizing a drug (chemical) based on its effects and interactions
Part IV: Data Analysis in Drug Discovery

- Use Quantitative Structure Activity Relationship models
- Use machine learning, data mining, information retrieval, text mining, image analysis to understand information in a wide range of data types
- Modeling a variety of end-points
 - Protein-chemical interaction
 - Gene-chemical interaction
 - Chemical toxicity
 - Absorption, distribution, metabolism, and excretion (ADME) properties
Additional Chemical Features

Different ways of characterizing a drug:

- Interaction Profiles
 - Chemical-protein interactions, chemical-genetic interactions
- Drug Effects (Phenotypical – text mining)
 - Side effect profile
 - Pharmacological effects
- In Vitro/ In Vivo test effects
 - Genetic profiles, screening profiles, end-points
Interaction Profiles

- Characterize an object based on its interactions (interactome) with another set
 - Similar idea to kernel methods

<table>
<thead>
<tr>
<th>Compounds tested against proteins</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Interaction networks (graph), binary vector or real-valued activity/interaction strength
Chem.-Protein Interaction Profile Example

- Chemical effects are usually result of multi-protein interactions (Hopkins 2008)
 - Proteome similarity good indicator of common effects
- (Yang 2009) exploited protein interactome of chemicals using data mining techniques for exploring Severe Adverse Drug Reaction (SADR)
 - Determine common protein sub-groups
 - Classify SADR using profile

Chem.-Genetic Interaction Example

- Chems. with different structure can still share common effects! (*structure isn’t always enough*)
- (Parsons 2004, Parsons 2006) used chemical-genetic profiles (a.k.a. hyper-sensitivity profiles)
 - To infer protein or pathway targets and
 - To identify pathways protecting against toxic effects of a drug
 - Potentially providing info. about compound’s mode of action

Chem.-Genetic Interaction Example

- Compounds with very different structures can have similar modes of action, captured by chemical-genetic profile
 - E.g. two highly selective inhibitors of Hsp90, highly unrelated structurally, similar chemical-genetic profiles (Parsons 2006)

- Looked at inhibitors with yeast and gene knockout

Chem.-Genetic Interaction Example

- Chemical-genetic profile:
 - Interaction is characterized by combination of chemical with gene knockout leading to cell death (or defects)
 - Emerging high-throughput method
 - ~5,000 yeast deletion mutants and up to 82 compounds tested
 - 2-D hierarchical clustering and probabilistic sparse matrix factorization for visualization and to identify compounds with similar modes of action

Side Effects as Features

- Adverse Drug Reactions (side effects) used to predict drug-target interactions
 - (Campillos 2008) demonstrated how side-effects could reveal unknown interactions
 - Drugs with similar (phenotypic) side-effect profiles used to predict common targets
 - Reveal existing FDA-approved drugs for one disease could be used for a different one
 - E.g.: Rabeprazole (protein-pump inhibitor) used to treat stomach ulcers and pergolide (dopamine receptor agonist) have common side-effect profile – rabeprazole shown to bind to dopamine receptos (Campillos 2008)

Side Effects as Features

- (Kuhn 2008) provides side-effect database free for academic use - SIDER:
 http://sideeffects.embl.de/
 - 1,450 side effects, 888 drugs
 - Drug side-effects were collected using text mining approach from package inserts of drugs –e-format
 - From public sources such as FDA
 - Coding Symbols for a Thesaurus of Adverse Reaction Terms (COSTART) - side effect lexicon

Pharmacological Effects

- (Yamanishi 2010) used chemical structure, protein sequence, and general phenotypic effects of the chemicals to predict chemical-protein interaction network.

- Pharmacological effects:
 - Keywords for drugs were obtained from the JAPIC (Japan Pharmaceutical Information Center) database - 18,653 keywords in total.
 - Grouped: pharmaceutical effects, adverse effects, caution, usage, properties, etc. (general text info.)
Pharmacological Effects

- “Pharmaceutical effects” key words used as binary features
- Two step process:
 - Use known pharmacological effects to predict unknown ones in chemicals (regression model)
 - Use known and predicted pharmacological features to predict drug target interaction network
 - Embed drugs in targets into a unified space, and use distance threshold to determine interaction

Relationship Between Chemical and Pharmacological Spaces w.r.t Drug Targets

Figure taken with permission from (Yamanishi 2010)
In Vitro Screening

- In vitro (test tube) experiments can be designed to measure indicators of a drug’s effects – features
 - E.g. measure gene expression, transcriptional responses, protein function, etc. of samples/cells of interest combined with drugs
 - E.g. (Iorio 2010), (Judson 2010)
 - High-throughput screening approach (HTS) quicker, less expensive than obtaining end-points

Judson et al., In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project.” Environ Health Perspect 118(4) 2010.
In Vitro Screening

- U.S. Environmental Protection Agency’s (EPA) ToxCast Program (Judson 2010)
 - Phase I profiled >300 chiefly pesticide chemicals
 - Over 400 HTS endpoints collected - biochemical assays of:
 - protein function
 - cell-based transcriptional reporter and gene expression
 - cell line and primary cell functional
 - developmental endpoints in zebrafish embryos and embryonic stem cells

Judson et al., In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project.” Environ Health Perspect 118(4) 2010.
In Vitro Screening

- U.S. Environmental Protection Agency’s (EPA) ToxCast Program (Judson 2010)
 - ~$2 billion in animal toxicity studies
 - Battery of toxicology methods to obtain reliable toxicity end-points:
 - Developmental toxicity, multi-generation reproductive studies, sub-chronic and chronic rodent bioassays, etc.
 - Phase II will expand chemicals tested – more and wider variety

Judson et al., In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project.” Environ Health Perspect 118(4) 2010.
Nature of Non-Structure Features

- Typically all expensive to obtain
 - Unlike structure-based chemical descriptors that are fast, inexpensive, and easy to obtain
 - Missing values – not all information is available for all drugs, all features, etc.
 - e.g. missing protein interactions, only tested for some compounds, some proteins, different proteins for different compounds
 - In vitro and in vivo tests expensive, not likely to get for all data e.g. EPA data – time and cost
 - Missing pharmacological effects
Nature of Non-Structure Features

- Typically all expensive to obtain
 - Transfer learning:
 - As a result, must make use of what labeled data available
 - Expensive and time-consuming to obtain end-points and additional features for specific set of chemicals or e.g. targets
 - However chemical space is huge, we must consider effects of selection bias when using existing available data to reduce time and cost
 - Different targets, sets of chemicals, different marginal or conditional distributions – transfer learning
Nature of Non-Structure Features

- Another potential solution: adaptive data mining techniques
 - E.g. active learning
 - Adaptively determine what information is most necessary (which compounds to test, etc.) to achieve some goal, e.g. elucidate chemical activity model
Adaptive Approaches to Drug Discovery

- Computational methods could make drug development process more adaptive
 - Adaptive techniques could improve efficiency and success (reduce costs) of drug discovery process
 - Model $P(\text{drug high success} \mid \text{drug descriptor, drug combinations/conditions, sample indicators, etc.})$
 - To better understand $P(Y\mid X)$, choose most informative test
- Active learning
- Bayesian Clinical Trials
Adaptive Approaches to Drug Discovery

- Active learning with computational models of activity can aid in hit/lead identification
 - Drug Discovery Process:
 - Identify Target
 - Test an initial set of chemicals against target (HTS)
 - Based on results refine activity model (chemist or machine)
 - Suggest next set of chemicals to test
 - Repeat…
Adaptive Approaches to Drug Discovery

- Active learning:
 - Repeated tests – but tests cost
 - Ability to choose which instances to obtain label
 - Exploit choice to identify most hits or reveal most info. about activity model as quickly as possible

- E.g. Warmuth et al. 2003, SVM approach to identify candidate drugs to screen
 - Farthest from hyperplane – most certain
 - Closest to hyperplane – most uncertain

Adaptive Approaches to Drug Discovery

- Maintaining and updating model of drug success – also apply to other phases
- Highlight: “Bayesian Clinical Trials” (Berry 2006)
 - Adaptive, computational approaches successfully used to help regulate clinical trials
 - Case study of FDA approved drug

Conclusions

- Drug discovery is a very very expensive process
- Enormous opportunities for computer scientists.
 - Data are increasingly becoming publically available
 - No one knows the best practice to discovery a drug (even big pharms in the business >100 years)

- Challenges:
 - Do not underestimate the beast
Questions?

● Dr. Jun Huan
 Associate Professor
 Department of Electrical Engineering and Computer Science
 University of Kansas
 jhuan@ku.edu
 http://people.eecs.ku.edu/~jhuan