
Chapter 1

Rule Induction from Rough
Approximations

Rule induction is an important technique of data mining or machine learning.
Knowledge is frequently expressed by rules in many areas of AI, including rule-
based expert systems. In this chapter we discuss only supervised learning in
which all cases of the input data set are pre-classified by an expert.

1.1 Complete and Consistent Data

Our basic assumption is that the data sets are presented as decision tables. An
example of the decision table is presented in Table 1.1. Rows of the decision
table represent cases, columns represent variables. The set of all cases is denoted
by U . For Table 1.1, U = {1, 2, 3, 4, 5, 6, 7, 8}. Some variables are called
attributes while one selected variable is called a decision and is denoted by
d. The set of all attributes will be denoted by A. In Table 1.1, A = {Wind,
Humidity, Temperature} and d = Trip. For an attribute a and case x, a(x)
denotes the value of the attribute a for case x. For example, Wind (1) = low.

Let B be a subset of the set A of all attributes. Complete data sets are
characterized by the indiscernibility relation IND(B) [1, 2] defined as follows:
for any x, y ∈ U ,

(x, y) ∈ IND(B) if and only if a(x) = a(y)

for any a ∈ B
(1.1)

Obviously, IND(B) is an equivalence relation. The equivalence class of
IND(B) containing x ∈ U will be denoted by [x]B and called B-elementary
set. A-elementary sets will be called elementary. Any union of B-elementary
sets will be called a B-definable set. By analogy, A-definable set will be called
definable. The elementary sets of the partition {d}∗ are called concepts. In
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Table 1.1: A complete and consistent decision table

Attributes Decision

Case Wind Humidity Temperature Trip

1 low low medium yes

2 low low low yes

3 low medium medium yes

4 low medium high maybe

5 medium low medium maybe

6 medium high low no

7 high high high no

8 medium high high no

Table 1.1, concepts are {1, 2, 3}, {4, 5} and {6, 7, 8}. The set of all equivalence
classes [x]B , where x ∈ U , is a partition on U denoted by B∗. For Table 1.1, A∗

= {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}. All members of A∗ are elementary
sets.

We will quote some definitions from [3]. A rule r is an expression of the
following form

(a1, v1)&(a2, v2)& . . .&(ak, vk)→ (d,w), (1.2)

where a1, a2,..., ak are distinct attributes, d is a decision, v1, v2,..., vk are
respective attribute values, and w is a decision value.

A case x is covered by a rule r if and only if any attribute-value pair of r is
satisfied by the corresponding value of x. For example, case 1 from Table 1.1 is
covered by the following rule r:

(Wind, low) & (Humidity, low) → (Trip, yes).

The concept C defined by rule r is indicated by r. The above rule r indicates
concept {1, 2, 3}.

A rule r is consistent with the data set if and only if for any case x covered
by r, x is a member of the concept indicated by r. The above rule is consistent
with the data set represented by Table 1.1. A rule set R is consistent with the
data set if and only if for any r ∈ R, r is consistent with the data set. The
rule set containing the above rule is consistent with the data set represented by
Table 1.1.

We say that a concept C is completely covered by a rule set R if and only if
for every case x from C there exists a rule r from R such that r covers x. For
example, the single rule
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(Wind, low) → (Trip, yes)

completely covers the concept {1, 2, 3}. On the other hand, this rule is not
consistent with the data set represented by Table 1.1.

A rule set R is complete for a data set if and only if every concept from the
data set is completely covered by R.

In this chapter we will discuss how to induce rule sets that are complete and
consistent with the data set.

1.1.1 Global Coverings

The simplest approach to rule induction is based on finding the smallest subset
B of the set A of all attributes that is sufficient to be used in a rule set. Such
reducing of the attribute set is one of the main and frequently used techniques
in rough set theory [1, 2, 4]. This approach is also called a feature selection.

In Table 1.1 the attribute Humidity is redundant (irrelevant). Remaining
two attributes (Wind and Temperature) distinguish all eight cases. Let us make
it more precise using fundamental definitions of rough set theory [1, 2, 4].

For a decision d we say that {d} depends on B if and only if B∗ ≤ {d}∗,
i.e., for any elementary set X in B there exists a concept C from {d}∗ such that
X ⊆ C. Note that for partitions π and τ on U , if for any X ∈ π there exists
Y ∈ τ such that X ⊆ Y then we say that π is smaller than or equal to τ and
denote it by π ≤ τ . A global covering (or relative reduct) of {d} is a subset B
of A such that {d} depends on B and B is minimal in A. The algorithm to
compute a single global covering is presented below.

Algorithm to compute a single global
covering
(input: the set A of all attributes,
partition {d}∗ on U ;
output: a single global covering R);
begin
compute partition A∗;
P : = A;
R := ∅;

if A∗ ≤ {d}∗
then

begin
for each attribute a in A do

begin
Q := P − {a};
compute partition Q∗;
if Q∗ ≤ {d}∗

then P := Q
end {for}
R := P
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end {then}
end {algorithm}.

Let us use this algorithm for Table 1.1.
First, A∗ = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}} ≤ {Trip}∗. Initially, P =
A, and Q = P−Wind,

Q = {Humidity, Temperature} and then we compute Q∗, where

Q∗ = {{1, 5}, {2}, {3}, {4}, {6}, {7, 8}}. We find that Q∗ 6≤ {Trip}∗.
Thus, P = A. Next, we try to delete Humidity from P . We obtain

Q = {Wind, Temperature} and then we compute Q∗, where Q∗ = {{1, 3}, {2},
{4}, {5}, {6}, {7}, {8}}. This time Q∗ ≤ {Trip}∗, so P = {Wind, Tempera-
ture}.

It remains to check Q = P− {Temperature}, Q = {Wind}, Q∗ = {{1, 2, 3,
4}, {5, 6, 8}, {7}}, and Q∗ 6≤ {Trip}∗. Thus R = {Wind, Temperature} is a
global covering.

For a given global covering rules are induced by examining cases of the data
set. Initially, such a rule contains all attributes from the global covering with
the corresponding attribute values, then a dropping conditions technique is used:
we are trying to drop one condition (attribute-value pair) at a time, starting
from the leftmost condition, checking if the rule is still consistent with the data
set, then we are trying to drop the next condition and so on. For example,

(Wind, low) & (Temperature,medium)→
(Trip, yes)

is our first candidate for a rule. If we are going to drop the first condition, the
above rule will be reduced to

(Temperature,medium)→ (Trip, yes),

However, this rule covers the case 5, so it is not consistent with the data
set represented by Table 1.1. By dropping the second condition from the initial
rule we obtain

(Wind, low)→ (Trip, yes),

but that rule is also not consistent with the data represented by Table 1.1 since
it covers the case 4, so we conclude that the initial rule is the simplest possible.
This rule covers two cases: 1 and 3.

It is not difficult to check that the rule

(Wind, low) & (Temperature, low)→ (Trip, yes)

is as simple as possible and that it covers only case 2. Thus, the above two rules
consistently and completely cover the concept {1, 2, 3}.
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The above algorithm is implemented as LEM1 (Learning from Examples
Module version 1). It is a component of the data mining system LERS (Learning
from Examples using Rough Sets). A similar system was described in [5].

1.1.2 Local Coverings

The LEM1 algorithm is based on calculus on partitions on the entire universe U .
Another approach to rule induction, based on attribute-value pairs, is presented
in the LEM2 algorithm (Learning from Examples Module, version 2), another
component of LERS. We will quote a few definitions from [6, 7].

For an attribute-value pair (a, v) = t, a block of t, denoted by [t], is a set of
all cases from U such that for attribute a have value v, i.e.,

[(a, v)] = {x | a(x) = v}. (1.3)

Let T be a set of attribute-value pairs. The block of T , denoted by [T ], is
the following set ⋂

t∈T
[t]. (1.4)

Let B be a subset of U . Set B depends on a set T of attribute-value pairs
t = (a, v) if and only if [T ] is nonempty and

[T ] ⊆ B. (1.5)

Set T is a minimal complex of B if and only if B depends on T and no
proper subset T ′ of T exists such that B depends on T ′. Let T be a nonempty
collection of nonempty sets of attribute-value pairs. Then T is a local covering
of B if and only if the following conditions are satisfied:

(1) each member T of T is a minimal complex of B,

(2)
⋃
t∈T [T ] = B, and

(3) T is minimal, i.e., T has the smallest possible number of members.

An algorithm for finding a single local covering, called LEM2, is presented
below. For a set X, |X| denotes the cardinality of X.

LEM2
(input: a set B,
output: a single local covering T of set B);
begin

G := B;
T := ∅;
while G 6= ∅

begin
T := ∅;
T (G) := {t|[t] ∩G 6= ∅} ;
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while T = ∅ or [T ] 6⊆ B
begin

select a pair t ∈ T (G)
such that |[t] ∩G| is
maximum; if a tie
occurs, select a pair
t ∈ T (G) with the
smallest cardinality of [t];
if another tie occurs,
select first pair;
T := T ∪ {t} ;
G := [t] ∩G ;
T (G) := {t|[t] ∩G 6= ∅};
T (G) := T (G)− T ;

end {while}
for each t ∈ T do

if [T − {t}] ⊆ B
then T := T − {t};

T := T ∪ {T};
G := B − ∪T∈T [T ];

end {while};
for each T ∈ T do

if
⋃
S∈T −{T}[S] = B

then T := T − {T};
end {procedure}.

We will trace the LEM2 algorithm applied to the following input set {1, 2,
3} = [(Trip, yes)]. The tracing of LEM2 is presented in the Tables 1.2 and 1.3.
The corresponding comments are:

1. The set G = {1, 2, 3}. The best attribute-value pair t, with the largest
cardinality of the intersection of [t] and G (presented in the third column of
Table 1.2) is (Wind, low). The corresponding entry in the third column of Ta-
ble 1.2 is bulleted. However, [(Wind, low)] = {1, 2, 3, 4} 6⊆ {1, 2, 3} = B, hence
we need to look for the next t,

2. the set G is the same, G = {1, 2, 3}. There are three attribute-value
pairs with |[t ∩ G| = 2. Two of them have the same cardinality of [t], so we
select the first (top) pair, (Humidity, low). This time {1, 2, 3, 4} ∩ {1, 2, 5} =
{1, 2} ⊆ {1, 2, 3}, so {(Wind, low), (Humidity, low)} is the first element T of T ,

3. the new set G = B− [T ] = {1, 2, 3} − {1, 2} = {3}. The pair [(Humidity,
medium) has the smallest cardinality of [t], so it is the best choice. However,
[(Humidity, medium)] ={3, 4} 6⊆ {1, 2, 3}, hence we need to look for the next t,

4. the pair (Temperature, medium) is the best choice, and {3, 4} ∩ {1, 3,
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Table 1.2: Computing a local covering for the concept [(Trip, yes)], part I

(a, v) = t [(a, v)] {1, 2, 3} {1, 2, 3}

(Wind, low) {1, 2, 3, 4} {1, 2, 3} • −
(Wind, medium) {5, 6, 8} − −
(Wind, high) {7} − −
(Humidity, low) {1, 2, 5} {1, 2} {1, 2} •
(Humidity, medium) {3, 4} {3} {3}
(Humidity, high) {6, 7, 8} − −
(Temperature, low) {2, 6} {2} {1, 3}
(Temperature, medium) {1, 3, 5} {1, 3} {1, 3}
(Temperature, high) {4, 7, 8} − −

Comments 1 2

Table 1.3: Computing a local covering for the concept [(Trip, yes)], part II

(a, v) = t [(a, v)] {3} {3}

(Wind, low) {1, 2, 3, 4} {3} {3}
(Wind, medium) {5, 6, 8} − −
(Wind, high) {7} − −
(Humidity, low) {1, 2, 5} − −
(Humidity, medium) {3, 4} {3} • −
(Humidity, high) {6, 7, 8} − −
(Temperature, low) {2, 6} − −
(Temperature, medium) {1, 3, 5} {3} {3} •
(Temperature, high) {4, 7, 8} − −

Comments 3 4
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5} = {3} ⊆ {1, 2, 3}, so {(Humidity, medium), (Temperature, medium)} is the
second element T of T .

Thus, T = { {(Wind, low), (Humidity, low)}, {(Humidity, medium), (Tem-
perature, medium)}}. Therefore, the LEM2 algorithm induces the following rule
set

(Wind, low) &(Humidity, low)→
(Trip, yes)

(Humidity,medium) &

(Temperature,medium)→ (Trip, yes)

Rules induced from local coverings differ from rules induced from global
coverings. In many cases the former are simpler than the latter. For example,
for Table 1.1 and the concept [(Trip, no)], the LEM2 algorithm would induce
just one rule that covers all three cases

(Humidity, high)→ (Trip, no).

On the other hand, the attribute Humidity is not included in the global
covering. The rules induced from the global covering are

(Temperature, high)→ (Trip, no).

(Wind,medium) & (Temperature, low)→
(Trip, no).

1.1.3 Classification

Rule sets, induced from data sets, are used most frequently to classify new,
unseen cases. A classification system has two inputs: a rule set and a data
set containing new cases and it classifies every case as being member of some
concept. A classification system used in LERS is a modification of the well-
known bucket brigade algorithm [7, 8, 9].

The decision to which concept a case belongs is made on the basis of three
factors: strength, specificity, and support. These factors are defined as follows:
strength is the total number of cases correctly classified by the rule during train-
ing. Specificity is the total number of attribute-value pairs on the left-hand side
of the rule. The matching rules with a larger number of attribute-value pairs
are considered more specific. The third factor, support, is defined as the sum of
products of strength and specificity for all matching rules indicating the same
concept. The concept C for which the support, i.e., the following expression
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∑
matching rules r describing C

Strength(r)∗

Specificity(r)

(1.6)

is the largest is the winner and the case is classified as being a member of C.
In the classification system of LERS, if complete matching is impossible,

all partially matching rules are identified. These are rules with at least one
attribute-value pair matching the corresponding attribute-value pair of a case.
For any partially matching rule r, the additional factor, called Matching factor
(r), is computed. Matching factor (r) is defined as the ratio of the number of
matched attribute-value pairs of r with a case to the total number of attribute-
value pairs of r. In partial matching, the concept C for which the following
expression

∑
partially matching
rules r describing C

Matching factor(r)∗

Strength(r)∗
Specificity(r)

(1.7)

is the largest is the winner and the case is classified as being a member of C.
Since the classification system is a part of the LERS data mining system,

rules induced by any component of LERS, such as LEM1 or LEM2, are presented
in the LERS format, in which every rule is associated with three numbers: the
total number of attribute-value pairs on the left-hand side of the rule (i.e.,
specificity), the total number of cases correctly classified by the rule during
training (i.e., strength), and the total number of training cases matching the
left-hand side of the rule, i.e., the rule domain size.

1.2 Inconsistent Data

Frequently data sets contain conflicting cases, i.e., cases with the same attribute
values but from different concepts. An example of such a data set is presented
in Table 1.4. Cases 4 and 5 have the same values for all three attributes yet
their decision values are different (they belong to different concepts). Similarly,
cases 7 and 8 are also conflicting. Rough set theory handles inconsistent data
by introducing lower and upper approximations for every concept [1, 2].

There exists a very simple test for consistency: A∗ ≤ {d}∗. If this condition
is false, the corresponding data set is not consistent. For Table 1.4, A∗ = {{1},
{2}, {3}, {4, 5}, {6, 7, 8}, {9}, {10}}, and {d}∗ = {{1, 2, 3, 4}, {5, 6, 7}, {8,
9, 10}}, so A∗ 6≤ {d}∗.

Let B be a subset of the set A of all attributes. For inconsistent data sets, in
general, a conceptX is not a definable set. However, setX may be approximated
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Table 1.4: An inconsistent decision table

Attributes Decision

Case Wind Humidity Temperature Trip

1 low low medium yes

2 low low low yes

3 low medium medium yes

4 low medium high yes

5 low medium high maybe

6 medium low medium maybe

7 medium low medium maybe

8 medium low medium no

9 high high high no

10 medium high high no

by two B-definable sets, the first one is called a B-lower approximation of X,
denoted by BX and defined as follows

{x ∈ U |[x]B ⊆ X}. (1.8)

The second set is called a B-upper approximation of X, denoted by BX and
defined as follows

{x ∈ U |[x]B ∩X 6= ∅}. (1.9)

In Equations 1.8 and 1.9 lower and upper approximations are constructed
from singletons x, we say that we are using so called the first method. The
B-lower approximation of X is the largest B-definable set, contained in X. The
B-upper approximation of X is the smallest B-definable set containing X.

As it was observed in [2], for complete decision tables we may use a second
method to define the B-lower approximation of X, by the following formula

∪{[x]B |x ∈ U, [x]B ⊆ X}, (1.10)

while the B-upper approximation of x may be defined, using the second method,
by

∪{[x]B |x ∈ U, [x]B ∩X 6= ∅}. (1.11)

Obviously, both Equations, 1.8 and 1.10, define the same set. Similarly,
Equtions 1.9 and 1.11 also define the same set. For Table 1.4,
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Table 1.5: A new data set for inducing certain rules for the concept [(Trip, yes)]

Attributes Decision

Case Wind Humidity Temperature Trip

1 low low medium yes

2 low low low yes

3 low medium medium yes

4 low medium high SPECIAL

5 low medium high SPECIAL

6 medium low medium SPECIAL

7 medium low medium SPECIAL

8 medium low medium SPECIAL

9 high high high SPECIAL

10 medium high high SPECIAL

A{1, 2, 3, 4} = {1, 2, 3}

and

A{1, 2, 3, 4} = {1, 2, 3, 4, 5}.

It is well known that for any B ⊆ A and X ⊆ U ,

BX ⊆ X ⊆ BX, (1.12)

hence any case x from BX is certainly a member of X, while any member
x of BX is possibly a member of X. This observation is used in the LERS
data mining system. If an input data set is inconsistent, LERS computes lower
and upper approximations for any concept and then induces certain rules from
the lower approximation and possible rules from the upper approximation. For
example, if we want to induce certain and possible rule sets for the concept
[(Trip, yes)] from Table 1.4, we need to consider the following two data sets,
presented in Tables 1.5 and 1.6.

Table 1.5 was obtained from Table 1.4 by assigning the value yes of the
decision Trip to all cases from the lower approximation of [(Trip, yes)] and
by replacing all remaining values of Trip by a special value, say SPECIAL.
Similarly, Table 1.6 was obtained from Table 1.4 by assigning the value yes of
the decision Trip to all cases from the upper approximation of [(Trip, yes)] and
by replacing all remaining values of Trip by the value SPECIAL. Obviously,
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Table 1.6: A new data set for inducing possible rules for the concept [(Trip,
yes)]

Attributes Decision

Case Wind Humidity Temperature Trip

1 low low medium yes

2 low low low yes

3 low medium medium yes

4 low medium high yes

5 low medium high yes

6 medium low medium SPECIAL

7 medium low medium SPECIAL

8 medium low medium SPECIAL

9 high high high SPECIAL

10 medium high high SPECIAL

both tables, 1.5 and 1.6, are consistent. Therefore, we may use the LEM1 or
LEM2 algorithms to induce rules from Tables 1.5 and 1.6. The rule set induced
by the LEM2 algorithm from Table 1.5 is

2, 2, 2

(Wind, low) & (Humidity, low)→ (Trip, yes),

2, 1, 1

(Humidity,medium) &

(Temperature,medium)→ (Trip, yes)

1, 4, 4

(Temperature, high)→ (Trip, SPECIAL),

1, 4, 4

(Wind,medium)→ (Trip, SPECIAL),

where all rules are presented in the LERS format, see Subsection 1.1.3.
Obviously, only rules with (Trip, yes) on the right hand side are informa-

tive, remaining rules, with (Trip, SPECIAL) on the right hand side should be
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Table 1.7: A data set with numerical attributes

Attributes Decision

Case Wind Humidity Temperature Trip

1 4 low medium yes

2 8 low low yes

3 4 medium medium yes

4 8 medium high maybe

5 12 low medium maybe

6 16 high low no

7 30 high high no

8 12 high high no

ignored. These two rules are certain. The only informative rule induced by the
LEM2 algorithm from Table 1.6 is

1, 4, 5

(Wind, low)→ (Trip, yes).

This rule is possible.

1.3 Decision Table with Numerical Attributes

An example of a data set with numerical attributes is presented in Table 1.7.
In rule induction from numerical data usually a preliminary step called dis-

cretization [10, 11, 12] is conducted. During discretization a domain of the nu-
merical attribute is divided into intervals defined by cutpopints (left and right
delimiters of intervals). Such an interval, delimited by two cutpoints: c and d,
will be denoted by c..d. In this chapter we will discuss how to do both processes:
rule induction and discretization concurrently. First we need to check whether
our data set is consistent. Note that numerical data are, in general, consistent,
but inconsistent numerical data are possible. For inconsistent numerical data
we need to compute lower and upper approximations and the induce certain
and possible rule sets. In the data set from Table 1.7, A∗ = {{1}, {2}, {3}, {4},
{5}, {6}, {7}, {8}}, {d}∗ = {{1, 2, 3}, {4, 5}, {6, 7, 8}}, so A∗ ≤ {d}∗ and the
data set is consistent.

A modified LEM2 algorithm for rule induction, called MLEM2 [13], does
not need any preliminary discretization of numerical attributes. The domain of
any numerical attribute is sorted first. Then potential cutpoints are selected as
averages of any two consecutive values of the sorted list. For each cutpoint c the
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Table 1.8: Computing a local covering for the concept [(Trip, yes)], part I

(a, v) = t [(a, v)] {1, 2, 3} {1, 2, 3}

(Wind, 4..6) {1, 3} {1, 3} {1, 3} •
(Wind, 6..30) {2, 4, 5, 6, 7, 8} {2} {2}
(Wind, 4..10) {1, 2, 3, 4} {1, 2, 3} • −
(Wind, 10..30) {5, 6, 7, 8} − −
(Wind, 4..14) {1, 2, 3, 4, 5, 8} {1, 2, 3} −
(Wind, 14..30) {6, 7} − −
(Wind, 4..23) {1, 2, 3, 4, 5, 6, 8} {1, 2, 3} −
(Wind, 23..30) {7} − −
(Humidity, low) {1, 2, 5} {1, 2} {1, 2}
(Humidity, medium) {3, 4} {3} {3}
(Humidity, high) {6, 7, 8} − −
(Temperature, low) {2, 6} {2} {1, 3}
(Temperature, medium) {1, 3, 5} {1, 3} {1, 3}
(Temperature, high) {4, 7, 8} − −

Comments 1 2

MLEM2 algorithm creates two blocks, the first block contain all cases for which
values of the numerical attribute are smaller than c, the second block contains
remaining cases (with values of the numerical attribute larger than c). Once
all such blocks are computed, rule induction in MLEM2 is conducted the same
way as in LEM2.

We will illustrate rule induction from Table 1.7 using the MLEM2 rule in-
duction algorithm. The MLEM2 algorithm is traced on Tables 1.8 and 1.9. The
corresponding comments are:

1. The set G = {1, 2, 3}. The best attribute-value pair t, with the largest
cardinality of the intersection of [t] and G (presented in the third column of
Table 1.8) is (Wind, 4..10). The corresponding entry in the third column of
Table 1.8 is bulleted. However, [(Wind, 4..10)] = {1, 2, 3, 4} 6⊆ {1, 2, 3} = B,
hence we need to look for the next t,

2. the set G is the same, G = {1, 2, 3}. There are dashes for rows (Wind,
4..14) and (Wind, 4..23) since the corresponding intervals contain 4..10. There
are four attribute-value pairs with |[t ∩ G| = 2. The best attribute-value pair,
with the smallest cardinality of [t] is (Wind, 4..6). This time {1, 2, 3, 4} ∩ {1,
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Table 1.9: Computing a local covering for the concept [(Trip, yes)], part II

(a, v) = t [(a, v)] {2} {2}

(Wind, 4..6) {1, 3} − −
(Wind, 6..30) {2, 4, 5, 6, 7, 8} {2} {2}
(Wind, 4..10) {1, 2, 3, 4} {2} {2}
(Wind, 10..30) {5, 6, 7, 8} − −
(Wind, 4..14) {1, 2, 3, 4, 5, 8} {2} {2}
(Wind, 14..30) {6, 7} − −
(Wind, 4..23) {1, 2, 3, 4, 5, 6, 8} {2} {2}
(Wind, 23..30) {7} − −
(Humidity, low) {1, 2, 5} {2} {2} •
(Humidity, medium) {3, 4} − −
(Humidity, high) {6, 7, 8} − −
(Temperature, low) {2, 6} {2} • −
(Temperature, medium) {1, 3, 5} − −
(Temperature, high) {4, 7, 8} − −

Comments 3 4
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3} = {1, 3} ⊆ {1, 2, 3}. Obviously, the common part of both intervals is 4..6,
so {(Wind, 4..6) } is the first element T of T ,

3. the new set G = B− [T ] = {1, 2, 3} − {1, 3} = {2}. The pair [(Temper-
ature, low) has the smallest cardinality of [t], so it is the best choice. However,
[(Temperature, low)] ={2, 6} 6⊆ {1, 2, 3}, hence we need to look for the next t,

4. the pair (Humidity, low) is the best choice, and {3, 4} ∩ {1, 3, 5} = {3}
⊆ {1, 2, 3}, so {[(Temperature, low), (Humidity, low)} is the second element T
of T .

As a result, T = { {(Wind, 4..6) }, { (Temperature, low), (Humidity, low)}}.
In different words, the MLEM2 algorithm induces the following rule set for
Table 1.7

1, 2, 2

(Wind, 4..6)→ (Trip, yes),

2, 1, 1

(Temperature, low) & (Humidity, low)→
(Trip, yes)

1.4 Incomplete Data

Real-life data are frequently incomplete. In this section we will consider incom-
pleteness in the form of missing attribute values. We will distinguish three types
of missing attribute values:

• lost values, denoted by ?, where the original values existed, but currently
are unavailable, since these values were, for example, erased or the op-
erator forgot to input them. In rule induction we will induce rules form
existing, specified attribute values,

• ”do not care” conditions, denoted by *, where the original values are
mysterious. For example, data were collected in a form of the interview,
some questions were considered to be irrelevant or were embarrassing.
Let us say that in an interview associated with a diagnosis of a disease a
question is about eye color. For some people such question is irrelevant.
In rule induction we are assuming that the attribute value is any value
from the attribute domain.

• attribute-concept value, denoted by −. This interpretation is a special case
of the ”do not care” condition: it is restricted to attribute values typical
for the concept to which the case belongs. For example, typical values
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Table 1.10: An incomplete decision table

Attributes Decision

Case Wind Humidity Temperature Trip

1 low low medium yes

2 ? low * yes

3 * medium medium yes

4 low ? high maybe

5 medium − medium maybe

6 * high low no

7 − high * no

8 medium high high no

of temperature for patients sick with flu are: high and very-high, for a
patient the temperature value is missing, but we know that this patient is
sick with flu, if using the attribute-concept interpretation, we will assume
that possible temperature values are: high and very-high.

We will assume that for any case at least one attribute value is specified (i.e.,
is not missing) and that all decision values are specified.

An example of a decision table with missing attribute values is presented in
Table 1.10.

Definition of consistent data from Section 1.2 cannot be applied to data
with missing attribute values since for such data the standard definition of the
indiscernibility relation must be extended. Moreover, it is well-known that the
standard definitions of lower and upper approximations are not applicable to
data with missing attribute values. In Subsection 1.4.1 we will discuss three
generalizations of the standard approximations: singleton, subset and concept.

1.4.1 Singleton, Subset and Concept Approximations

For incomplete data the definition of a block of an attribute-value pair is mod-
ified [14].

• If for an attribute a there exists a case x such that a(x) =?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks[(a, v)] for all values v of attribute a,

• If for an attribute a there exists a case x such that the corresponding
value is a ”do not care” condition, i.e., a(x) = ∗, then the case x should
be included in blocks [(a, v)] for all specified values v of attribute a,
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• If for an attribute a there exists a case x such that the corresponding value
is an attribute-concept value, i.e., a(x) = −, then the corresponding case
x should be included in blocks [(a, v)] for all specified values v ∈ V (x, a)
of attribute a, where

V (x, a) ={a(y) | a(y) is specified ,

y ∈ U, d(y) = d(x)}.
(1.13)

For Table 1.10, V (5, Humidity) = ∅ and V (7,Wind) = {medium}, so the
blocks of attribute-value pairs are:

[(Wind, low)] = {1, 3, 4, 6},
[(Wind, medium)] = {3, 5, 6, 7, 8},
[(Humidity, low)] = {1, 2},
[(Humidity, medium)] = {3},
[(Humidity, high)] = {6, 7, 8},
[(Temperature, low)] = {2, 6, 7},
[(Temperature, medium)] = {1, 2, 3, 5, 7},
[(Temperature, high)] = {2, 4, 7, 8},

For a case x ∈ U , the characteristic set KB(x) is defined as the intersection
of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in the following
way:

• If a(x) is specified, then K(x, a) is the block [(a, a(x)] of attribute a and
its value a(x),

• If a(x) =? or a(x) = ∗ then the set K(x, a) = U ,

• If a(x) = −, then the corresponding set K(x, a) is equal to the union of
all blocks of attribute-value pairs (a, v), where v ∈ V (x, a) if V (x, a) is
nonempty. If V (x, a) is empty, K(x, a) = U .

For Table 1.10 and B = A,

KA(1) = {1, 3, 4, 6, 7} ∩ {1, 2} ∩ {1, 2, 3, 5, 7} = {1},
KA(2) = U ∩ {1, 2} ∩ U = {1, 2},
KA(3) = U ∩ {3} ∩ {1, 2, 3, 5, 7} = {3},
KA(4) = {1, 3, 4, 6} ∩ U ∩ {1, 2, 3, 5, 7} = {4},
KA(5) = {3, 5, 6, 7, 8} ∩ U ∩ ({1, 2, 3, 5, 7} = {3, 5, 7},
KA(6) = U ∩ {6, 7, 8} ∩ {2, 6, 7} = {6, 7},
KA(7) = {3, 5, 6, 7, 8} ∩ {6, 7, 8} ∩ U = {6, 7, 8},
KA(8) = {3, 5, 6, 7, 8} ∩ {6, 7, 8} ∩ {2, 4, 7, 8} = {7, 8}.

Characteristic set KB(x) may be interpreted as the set of cases that are
indistinguishable from x using all attributes from B and using a given inter-
pretation of missing attribute values. For completely specified data sets (I.e.,
data sets with no missing attribute values), characteristic sets are reduced to
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elementary sets. The characteristic relation R(B) is a relation on U defined for
x, y ∈ U as follows

(x , y) ∈ R(B) if and only if y ∈ KB (x ). (1.14)

The characteristic relation R(B) is reflexive but—in general—does not need
to be symmetric or transitive. Obviously, the characteristic relation R(B) is
known if we know characteristic sets KB(x) for all x ∈ U and vice versa. In our
example, R(A) = {(1, 1), (2, 1), (2, 2), (3, 3), (4, 4), (5, 3), (5, 5), (6, 6), (6,
7), (7, 6), (7, 7), (7, 8), (8, 7), (8, 8)}.

For a complete decision table, the characteristic relation R(B) is reduced to
the indiscernibility relation [2].

Definability for completely specified decision tables should be modified to
fit into incomplete decision tables. For incomplete decision tables, a union
of some intersections of attribute-value pair blocks, where such attributes are
members of B and are distinct, will be called B-locally definable sets. A union of
characteristic sets KB(x), where x ∈ X ⊆ U will be called a B-globally definable
set. Any set X that is B -globally definable is B -locally definable, the converse
is not true.

For example, the set {2} is A-locally definable since {2} = [(Humidity, low)]
∩ [(Temperature, high)]. However, the set {2} is not A-globally definable. On
the other hand, the set {5} = is not even locally definable since in all blocks of
attribute-value pairs containing the case 5 contain also the case 7 as well.

Obviously, if a set is not B-locally definable then it cannot be expressed by
rule sets using attributes from B. Thus we should induce rules from sets that
are at least A-locally definable.

For incomplete decision tables lower and upper approximations may be de-
fined in a few different ways. We suggest three different definitions of lower and
upper approximations for incomplete decision tables, following [15, 14, 16]. Let
X be a concept, a subset of U , let B be a subset of the set A of all attributes,
and let R(B) be the characteristic relation of the incomplete decision. Our first
definition uses a similar idea as in the first method of Section 1.2, and is based
on constructing both approximations from single elements of the set U . We will
call these approximations singleton. A singleton B-lower approximation of X is
defined as follows:

BX = {x ∈ U | KB(x) ⊆ X}. (1.15)

A singleton B-upper approximation of X is

BX = {x ∈ U | KB(x) ∩X 6= ∅}. (1.16)

In our example of the decision table presented in Table 1.10 the singleton
A-lower and A-upper approximations of the concept: {1, 2, 3} are:

A{1, 2, 3} = {1, 2, 3}, (1.17)
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A{1, 2, 3} = {1, 2, 3, 5}. (1.18)

We may easily observe that the set {1, 2, 3, 5} = A{1, 2, 3} is not A-locally
definable since in all blocks of attribute-value pairs cases 5 and 7 are inseparable.
Thus, as it was observed in, e.g., [15, 14, 16], singleton approximations should
not be used, theoretically, for rule induction.

The second method of defining lower and upper approximations for complete
decision tables uses another idea: lower and upper approximations are unions
of elementary sets, subsets of U . Therefore, we may define lower and upper ap-
proximations for incomplete decision tables by analogy with the second method
from Section 1.2, using characteristic sets instead of elementary sets. There are
two ways to do this. Using the first way, a subset B-lower approximation of X
is defined as follows:

BX = ∪{KB(x) | x ∈ U,KB(x) ⊆ X}. (1.19)

A subset B-upper approximation of X is

BX = ∪{KB(x) | x ∈ U,KB(x) ∩X 6= ∅}. (1.20)

For any concept X, singleton B-lower and B-upper approximations of X are
subsets of the subset B-lower and B-upper approximations of X, respectively
[16], because the characteristic relation R(B) is reflexive. For the decision table
presented in Table 1.10, the subset A-lower and A-upper approximations are

A{1, 2, 3} = {1, 2, 3},

A{1, 2, 3} = {1, 2, 3, 5, 7}

The second possibility is to modify the subset definition of lower and up-
per approximation by replacing the universe U from the subset definition by a
concept X. A concept B-lower approximation of the concept X is defined as
follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ⊆ X}. (1.21)

Obviously, the subset B-lower approximation of X is the same set as the
concept B-lower approximation of X. A concept B-upper approximation of the
concept X is defined as follows:

BX = ∪ {KB(x) | x ∈ X,KB(x) ∩X 6= ∅}
= ∪ {KB(x) | x ∈ X}.

(1.22)

The concept upper approximations were defined in [17] and [18] as well.
The concept B-upper approximation of X is a subset of the subset B-upper
approximation of X [16]. For the decision table presented in Table 1.10, the
concept A-upper approximations is



1.4. INCOMPLETE DATA 21

Table 1.11: Computing a rule set for the concept [(Trip, yes)], Table 1.10

(a, v) = t [(a, v)] {1, 2, 3} {1, 2, 3} {3}

(Wind, low) {1, 3, 4, 6} {1, 3} {1, 3} {3}
(Wind, medium) {3, 5, 6, 7, 8} {3} {3} {3}
(Humidity, low) {1, 2} {1, 2} {1, 2} • −
(Humidity, medium) {3} {3} {3} {3} •
(Humidity, high) {6, 7, 8} − − −
(Temperature, low) {2, 6, 7} {2} − −
(Temperature, medium) {1, 2, 3, 5, 7} {1, 2, 3}• − {3}
(Temperature, high) {2, 4, 7, 8} {2} − −

Comments 1 2 3

A{1, 2, 3} = {1, 2, 3},

Note that for complete decision tables, all three definitions of lower and
upper approximations, singleton, subset and concept, are reduced to the same
standard definition of lower and upper approximations, respectively.

1.4.2 Modified LEM2 algorithm

The same MLEM2 rule induction from Section 1.3 may be used for rule induc-
tion from incomplete data, the only difference is different definition of block of
attribute-value pairs. Let us apply the MLEM2 algorithm to the data set from
Table 1.10. First, we need to make a decision what kind of approximations we
are going to use: singleton, subset or concept. In our example let us use concept
approximation. For Table 1.10,

A{1, 2, 3} = A{1, 2, 3} = {1, 2, 3},

We will trace the MLEM2 algorithm applied to the set {1, 2, 3}, this way
our certain rule set, for the concept [(Trip, yes)], is at the same time certain
and possible. The tracing of LEM2 is presented in the Tables 1.11.

The corresponding comments are:

1. The set G = {1, 2, 3}. The best attribute-value pair t, with the largest
cardinality of the intersection of [t] and G (presented in the third column of
Table 1.11) is (Temperature, medium). The corresponding entry in the third
column of Table 1.11 is bulleted. However, [(Temperature, medium)] = {1, 2, 3,
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5, 7} 6⊆ {1, 2, 3} = B, hence we need to look for the next t,

2. the set G is the same, G = {1, 2, 3}. There are two attribute-value pairs
with |[t ∩ G| = 2. One of them, (Humidity, low) has the smallest cardinality
of [t], so we select it. This time {1, 2, 3, 5, 7} ∩ {1, 2} = {1, 2} ⊆ {1, 2, 3}.
However, (Temperature, medium) is redundant, since [(Humidity, low)] ⊆ {1, 2,
3}, hence {(Humidity, low)} is the first element T of T ,

3. the new set G = B− [T ] = {1, 2, 3} − {1, 2} = {3}. The pair [(Humidity,
medium) has the smallest cardinality of [t], so it is the best choice. Addition-
ally, [(Humidity, medium)] ={3} ⊆ {1, 2, 3}, hence we are done, the set T =
{(Humidity, medium)}.

Therefore, T = { {(Humidity, low)}, { (Humidity, medium)}}. The MLEM2
algorithm induces the following rule set for Table 1.10

1, 2, 2

(Humidity, low)→ (Trip, yes).

1, 1, 1

(Humidity,medium)→ (Trip, yes).

1.4.3 Probabilistic Approximations

In this section we are going to generalize singleton, subset and concept approxi-
mations from Subsection 1.4.1 to corresponding approximations that are defined
using an additional parameter (or threshold), denoted by α, and interpreted as
a probability. A generalization of standard approximations, called probabilistic
approximations, were studied in many papers, see, e.g., [19, 20, 21, 22, 23, 24,
25, 26].

Let B be a subset of the attribute set A and X be a subset of U .
A B-singleton probabilistic approximation of X with the threshold α, 0 <

α ≤ 1, denoted by apprsingletonα,B (X), is defined as follows

{x | x ∈ U, Pr(X | KB(x)) ≥ α},

where Pr(X | KB(x)) = |X ∩ KB(x)|
|KB(x)| is the conditional probability of X given

KB(x) and |Y | denotes the cardinality of set Y .

A B-subset probabilistic approximation of the set X with the threshold α,
0 < α ≤ 1, denoted by apprsubsetα,B (X), is defined as follows

∪{KB(x) | x ∈ U, Pr(X | KB(x)) ≥ α}.

A B-concept probabilistic approximation of the set X with the threshold α,
0 < α ≤ 1, denoted by apprconceptα,B (X), is defined as follows
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Table 1.12: An incomplete decision table

Attributes Decision

Case Wind Humidity Temperature Trip

1 low low * yes

2 ? low low yes

3 low low ? yes

4 high high high yes

5 low * low no

6 high high * no

7 high ? high no

8 high high high no

∪{KB(x) | x ∈ X, Pr(X | KB(x)) ≥ α}.

For simplicity, if B = A, an A-singleton, B-subset and B-concept proba-
bilistic approximations will be called singleton, subset and concept probabilistic
approximations and will be denoted by apprsingletonα (X), apprsubsetα (X) and
apprconceptα (X), respectively.

Obviously, for the concept X, the probabilistic approximation of a given
type (singleton, subset or concept) of X computed for the threshold equal to
the smallest positive conditional probability Pr(X | [x]) is equal to the standard
upper approximation of X of the same type. Additionally, the probabilistic
approximation of a given type of X computed for the threshold equal to 1 is
equal to the standard lower approximation of X of the same type.

For the data set from Table 1.12, the set of blocks of attribute-value pairs is

[Wind, low)] = {1, 3, 5},
[(Wind, high)] = {4, 6, 7, 8},
[(Humidity, low)] = {1, 2, 3, 5},
[(Humidity, high)] = {1, 4, 6, 7, 8},
[(Temperature, low)] = {1, 2, 5, 6},
[(Temperature, high)] = {1, 4, 6, 7, 8}.

The corresponding characteristic sets are

KA(1) = KA(3) = {1, 3, 5},
KA(2) = {1, 2, 5},
KA(4) = {4, 6, 8},
KA(5) = {1, 5},
KA(6) = KA(8) = {4, 6, 8},
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Table 1.13: Conditional probabilities

KA(x) {1, 2, 5} {1, 3, 5} {1, 5} {4, 6, 8} {4, 6, 7, 8}

Pr({1, 2, 4, 6} | KA(x)) 0.667 0.667 0.5 0.333 0.25

KA(7) = {4, 6, 7, 8}.

Conditional probabilities of the concept {1, 2, 3, 4} given a characteristic
set KA(x) are presented in Table 1.13.

For Table 1.12, all probabilistic approximations (singleton, subset and con-
cept) are

apprsingleton0.25 ({1, 2, 3, 4}) = U,

apprsingleton0.333 ({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 6, 8},

apprsingleton0.5 ({1, 2, 3, 4}) = {1, 2, 3, 5},

apprsingleton0.667 ({1, 2, 3, 4}) = {1, 2, 3},

apprsingleton1 ({1, 2, 3, 4}) = ∅,

apprsubset0.25 ({1, 2, 3, 4}) = U,

apprsubset0.333 ({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 6, 8},

apprsubset0.5 ({1, 2, 3, 3}) = {1, 2, 3, 5},

apprsubset0.667 ({1, 2, 3, 4}) = {1, 2, 3, 5},

apprsubset1 ({1, 2, 3, 4}) = ∅,

apprconcept0.25 ({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 6, 8},

apprconcept0.333 ({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 6, 8},

apprconcept0.5 ({1, 2, 3, 4}) = {1, 2, 3, 5},
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Table 1.14: A modified decision table

Attributes Decision

Case Wind Humidity Temperature Trip

1 low low * yes

2 ? low low yes

3 low low ? yes

4 high high high SPECIAL

5 low * low no

6 high high * SPECIAL

7 high ? high SPECIAL

8 high high high SPECIAL

apprconcept0.667 ({1, 2, 3, 4}) = {1, 2, 3, 5},

apprconcept1 ({1, 2, 3, 4}) = ∅.

For rule induction from probabilistic approximations of the given concept
a similar technique as in Section 1.2 may be used. For any concept and the
probabilistic approximation of the concept we will create a new decision table.

Let us illustrate this idea with inducing rule set for the concept [(Trip, yes)]
from Table 1.12 using concept probabilistic approximation with α = 0.5. The
corresponding modified decision table is presented in Table 1.14.

In the data set, presented in Table 1.14, all values of Trip are copied from
Table 1.12 for all cases from

apprconcept0.5 ({1, 2, 3, 4}) = {1, 2, 3, 5},

while for all remaining cases values of Trip are replaced by the SPECIAL
value. The MLEM2 rule induction algorithm, using concept upper approxi-
mation should be used with the corresponding type of upper approximation
(singleton, subset and concept). In our example the MLEM2 rule induction
algorithm, using concept upper approximation, induces from Table 1.14 the
following rule set

1, 3, 4

(Humidity, low)→ (Trip, yes),

1, 4, 4

(Wind, high)→ (Trip, SPECIAL),
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2, 1, 2
(Wind, low)&(Temperature, low)→ (Trip, no).

The only rules that are useful should have (Trip, yes) on the right hand side.
Thus, the only rule that survives is

1, 3, 4
(Humidity, low)→ (Trip, yes).

1.5 Conclusions

Investigation of rule induction methods is subject to intensive research activity.
New versions of rule induction algorithms based on probabilistic approximations
were explored, see, e.g., [27, 28]. Novel rule induction algorithms in which com-
putation of probabilistic approximations is done in parallel with rule induction
are recently developed and experimentally tested, see, e.g., [29]. The LEM2
algorithm was implemented in a bagged version [30], using ideas of ensemble
learning.
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