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Abstract. In this paper, we present the newest version of the MLEMZ2rélga for rule induction,

a basic component of the LERS data mining system. This verdithe MLEM2 algorithm is based
on local lower and upper approximations, and in its currentfis presented in this paper for the first
time. Additionally, we present results of experiments canmy the local version of the MLEM2
algorithm for rule induction with an older version of MLEM&jhich was based on global lower
and upper approximations. Our experiments show that thed i@rsion of MLEM2 is significantly
better than the global version of MLEM2 (2% significance letigo-tailed Wilcoxon test).

1. Introduction

In this paper we present the newest version of the MLEM2 (MediLearning from Example Module,
version 2) algorithm for rule induction, a basic componeithe LERS (Learning from Examples based
on Rough Sets) data mining system. The LERS data miningraysis been developed at the University
of Kansas. Its first component, called LEM1 (Learning fromafple Module, version 1) was imple-
mented for the first time in Franz Lisp in 1988 [6]. In 1990, Hasic algorithm of LERS, called LEM2,
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was added to LERS [3, 9]. The main difference between LEM11d8M?2 is the type of coverings:
LEM1 uses global coverings while LEM2 uses local coverings.

Rule sets, induced by LERS or other data mining systems,sar@ly used for classification of new,
unseen cases that were not used for rule induction. The assification system was added to LERS
in 1994 [10]. LERS deals with inconsistent data (i.e., dath wonflicting cases; for two such cases all
attribute values are the same yet the decision values deeatif) using lower and upper approximations.
Thus, before running LEM1 or LEM2, such approximations ninestomputed first.

The LERS system is equipped with a number of discretizatigordhms to handle numerical at-
tributes. Both LEM1 and LEM2 algorithms need discretizatas a preliminary process for numerical
attributes. These discretization techniques were destrign.g., in [4, 5, 24].

In the nineties LERS used typical, traditional approactemissing attribute values, before rule
induction, i.e., as preprocessing. Such methods incluliiig cases with missing attribute values from
the data set, replacing a missing attribute value by alliplesgalues from the attribute domain, replacing
a missing attribute value by the most frequent value fronattrébute domain for symbolic attributes and
by the mean of all values from the attribute domain for nuoarattributes [16].

In 1997 a new approach to missing attribute values, basedduting rules only from known data,
was introduced [20]. This interpretation of missing atitévalues is known dest value[13].

The algorithm called MLEM2 was introduced in 2003 [12]. MLENhduced rule sets directly from
raw data, i.e., data not only with numerical attributes l&m avith missing attribute values. However, this
algorithm needed a preprocessing: computing lower andrugggaroximations. Note that even though
MLEMZ2, like LEMZ2, uses local coverings, yet is based on gla@proximations.

A new acquisition to LERS was the program IRIM (InterestingldRInduction Module), able to
induce all rules with a defined number of conditions and witliefined strength (number of training,
correctly classified cases by the rule) [15].

Note that the LEM2 algorithm was successfully implemented ased in many places, see, e.g.,
[1, 2, 19], under many names such as ELEM2, MODLEM, etc.

In 2006 local approximations were combined with MLEMZ [8]odal approximations are defined
using blocks of attribute-value pairs. The same idea of @ibate-value block is used in both LEM2
and MLEM2, so it was possible to combine both ideas, locat@pmations and MLEM2 and modify
MLEM2 again. This time MLEM2 does not need any preprocesséiigce computing of local lower
and upper approximations as well as handling numericabatés and missing attribute values are done
within the same algorithm.

In this paper, we present a slightly modified algorithms fetedmining local lower and upper cov-
erings from those presented in [18]. Additionally, we pregesults of experiments on the local version
and global versions of MLEM2. In the global version of MLEM@lpbal lower and upper approxi-
mations are computed during a preliminary step, as prepsotg For each data set, we selected the
best results for local MLEM2 and global MLEM2 and then conguhthe overall performance using a
nonparametric test, the Wilcoxon matched-pairs signed-test.

2. Blocksof Attribute-Value Pairs

An example of a data set is presented in Table 1. Rows of the tapresentases while columns are
labeled by two types ofariablescalled attributesand adecision The set of all cases will be denoted
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Table 1. Anincomplete data set

Attributes Decision
Case Temperature Headache Cough Flu
1 39.8 yes yes yes
2 ? yes yes yes
3 40.8 yes ? yes
4 ? no no yes
5 39.8 no no no
6 36.8 yes no no
7 384 no yes no

by U. In Table 1,U = {1, 2,..., #. The set of all attributes will be denoted by, In Table 1,4 =
{TemperatureHeadache Cough}. The decision, denoted by, is Flu. The fact that for a case an
attributea has the value will be denoted by:(x) = v. Similarly, if for a caser the value ofd is w, we
will denote it byd(z) = w. A table with some missing attribute values will be calladompleteor a
table with missing attribute values.

In general, missing attribute values dost values(the values that were recorded but currently are
unavailable, denoted by "?"{Jo not care conditiongthe original values were irrelevant, denoted by
"™ and attribute-concept value@hese missing attribute values may be replaced by anpatitrivalue
limited to the same concept, denoted by", see, e.g., [14].

For the rest of the paper we will assume that all decisioneglare specified, i.e., they are not
missing. Additionally, we will assume that for each casesast one attribute value is specified.

An important tool to analyze decision tables iblack of an attribute-value pairLet (a,v) be an
attribute-value pair. Focompletedecision tables, i.e., decision tables in which everylaitg value is
specified, a block ofa, v), denoted byi(a, v)], is the set of all casesfor whicha(x) = v.

3. Numerical Attributes

The attributeTemperaturefrom Table 1 is numerical. For data mining, numerical attis must be
converted into symbolic ones, or in different words, numedrivalues should be converted into intervals.
For a numerical attribute, the first step is to sort numerttbute values. Fofemperaturehe list of
sorted values is: 36.8, 38.4, 39.8 and 40.8. The next stepsisléct cutpoints. In MLEM2, the potential
cutpoints are averages of consecutive values of the sasgiedflall attribute values. In our example,
such potential cutpoints are 37.6, 39.1, and 40.3. Thuspahential intervals are, e.g., 36.8..37.6 and
37.6..40.3. In the current, local MLEMZ2 algorithm, there two options of selecting potential cutpoints:
all cutpointsandselected cutpoints



4 J.W. Grzymala-Busse and W. Rzasa/A Local Version of the NLANbrithm

3.1. All cutpoints option of MLEM 2

If we use the optiorll cutpoints for every potential cutpoint the MLEM2 algorithm createsfprimary
intervals the first containing all numerical values smaller than tig@aint and the second containing all
numerical values greater than the cutpoint. Thus, for Tajllee list of all primary intervals is 36.8..37.6,
36.8..39.1, 36.8..40.3, 37.6..40.8, 39.1..40.8, 4@3B.4The first interval, 36.8..37.6 contains just one
value: 36.8, the second interval, 36.8..40.8 containsegB8.4, 39.8, and 40.8. In different words, the
first interval isrepresentediy the set{36.8}, and the second interval is represented by the{38t4,
39.8, 40.8. The all cutpoints option is the only option of the MLEM2 ghitversion and one of two
options of the MLEMZ2 local version. The other option of the EN42 local version iselected cutpoints

3.2. Selected cutpoints option of MLEM 2

In the all cutpoints option of MLEMZ2, the decision is not takmto account, while in the selected
cutpoints option of MLEM2 the algorithm chooses only somkeced cutpoints on the basis of the
corresponding decision values. In general, if for all ocences of the two consecutive values of the
sorted list of values of a numerical attribute the decisialue is the same, the corresponding cutpoint is
ignored in creating primary intervals. In Table 1, there am&ue values of 36.8 and 38.4, for both the
decision value is the samed), so the potential cutpoint 37.6 is ignored. The value 38@&ics twice, for
cases 1 and 5, with decision valugssandno, so we cannot ignore the cutpoint 39.1, the mean for 38.4
and 39.8. By the same token, we cannot ignore the cutpoifit.4Dhus, the selected cutpoints are 39.1
and 40.3, and the primary intervals are 36.8..39.6, 388,489.6..40.8 and 40.3..40.8. We are following
here the principléhe cutpoint will always occur on the boundary between tvesstd7], though this
principle is valid only for cutpoints selected using enyrapinimization. Moreover, as we will see later,
this principle - in general - will not always produce bettesuilts.

Rules induced by different discretization options of MLEMi#er from each other. For example,
using the all cutpoints option of MLEM2, the following ruletds induced from théankruptcydata set:

1, 30, 30

(a2,—308.9.-3.55) = (Prediction, bankruptcy),

2,23,23

(a3,—280.0.--1.4) & (al1,—185.1..24.2) > (Prediction, bankruptcy),

3,33,33

(a2,—3.55..68.6) & (a4, 44.8..771.7) & (a3,15.1..34.1) > (Prediction, survival),
while the selected cutpoints option induces, for the sante sk, the following rule set:

2, 28,28

(a2,—308.9..7.85) & (a4, 0.7..91.05—Prediction, bankruptcy),

2,30, 30

(a3,—280.0..2.8) & (a2,-308.9..21.15) > (Prediction, bankruptcy),

3,33,33

(a2,—3.55..68.6) & (a4, 44.8..771.7) & (a3,15.1..34.1) > (Prediction, survival),
where al = Workingcapital/Totalassets,

a2 = Retainedekarnings/Totahssets,

a3 = Earningsbeforeinterestandtaxes/Totalassets, and

a4 = Marketvalue equity/Book value of_total debt.
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Every rule is presented in the LERS format. Such rules areegied by three numbers: the total
number of attribute-value pairs on the left-hand side ofrille, the total number of cases correctly
classified by the rule during training, and the total numiddraining cases matching the left-hand side
of the rule.

3.3. Operationson Intervals

In the MLEM2 algorithms, both versions, global and locainsooperations are performed on intervals.
The MLEM2 algorithm may select intervals associated witl $hme attribute as conditions of a rule.
Such intervals are eventualigerged For example, let us say that MLEM2 selected two intervalthef
same attribut&emperaturethe first one is 36.8..40.3 and the second is 39.1..40.8seTtveo intervals
will be merged into 39.1..40.3. The first interval is repreed by the se{36.8, 38.4, 39.8 the second
interval is represented b{39.8, 40.8, the merged interval is represented by the intersectioretsf s
represented by both intervals, i.e., by the £89.8}. The interval 39.1..40.3 will be called@mmon
part of 36.8..40.3 and 39.1..40.8.

Two intervals with the common part equal to the empty set alleadisjoint. For example, intervals
36.8..39.1 and 39.1..40.3 are disjoint since the firstvalas represented b{36.8, 38.4 and the second
interval is represented b}39.8, 40.8.

We say that an intervdhcludesanother interval if it is represented by a set that is a sepa
the other interval. For example, 39.1..40.8 includes 4038 since the first interval is represented by
the set{39.8, 40.§ and the second interval is represented by the{46t8;. We will denote it by
39.1..40.8 D 40.3..40.8.

4. Characteristic Relation

For incomplete decision tables the definition of a block of#ribute-value pair must be modified.
e If for an attributea there exists a case such thatu(xz) = ?, i.e., the corresponding value is lost,
then the case should not be included in any block&, v)] for all valueswv of attributea,

e If for an attributea there exists a case such that the corresponding value is a "do not care”
condition, i.e.,a(x) = %, then the case should be included in blockga, v)] for all specified
valuesw of attributea,

e If for an attributea there exists a casesuch that the corresponding value is an attribute-concept
value, i.e..a(z) = —, then the corresponding caseshould be included in blockga, v)] for all
specified values € V(x, a) of attributea, where

V(z,a) = {a(y) | a(y) is specified, y € U, d(y) = d(z)}.
In this section we are concerned with cases that can beglissimed using attributes. Therefore, in
computing blocks for numerical attributes, we will use sfiecumerical values instead of intervals.

For Table 1

[(Temperature, 36.8)] £6},
[(Temperature, 38.4)] £7},
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[(Temperature, 39.8)] 1, 5},
[(Temperature, 40.8)] £3},
[(Headache, yes)] £1, 2, 3, 6,
[(Headache, no)] £4, 5, 7},
[(Cough, yes)] =1, 2, 7}.
[(Cough, no)] ={4, 5, 6}.

For a case: € U thecharacteristic setz(z) is defined as the intersection of the s&tér, a), for
all a € B, where the sek (z, a) is defined in the following way:
e If a(x) is specified, thet (x, a) is the block[(a, a(x)] of attributea and its value:(x),
e If a(xz) =7 ora(x) = = then the sef{ (z,a) = U,
e If a(z) = —, then the corresponding s&i(z,a) is equal to the union of all blocks of attribute-
value pairga,v), wherev € V (z,a) if V(x,a) is nonempty. IV (z, a) is empty,K (z,a) = U.
For Table 1 and3 = A,

KA(l) = {1,5} N {1,2,3,6} N {1,2, 7} = {1},
(2) =UN{1,2,3,6} N{1,2,7} = {1,2},
(3) = {31 N{1,2,3,6) NU = {3},
(4) = UN{4,57 N{4,5,6} = {4,5),
(5)
(6)

5) = {1,5} N {4,5,7} N {4,5,6} = {5},
6) = {6} N{1,2,3,6} N {4,5,6} = {6}, and
Characteristic sef{z(xz) may be interpreted as the smallest set of cases that aréngdishable

from x using all attributes fronB, using a given interpretation of missing attribute values.
The characteristic relatioR(B) is a relation ori/ defined forz,y € U as follows

Y

(x,y) € R(B) if andonlyif y € Kp(z).

The characteristic relatio®(B) is reflexive but—in general—does not need to be symmetric or
transitive. Also, the characteristic relatidt( B) is known if we know characteristic sef§(x) for all
x € U. Inour exampleR(A4) ={(1, 1), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 5), (6, 6), (7}

For decision tables, in which all missing attribute values last, a special case of a characteristic
relation was defined by J. Stefanowski and A. Tsoukias in 22§, For any decision table in which all
missing attribute values are lost, the characteristidioglds reflexive and transitive, but—in general—
does not need to be symmetric . For decision tables whereigdimg attribute values are "do not care”
conditions a special case of characteristic relation wéieelkby M. Kryszkiewicz in [21], see also, e.g.,
[22]. Such a relation is reflexive and symmetric but—in gahkemot transitive.

5. Global Approximations

For completely specified decision tables lower and uppercximpations are defined on the basis of
the indiscernibility relation introduced by Z. Pawlak [23Any finite union of characteristic sets, that
are called herelementarysets, associated witB, will be called aB-definable set The empty set is
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definable. LetX be any subset of the sét of all cases. The seX is called aconceptand is usually
defined as the set of all cases defined by a specific value ofettisioh. In general X is not a B-
definable set. However, s&f may be approximated by twB-definable sets, the first one is called a
B-lower approximatiorof X, denoted byB X and defined as follows

{r e Ul[z]p C X}.

The second set is calledBaupper approximatiomf X, denoted byB X and defined as follows

{z e Ullz]p N X # 0},

where[z]p = Kp(x). The above shown way of computing lower and upper approiimsit by con-
structing these approximations from singletanswill be called thefirst method The B-lower approx-
imation of X is the greatesB-definable set, contained . The B-upper approximation o is the
smallestB-definable set containing .

As it was observed in [23], for complete decision tables we oee asecond methotb define the
B-lower approximation ofX, by the following formula

Uilzlple € U, [2]p € X7,

and theB-upper approximation of may de defined, using the second method, by

U{[z]glz € U, [z]p N X # 0}.

In this paper we quote three different definitions of lowed apper approximations. Again, lat be
aconcept, leB3 be a subset of the sdtof all attributes, and leR(B) be the characteristic relation of the
incomplete decision table with characteristic s&ts), wherex € U. Our first definition uses a similar
idea as in the previous articles on incompletely specifiedistn tables [21, 22, 25, 26, 27], i.e., lower
and upper approximations are sets of singletons from theetgeU satisfying some properties. Thus,
lower and upper approximations are defined by analogy wétatove first method, by constructing both
sets from singletons. We will call these approximatisirggleton A singletonB-lower approximation
of X is defined as follows:

BX ={zx € U|Kp(x) C X}.

A singleton B-upper approximation ok is

BX ={z € U|Kp(z)N X # 0}.
In our example of the decision table presented in Table 1detay thatB = A. Then the singleton
A-lower andA-upper approximations of the two concepfg; 2, 3, 4 and{5, 6, 7} are:
A{1,2,3,4} ={1,2,3},
A{5,6,7} ={5,6,7},
A{1,2,3,4} = {1,2,3,4},
A{5,6,7} = {4,5,6,7}.
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The second method of defining lower and upper approximatiensomplete decision tables uses
another idea: lower and upper approximations are unioneofentary sets, subsetsiéf Therefore we
may define lower and upper approximations for incompletésdsttables by analogy with the second
method, using characteristic sets instead of elementasy $kere are two ways to do this. Using the
first way, asubsetB-lower approximation ofX is defined as follows:

BX =U{Kp(x)|lxr € U, Kp(x) C X}.

A subsetB-upper approximation oX is

BX = U{Kg(z)lx € U, Kg(z) N X # 0}.

For the same decision table, presented in Table 1, the sdblster and A-upper approximations
are

A{1,2,3,4} = {1,2,3},
A{5,6,7} = {5,6,7},
A{1,2,3,4} = {1,2,3,4,5},
A{5,6,7} = {4,5,6,7}.

The second possibility is to modify the subset definitionafér and upper approximation by re-
placing the universé& from the subset definition by a conceldt A conceptB-lower approximation of
the concepiX is defined as follows:

BX = U{KB(.TJ)‘.TJ € X, KB((L‘) - X}

Obviously, the subseB-lower approximation ofX is the same set as the concéplower approxi-
mation of X. A conceptB-upper approximation of the concefitis defined as follows:

BX = U{Kp(z)|lz € X,Kp(z)N X # 0} = U{Kp(z)|z € X}.

For the decision table presented in Table 1, the condepiver andA-upper approximations are

A{1,2,3,4} = {1,2,3},
A{5,6,7} = {5,6,7},
A{1,2,3,4} = {1,2,3,4,5},
A{5,6,7} = {5,6,7}.

Note that for complete decision tables, all three definiohlower approximations, singleton, subset
and concept, are reduced to the same definition. Also, foptetmdecision tables, all three definitions
of upper approximations are reduced to the same definitidris i§ not true for incomplete decision
tables, as our example shows.

For incomplete data sets, a s€twill be called B-globally definabléef it is K g-definable, i.e., if
X is a union of members of the famili(z. A set that isA-globally definable will be calleglobally
definable
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A setT of attribute-value pairs, where all attributes belong tbBend are distinct, will be called
aB-complex Any A-complex will be called—for simplicity—a&omplex Obviously, any set containing
a single attribute-value pair is a complex. For the rest ef paper we will discuss onlgpontrivial
complexesi.e., such complexes that the intersection of all attebglue blocks from a given complex
is not the empty set.

SetX depend®n a complexXl” if and only if

0# [T =(\{[tl|te T} CX.

SetT is aminimal complexof X if and only if X depends off” and no proper subs@&t of T" exists
such thatX depends of”.

Let7 be a nonempty collection of nonempty sets of attribute-eglairs. Thery is alocal covering
of X if and only if the following conditions are satisfied:

(a) each membér of 7 is a minimal complex ofX,
b)W[T)|TeT}=X,and
(c) 7 is minimal, i.e.,7 has the smallest possible number of members.

Both LEM2 and global version of MLEM2 are based on global agpnations, however, they are
using local coverings. The input s&tfor such algorithms is either a lower or upper global appration
of some concept. The original LEM2 rule induction algoritiwas described in many papers, see, e.g.,
[11]. For description of MLEMZ2 see, e.g., [12].

For an incomplete decision table and a suli$ef the setA of all attributes, a union of intersections
of attribute-value pair blocks of attribute-value pairgnfr some B-complexes, will be calledBalocally
definableset. Alocally definablesets will be calledocally definable Any set X that is B-globally
definable isB-locally definable.

The singleton upper approximation of the concépt 2, 3, 4 is not A-locally definable since all
blocks of attribute-value pairs containing case 4 contased as well.

The importance of the idea of local definability is a consegeef the following fact: A setis locally
definable if and only if it can be expressed by rule sets. Thighy it is so important to distinguish
between locally definable sets and those that are not lodafipable.

6. Local Approximations

Let X be any subset of the st of all cases. In generak is not aB-definable set, locally or globally.
Let B C A. The B-local lowerapproximation of the concepx is defined as follows

U{[T] | T is a complex of X, [T] C X}.

The B-local upperapproximation of the concept is defined as the minimal set containiigand
defined in the following way

U{[T] | 3 a family T of complexes T of X withV T € T, [T]NX # 0}.
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Table 2. Data sets

Data set Number of

cases attributes concepts
Bankruptcy 66 5 2
Breast Slovenia 286
Breast Wisconsin 625
Bupa 345 6 2
Echocardiogram 74 7 2
Glass 214 9 6
Hepatitis 155 19 2
Horse 299 21 2
House 434 16 2
Iris 150 4 3
Lymphography 148 18 4
Primary Tumor 339 17 21
Segmentation 210 19 7
Wine 178 13 3

Obviously, theB-local lower approximation of is unique and it is the large®t-locally definable
set contained iX. Any B-local upper approximation oX is B-locally definable, it containg’, and is,
by definition, the smallest. Note that a concept may have i@ one local upper approximation [17].

For a sefl’ of attribute-value pairs, the intersection of blocks fartdtom 7" will be denoted byT'.
Let X be a nonempty subset of the univefge For the rest of the paper we will assume that any7set
consists of attribute-value pairs with all different ditiies (thus, any st may consists of at most|
attribute-value pairs). Lef be a family of setd” of attribute-value pairs.

A set7 will be called alocal lower coveringof X if and only if the following three conditions are
satisfied:

(2) everyT € T is minimal, i.e., no proper subsét of T" exists with[T'] C X,

(3) 7 is minimal, i.e., forevenyl’ € T, Uger— 7y [S] # Uger[S]:

Note that theocal lower coveringshould not be confused with thecal covering The former is
computable for any subsét of U, e.g., a concept, the latter is computable only for a loweupper
global approximation of the concept. The procedure forrdeitgng a single local lower covering, based
on the MLEMZ2 algorithm, is presented below.
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Table 3. Numerical data sets

11

Data set Local MLEM2 algorithm Global MLEM2 algorithm
Certain rules Possible rules Certain Possible
All Selected All Selected rules rules
cutpoints  cutpoints  cutpoints  cutpoints
Bankruptcy 4.55% 6.06% 4.55% 6.06% 4.55% 4.55%
Echocardiogram 29.73% 27.03% 27.03% 27.03%  40.54% 40.54%
Glass 28.50% 32.71% 33.18% 29.44%  29.44% 29.44%
Hepatitis 18.71% 17.42% 20.65% 18.71%  17.42% 20.65%
Horse 33.78% 35.12% 39.80% 40.13%  35.45% 40.80%
Iris 4.67% 4.67% 4.67% 4.67% 4.67% 4.67%
Wine 10.67% 11.80% 10.67% 11.80%  11.24% 11.24%
Table 4. Symbolic data sets
Data set Local MLEM2 algorithm Global MLEM2 algorithm
Certain Possible Certain Possible
rules rules rules rules
Breast-Slov. 27.97% 29.02% 29.72% 29.72%
Breast-Wisc. 20.64% 21.12% 21.12% 20.96%
Bupa 35.65% 35.65% 34.78% 34.78%
Glass 32.24% 30.37% 30.84% 30.84%
Hepatitis 17.42% 15.48% 17.42% 17.42%
House 4.84% 7.14% 4.84% 6.45%
Lymphography 19.59% 15.54% 18.92% 18.92%
Primary Tumor 69.62% 61.36% 69.05% 61.36%
Segmentation 19.05% 16.67% 19.05% 19.05%
Wine 6.74% 7.87% 6.18% 6.18%
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Procedure for determining a single local lower covering
input: a setX (a subset ot/),
output: a single local lower covering@ of the setX,

begin
G:=X;
T :=0;
J =0
while G # ()
begin
T := 0,
Ts := 0
T, =10,
T(G):={t|[tInG # 0}
while (T =0or [T] Z X)and T(G) # ()
begin
select a pait = (a,v;) € T(G) such that[t] N G| is maximum;
if a tie occurs, select a paire T'(G) with the smallest cardinality df];
if another tie occurs, select first pair;
T:=TU{t};
G:=[t]NnG;
T(G) :={t[[]NG #0};
if a; is symbolic{let V,, be the domain of;; }
then
Ts :=Ts U{(a,v) |v eV}
else {a; is numerical, let = (a;, u..v)}
T, =T, U{(at,z..y) | disjointz..y andu..v}U
{(at,z..y) | x..y D u..v};
T(G) = T(G) - (Ts U Tn);
end {while};
if [T] C X
then

begin

for each numerical attribute, with (a;, uw..v) € T do
while (T contains at least two different
pairs(a;, u..v) and(ag, x..y) with
the same numerical attribuig)
replace these two pairs with a new pair
(ar, common part of...v andz..y);
for each tin Tdo
if [T—{t}] CXthenT :=T — {t};
T :=TU{T},

end {then}
dseJ :=JU{T};
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G =X — UseTugs[S];
end {while};
for eachT’ € 7 do
if User—ry[S] = User[SIthen T :=T — {T'};
end {proceduré.

Note that for a local lower covering of X, the set Jq.[S] is a lower approximation ok, how-
ever it does not need to be the best lower approximation the.local lower approximation (excluding
complete decision tables).

Let us illustrate this procedure. We will induce rules fae toncept(Flu, yes)] = {1, 2, 3, 4 from
Table 1. Initially, we need to compute blocks for all attténvalue pairs. This time, values for numerical
attributes are intervals, since our goal is to induce rulesus use selected cutpoints option of MLEM2.
Thus, the set of all attribute-value pair blocks is:

[(Temperature, 36.8..37.6)] £6},
[(Temperature, 37.6..40.8)] 1, 3, 5, 7,
[(Temperature, 36.8..39.1)] £6, 7},
[(Temperature, 39.1..40.8)] /1, 3, 5,
[(Temperature, 36.8..40.3)] /1, 5, 6, 7,
[(Temperature, 40.3..40.8)] 3},
[(Headache, yes)] £1, 2, 3, 6,
[(Headache, no)] 4, 5, 7},

[(Cough, yes)] =1, 2, 7}.

[(Cough, no)] ={4, 5, 6}.

The setl’(G) of all relevant attribute-value pairs with = {1, 2, 3, 4 is {(Temperature39.1..40.8),
(Temperature 36.8..40.3), Temperaturge 40.3..40.8), leadache ye9, (Headache no), (Cough yes9,
(Cough no)}.

The set[t] N G is the largest for = (Headache yeg (and is equal to{1, 2, 3}), so we select
(Headacheyeg. The attributeHeadaches symbolic,Ts = {(Headacheyeg, (Headacheno)}. Since
[(Headacheyeg] € {1,2,3,4}, we need to go through a second iteration of the inmbile loop.
This time G = {1,2,3}, and the sefl(G), after subtractindls U T,,, is {(Temperature 39.1..40.8),
(Temperature36.8..40.3), Temperature40.3..40.8), Cough yes}.

For two attribute-value pairs (Temperature39.1..40.8) andGough ye9, the intersection oft] and
G is the largest. Also, results of the second criterion, sizg|oare the same for both attribute-value
pairs, so we select the first, i.eTemperature39.1..40.8). Thud" = {(Headacheyeg, (Temperature
39.1..40.8), [T] = {1, 3} C {1,2, 3,4}, so the first candidate for an element of the local lower doger
is identified, it isT. There is &or loop to check whether T is minimal, T is minimal, so it is thesffir
minimal complex and” = {T'}.

Our new goal isG = X — [T] = {1,2,3,4} — {1,3} = {2,4}. The setT'(G) of all relevant
attribute-value pairs associated with our névis {(Headache ye9, (Headache no), (Cough yes,
(Cough no)}. The first criterion, related tg¢] N G|, does not select any attribute-value pair. The second
criterion, the size oft], end up with three candidatesi€adacheno), (Cough ye9, (Cough no), so
we select the first attribute-value pair among these three{Headacheno). Note that[t] = {4,5, 7}



14 J.W. Grzymala-Busse and W. Rzasa/A Local Version of the NLANbrithm

andG = {4}. Since[T] = [{(Headacheno)}] Z {1,2,3,4}, we need a second iteration of the inner
whileloop. The only relevant attribute-value pair @qugh no), soT" = {(Headacheno), (Cough no)},
[T] ={4,5} £ {1,2,3,4}, andG = {4}, however,T(G) = (). This setl’ becomes an element gf.

The next goal i1, 2, 3,4} — ({1,3}U{4,5}) = {2}. The only relevant attribute-value pairs, mem-
bers of T'(G), are Headacheyeg and Cough yes. It is not difficult to see that in the two consecutive
iterations of the innewhile loop both attribute-value pairs will be selected and tkétifadacheyes,
(Coughyes}] = {1,2} C {1,2,3,4}. This set will pass unchanged through the ficstloop, so it is a
minimal complex. Thus, the local lower coverifgis

{{(Headacheyeg, (Temperature39.1..40.8), {(Cough ye9, (Headacheyeg}}.

Again, it is not difficult to see that the secofat loop, designed to eliminate redundant minimal
complexes, will not chang&. Therefore, the set of certain rules describing the coni¢éu, yeg] =
{1,2,3,4is

2,2,2

(Headache, yes) & (Temperature, 39.1..40.8)(Flu, yes),

2,2,2

(Cough, yes) & (Headache, yesy-Flu, yes).

Additionally, the lower approximation df1, 2, 3, 4 is {1, 3} U {1, 2} = {1, 2, 3}. For the concept
[(Flu, no)] = {5, 6, 7} this procedure will return

7 ={{(Temperature36.8..39.1), {(Temperature39.1..40.8), leadacheno)} },
so the correspondingertainrules are

1,2,2

(Temperature, 36.8..39.1>—FIu, no),

2,1,1

(Temperature, 39.1..40.8) & (Headache, np)#lu, no).
The lower approximation of5, 6, 7} is the same set.

A set7 will be called alocal upper coveringdf X if and only if the following three conditions are
satisfied:

(1) X € Urer(T1,
(2) everyT is minimal, i.e., no proper subsgt of T" exists with[T'] C <, (T],

(3) 7 is minimal, i.e., forevernyl € 7, X ¢ USeTf{T} [S].

Again, thelocal upper coveringhould not be confused withcal covering The former is defined for
any subsefX of U, e.g., a concept, the latter is defined only for a lower or ngfmbal approximation of
the concept. The modified MLEM2 procedure for determiningngle local upper covering is presented
below.

Procedure for determining a single local upper covering
input: a setX (a subset ot/),
output: a single local upper covering of the setX,
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begin
G =X;
D = X;
T = 0;
while G # ()
begin
T:=0;
T, :=0;
T, :=0;
T(G) :={t|[l]nG # 0}
while(T'=0or [T) Z D)and T(G) # 0
begin
select a pait = (a¢,v;) € T'(G) such that[t] N G| is maximum;
if a tie occurs, select a paire T'(G) with the smallest cardinality df];
if another tie occurs, select first pair;
T:=TU{t};
G:=[t|NnG,
T(G) :={t|tInG # 0}
if a; is symbolic{let V,, be the domain oé }
then
Ts :=TsU{(as,v) |v eV}
else {a; is numerical, let = (a;, u..v)}
T, =T, U{(at,z..y) | disjoint z..y andu..v }U
{(at,z..y) | ..y D w..v};
T(G) = T(G) — (Ts U Tn);
end {while};
D :=DU|[T];
T:=TU{T},
G =D — Uger[S];
end {while};

for eachT € 7 do
for each numerical attribute, with (a;, u..v) € T do
while (T" contains at least two different
pairs(a¢, u..v) and(a, z..y) with
the same numerical attribute)
replace these two pairs with a new pair
(at, common part ofu..v) and(z..y));
for eacht € T do
if [T —{t}] CDthenT :=T — {t};
for eachT € 7 do
ifUser—n[S] 2 X then T :=T — {T'};
end {proceduré.

15
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For a local upper covering of X, the set Jq.+[S] is an upper approximation df, however it does
not need to be the best upper approximation, i.e., the lgma¢muapproximation (excluding complete
decision tables).

In our example from Table 1, for the concepfll, ye9] = {1, 2, 3, 4, our algorithm returns the
following local upper covering of1, 2, 3, 4:

{{(Temperature39.1..40.8), {(Headacheno), (Cough no)}, {(Cough ye9, (Headacheyeg}}.

Thus, the corresponding upper approximatioddf2, 3, 4 is {1,3,5} U ({4,5,7} N {4,5,6}) U
({1,2,7yn{1,2,3,6}) = {1,2,3,4,5}.

For the concept Klu, no)] = {5, 6, 7}, the algorithm returns the following local upper coverirfg o
{5, 6, 7}:

{{(Temperature36.8..39.1), {(Temperature39.1..40.8), leadacheno)}},

(the same as the local lower covering for the same concep8.corresponding upper approximation of
{5,6,7is{6,7} U ({1,3,5} Nn{4,5,7}) = {5,6,7}.
Furthermorepossiblerules are:

1,2,3

(Temperature, 39.1..40.8>—Flu, yes),

2,1,2

(Headache, no) & (Cough, no}—(Flu, yes),

2,2,2

(Cough, yes) & (Headache, yesy-Flu, yes),

1,2,2

(Temperature, 36.8..39.1>—(Flu, no),

2,1,1

(Temperature, 39.1..40.8) & (Headache, np)#lu, no).

7. Experiments

For our experiments we used 14 data sets, summarized in Zablall of these data sets, except
bankruptcy are available on the Machine Learning Repository at thevéfaity of California at Irvine.
The bankruptcy data set was used by E. Altman to predict b@tdy of companies.

Note that some of these data sdtgfa, glass, segmentati@ndwine) were discretized using the
agglomerative cluster analysis method [4, 5] andhbpatitisdata set was discretized using the divisive
cluster analysis method [24], both methods are implemeintéde LERS data mining system. Thus,
some of these data sets may appear in both tables, 3 and 4.

Additionally, some of these data sets are incompletegst Slovenia, hepatitis, horse, hoaselpri-
mary tumor For incomplete data sets, the same interpretation of ngjsiribute valueddgst) was used
in all experiments. For data sets with all missing attribrgtieies interpreted dest, local approximations
are reduced to global approximations [8]. Thus, in our expents the fact that our new algorithms are
based on local approximations was not crucial. Howeveretlsea number of other differences between
local and global versions of MLEMZ2, the main is both the logaisions compute local lower and upper
coverings from scratch while the lower and upper approxnatare also computed as a side effect.
Also, there are other differences, e.g., in handling nucaégttributes.
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For the older, global version of the MLEM2 algorithm all appimations were of the typeoncept
In the Tables 3 and 4 error rates, computed as a restéhefiold cross validationare presented.

8. Conclusions

We conducted experiments comparing the new, local verdidwL&EM?2 with the older, global version
of MLEM2. The local version of MLEM2 starts from a concept Vehin the older version of MLEM2
starts from the previously computed global lower or uppgraximations of the concept. There are two
new MLEM2 algorithms, for computing certain and possiblesu There is only one older MLEM2
algorithm, if it starts from a lower approximation of the cept, it produces certain rules; if it starts
from the upper approximation of the concept, it computesiptes rules. Thus, the new, local version of
MLEM2 computes rules from a raw data, which may be inconsisteay have numerical attributes, and
may be incomplete.

Results of our experiments show that the new approach isrbete combined results presented in
both tables, 3 and 4, for every data set we selected the stnaiter rate among local MLEM2 algorithm
options and the smallest error rate among the global MLEM2rahm options, and then we used the
Wilcoxon matched-pairs signed-ranks test. This test shbatsthe new, local version of MLEM2 is
significantly better (2% significance level, two-tailedt}géban the older, global version of MLEM2.
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