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Abstract. In this paper, we present the newest version of the MLEM2 algorithm for rule induction,
a basic component of the LERS data mining system. This version of the MLEM2 algorithm is based
on local lower and upper approximations, and in its current form is presented in this paper for the first
time. Additionally, we present results of experiments comparing the local version of the MLEM2
algorithm for rule induction with an older version of MLEM2,which was based on global lower
and upper approximations. Our experiments show that the local version of MLEM2 is significantly
better than the global version of MLEM2 (2% significance level, two-tailed Wilcoxon test).

1. Introduction

In this paper we present the newest version of the MLEM2 (Modified Learning from Example Module,
version 2) algorithm for rule induction, a basic component of the LERS (Learning from Examples based
on Rough Sets) data mining system. The LERS data mining system has been developed at the University
of Kansas. Its first component, called LEM1 (Learning from Example Module, version 1) was imple-
mented for the first time in Franz Lisp in 1988 [6]. In 1990, thebasic algorithm of LERS, called LEM2,
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was added to LERS [3, 9]. The main difference between LEM1 andLEM2 is the type of coverings:
LEM1 uses global coverings while LEM2 uses local coverings.

Rule sets, induced by LERS or other data mining systems, are usually used for classification of new,
unseen cases that were not used for rule induction. The first classification system was added to LERS
in 1994 [10]. LERS deals with inconsistent data (i.e., data with conflicting cases; for two such cases all
attribute values are the same yet the decision values are different) using lower and upper approximations.
Thus, before running LEM1 or LEM2, such approximations mustbe computed first.

The LERS system is equipped with a number of discretization algorithms to handle numerical at-
tributes. Both LEM1 and LEM2 algorithms need discretization as a preliminary process for numerical
attributes. These discretization techniques were described, e.g., in [4, 5, 24].

In the nineties LERS used typical, traditional approaches to missing attribute values, before rule
induction, i.e., as preprocessing. Such methods include deleting cases with missing attribute values from
the data set, replacing a missing attribute value by all possible values from the attribute domain, replacing
a missing attribute value by the most frequent value from theattribute domain for symbolic attributes and
by the mean of all values from the attribute domain for numerical attributes [16].

In 1997 a new approach to missing attribute values, based on inducing rules only from known data,
was introduced [20]. This interpretation of missing attribute values is known aslost value[13].

The algorithm called MLEM2 was introduced in 2003 [12]. MLEM2 induced rule sets directly from
raw data, i.e., data not only with numerical attributes but also with missing attribute values. However, this
algorithm needed a preprocessing: computing lower and upper approximations. Note that even though
MLEM2, like LEM2, uses local coverings, yet is based on global approximations.

A new acquisition to LERS was the program IRIM (Interesting Rule Induction Module), able to
induce all rules with a defined number of conditions and with adefined strength (number of training,
correctly classified cases by the rule) [15].

Note that the LEM2 algorithm was successfully implemented and used in many places, see, e.g.,
[1, 2, 19], under many names such as ELEM2, MODLEM, etc.

In 2006 local approximations were combined with MLEM2 [8]. Local approximations are defined
using blocks of attribute-value pairs. The same idea of an attribute-value block is used in both LEM2
and MLEM2, so it was possible to combine both ideas, local approximations and MLEM2 and modify
MLEM2 again. This time MLEM2 does not need any preprocessing, since computing of local lower
and upper approximations as well as handling numerical attributes and missing attribute values are done
within the same algorithm.

In this paper, we present a slightly modified algorithms for determining local lower and upper cov-
erings from those presented in [18]. Additionally, we present results of experiments on the local version
and global versions of MLEM2. In the global version of MLEM2,global lower and upper approxi-
mations are computed during a preliminary step, as preprocessing. For each data set, we selected the
best results for local MLEM2 and global MLEM2 and then compared the overall performance using a
nonparametric test, the Wilcoxon matched-pairs signed-rank test.

2. Blocks of Attribute-Value Pairs

An example of a data set is presented in Table 1. Rows of the table representcases, while columns are
labeled by two types ofvariablescalledattributesand adecision. The set of all cases will be denoted
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Table 1. An incomplete data set

Attributes Decision

Case Temperature Headache Cough Flu

1 39.8 yes yes yes

2 ? yes yes yes

3 40.8 yes ? yes

4 ? no no yes

5 39.8 no no no

6 36.8 yes no no

7 38.4 no yes no

by U . In Table 1,U = {1, 2,..., 7}. The set of all attributes will be denoted byA. In Table 1,A =
{Temperature, Headache, Cough}. The decision, denoted byd, is Flu. The fact that for a casex an
attributea has the valuev will be denoted bya(x) = v. Similarly, if for a casex the value ofd is w, we
will denote it byd(x) = w. A table with some missing attribute values will be calledincompleteor a
table with missing attribute values.

In general, missing attribute values arelost values(the values that were recorded but currently are
unavailable, denoted by ”?”),do not care conditions(the original values were irrelevant, denoted by
”*”), and attribute-concept values(these missing attribute values may be replaced by any attribute value
limited to the same concept, denoted by ”−”), see, e.g., [14].

For the rest of the paper we will assume that all decision values are specified, i.e., they are not
missing. Additionally, we will assume that for each case at least one attribute value is specified.

An important tool to analyze decision tables is ablock of an attribute-value pair. Let (a, v) be an
attribute-value pair. Forcompletedecision tables, i.e., decision tables in which every attribute value is
specified, a block of(a, v), denoted by[(a, v)], is the set of all casesx for whicha(x) = v.

3. Numerical Attributes

The attributeTemperaturefrom Table 1 is numerical. For data mining, numerical attributes must be
converted into symbolic ones, or in different words, numerical values should be converted into intervals.
For a numerical attribute, the first step is to sort numericalattribute values. ForTemperaturethe list of
sorted values is: 36.8, 38.4, 39.8 and 40.8. The next step is to select cutpoints. In MLEM2, the potential
cutpoints are averages of consecutive values of the sorted list of all attribute values. In our example,
such potential cutpoints are 37.6, 39.1, and 40.3. Thus, thepotential intervals are, e.g., 36.8..37.6 and
37.6..40.3. In the current, local MLEM2 algorithm, there are two options of selecting potential cutpoints:
all cutpointsandselected cutpoints.
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3.1. All cutpoints option of MLEM2

If we use the optionall cutpoints, for every potential cutpoint the MLEM2 algorithm creates two primary
intervals, the first containing all numerical values smaller than the cutpoint and the second containing all
numerical values greater than the cutpoint. Thus, for Table1, the list of all primary intervals is 36.8..37.6,
36.8..39.1, 36.8..40.3, 37.6..40.8, 39.1..40.8, 40.3..40.8. The first interval, 36.8..37.6 contains just one
value: 36.8, the second interval, 36.8..40.8 contains values 38.4, 39.8, and 40.8. In different words, the
first interval isrepresentedby the set{36.8}, and the second interval is represented by the set{38.4,
39.8, 40.8}. The all cutpoints option is the only option of the MLEM2 global version and one of two
options of the MLEM2 local version. The other option of the MLEM2 local version isselected cutpoints.

3.2. Selected cutpoints option of MLEM2

In the all cutpoints option of MLEM2, the decision is not taken into account, while in the selected
cutpoints option of MLEM2 the algorithm chooses only some selected cutpoints on the basis of the
corresponding decision values. In general, if for all occurrences of the two consecutive values of the
sorted list of values of a numerical attribute the decision value is the same, the corresponding cutpoint is
ignored in creating primary intervals. In Table 1, there areunique values of 36.8 and 38.4, for both the
decision value is the same (no), so the potential cutpoint 37.6 is ignored. The value 39.8 occurs twice, for
cases 1 and 5, with decision valuesyesandno, so we cannot ignore the cutpoint 39.1, the mean for 38.4
and 39.8. By the same token, we cannot ignore the cutpoint 40.3 . Thus, the selected cutpoints are 39.1
and 40.3, and the primary intervals are 36.8..39.6, 36.8..40.3, 39.6..40.8 and 40.3..40.8. We are following
here the principlethe cutpoint will always occur on the boundary between two classes[7], though this
principle is valid only for cutpoints selected using entropy minimization. Moreover, as we will see later,
this principle - in general - will not always produce better results.

Rules induced by different discretization options of MLEM2differ from each other. For example,
using the all cutpoints option of MLEM2, the following rule set is induced from thebankruptcydata set:

1, 30, 30
(a2,−308.9..−3.55) –> (Prediction, bankruptcy),
2, 23, 23
(a3,−280.0..−1.4) & (a1,−185.1..24.2) –> (Prediction, bankruptcy),
3, 33, 33
(a2,−3.55..68.6) & (a4, 44.8..771.7) & (a3,−15.1..34.1) –> (Prediction, survival),

while the selected cutpoints option induces, for the same data set, the following rule set:
2, 28, 28
(a2,−308.9..7.85) & (a4, 0.7..91.05) –> (Prediction, bankruptcy),
2, 30, 30
(a3,−280.0..2.8) & (a2,−308.9..21.15) –> (Prediction, bankruptcy),
3, 33, 33
(a2,−3.55..68.6) & (a4, 44.8..771.7) & (a3,−15.1..34.1) –> (Prediction, survival),

where a1 = Workingcapital/Totalassets,
a2 = Retainedearnings/Totalassets,
a3 = Earningsbeforeinterestand taxes/Totalassets, and
a4 = Marketvalue equity/Bookvalue of total debt.
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Every rule is presented in the LERS format. Such rules are preceded by three numbers: the total
number of attribute-value pairs on the left-hand side of therule, the total number of cases correctly
classified by the rule during training, and the total number of training cases matching the left-hand side
of the rule.

3.3. Operations on Intervals

In the MLEM2 algorithms, both versions, global and local, some operations are performed on intervals.
The MLEM2 algorithm may select intervals associated with the same attribute as conditions of a rule.
Such intervals are eventuallymerged. For example, let us say that MLEM2 selected two intervals ofthe
same attributeTemperature, the first one is 36.8..40.3 and the second is 39.1..40.8. These two intervals
will be merged into 39.1..40.3. The first interval is represented by the set{36.8, 38.4, 39.8}, the second
interval is represented by{39.8, 40.8}, the merged interval is represented by the intersection of sets
represented by both intervals, i.e., by the set{39.8}. The interval 39.1..40.3 will be called acommon
part of 36.8..40.3 and 39.1..40.8.

Two intervals with the common part equal to the empty set are calleddisjoint. For example, intervals
36.8..39.1 and 39.1..40.3 are disjoint since the first interval is represented by{36.8, 38.4} and the second
interval is represented by{39.8, 40.8}.

We say that an intervalincludesanother interval if it is represented by a set that is a superset of
the other interval. For example, 39.1..40.8 includes 40.3..40.8 since the first interval is represented by
the set{39.8, 40.8} and the second interval is represented by the set{40.8}. We will denote it by
39.1..40.8 ⊇ 40.3..40.8.

4. Characteristic Relation

For incomplete decision tables the definition of a block of anattribute-value pair must be modified.

• If for an attributea there exists a casex such thata(x) = ?, i.e., the corresponding value is lost,
then the casex should not be included in any blocks[(a, v)] for all valuesv of attributea,

• If for an attributea there exists a casex such that the corresponding value is a ”do not care”
condition, i.e.,a(x) = ∗, then the casex should be included in blocks[(a, v)] for all specified
valuesv of attributea,

• If for an attributea there exists a casex such that the corresponding value is an attribute-concept
value, i.e.,a(x) = −, then the corresponding casex should be included in blocks[(a, v)] for all
specified valuesv ∈ V (x, a) of attributea, where

V (x , a) = {a(y) | a(y) is specified , y ∈ U, d(y) = d(x)}.

In this section we are concerned with cases that can be distinguished using attributes. Therefore, in
computing blocks for numerical attributes, we will use specific numerical values instead of intervals.

For Table 1

[(Temperature, 36.8)] ={6},
[(Temperature, 38.4)] ={7},
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[(Temperature, 39.8)] ={1, 5},
[(Temperature, 40.8)] ={3},
[(Headache, yes)] ={1, 2, 3, 6},
[(Headache, no)] ={4, 5, 7},
[(Cough, yes)] ={1, 2, 7}.
[(Cough, no)] ={4, 5, 6}.

For a casex ∈ U thecharacteristic setKB(x) is defined as the intersection of the setsK(x, a), for
all a ∈ B, where the setK(x, a) is defined in the following way:

• If a(x) is specified, thenK(x, a) is the block[(a, a(x)] of attributea and its valuea(x),

• If a(x) = ? or a(x) = ∗ then the setK(x, a) = U ,

• If a(x) = −, then the corresponding setK(x, a) is equal to the union of all blocks of attribute-
value pairs(a, v), wherev ∈ V (x, a) if V (x, a) is nonempty. IfV (x, a) is empty,K(x, a) = U .

For Table 1 andB = A,

KA(1) = {1, 5} ∩ {1, 2, 3, 6} ∩ {1, 2, 7} = {1},
KA(2) = U ∩ {1, 2, 3, 6} ∩ {1, 2, 7} = {1, 2},
KA(3) = {3} ∩ {1, 2, 3, 6} ∩ U = {3},
KA(4) = U ∩ {4, 5, 7} ∩ {4, 5, 6} = {4, 5},
KA(5) = {1, 5} ∩ {4, 5, 7} ∩ {4, 5, 6} = {5},
KA(6) = {6} ∩ {1, 2, 3, 6} ∩ {4, 5, 6} = {6}, and
KA(7) = {7} ∩ {4, 5, 7} ∩ {1, 2, 7} = {7}.

Characteristic setKB(x) may be interpreted as the smallest set of cases that are indistinguishable
from x using all attributes fromB, using a given interpretation of missing attribute values.

The characteristic relationR(B) is a relation onU defined forx, y ∈ U as follows

(x, y) ∈ R(B) if and only if y ∈ KB(x).

The characteristic relationR(B) is reflexive but—in general—does not need to be symmetric or
transitive. Also, the characteristic relationR(B) is known if we know characteristic setsK(x) for all
x ∈ U . In our example,R(A) = {(1, 1), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 5), (6, 6), (7,7)}.

For decision tables, in which all missing attribute values are lost, a special case of a characteristic
relation was defined by J. Stefanowski and A. Tsoukias in [26,27]. For any decision table in which all
missing attribute values are lost, the characteristic relation is reflexive and transitive, but—in general—
does not need to be symmetric . For decision tables where all missing attribute values are ”do not care”
conditions a special case of characteristic relation was defined by M. Kryszkiewicz in [21], see also, e.g.,
[22]. Such a relation is reflexive and symmetric but—in general—not transitive.

5. Global Approximations

For completely specified decision tables lower and upper approximations are defined on the basis of
the indiscernibility relation introduced by Z. Pawlak [23]. Any finite union of characteristic sets, that
are called hereelementarysets, associated withB, will be called aB-definable set. The empty set is
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definable. LetX be any subset of the setU of all cases. The setX is called aconceptand is usually
defined as the set of all cases defined by a specific value of the decision. In general,X is not aB-
definable set. However, setX may be approximated by twoB-definable sets, the first one is called a
B-lower approximationof X, denoted byBX and defined as follows

{x ∈ U |[x]B ⊆ X}.

The second set is called aB-upper approximationof X, denoted byBX and defined as follows

{x ∈ U |[x]B ∩ X 6= ∅},

where[x]B = KB(x). The above shown way of computing lower and upper approximations, by con-
structing these approximations from singletonsx, will be called thefirst method. TheB-lower approx-
imation ofX is the greatestB-definable set, contained inX. TheB-upper approximation ofX is the
smallestB-definable set containingX.

As it was observed in [23], for complete decision tables we may use asecond methodto define the
B-lower approximation ofX, by the following formula

∪{[x]B |x ∈ U, [x]B ⊆ X},

and theB-upper approximation ofx may de defined, using the second method, by

∪{[x]B |x ∈ U, [x]B ∩ X 6= ∅}.

In this paper we quote three different definitions of lower and upper approximations. Again, letX be
a concept, letB be a subset of the setA of all attributes, and letR(B) be the characteristic relation of the
incomplete decision table with characteristic setsK(x), wherex ∈ U . Our first definition uses a similar
idea as in the previous articles on incompletely specified decision tables [21, 22, 25, 26, 27], i.e., lower
and upper approximations are sets of singletons from the universeU satisfying some properties. Thus,
lower and upper approximations are defined by analogy with the above first method, by constructing both
sets from singletons. We will call these approximationssingleton. A singletonB-lower approximation
of X is defined as follows:

BX = {x ∈ U |KB(x) ⊆ X}.

A singletonB-upper approximation ofX is

BX = {x ∈ U |KB(x) ∩ X 6= ∅}.

In our example of the decision table presented in Table 1 let us say thatB = A. Then the singleton
A-lower andA-upper approximations of the two concepts:{1, 2, 3, 4} and{5, 6, 7} are:

A{1, 2, 3, 4} = {1, 2, 3},

A{5, 6, 7} = {5, 6, 7},

A{1, 2, 3, 4} = {1, 2, 3, 4},

A{5, 6, 7} = {4, 5, 6, 7}.
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The second method of defining lower and upper approximationsfor complete decision tables uses
another idea: lower and upper approximations are unions of elementary sets, subsets ofU . Therefore we
may define lower and upper approximations for incomplete decision tables by analogy with the second
method, using characteristic sets instead of elementary sets. There are two ways to do this. Using the
first way, asubsetB-lower approximation ofX is defined as follows:

BX = ∪{KB(x)|x ∈ U,KB(x) ⊆ X}.

A subsetB-upper approximation ofX is

BX = ∪{KB(x)|x ∈ U,KB(x) ∩ X 6= ∅}.

For the same decision table, presented in Table 1, the subsetA-lower andA-upper approximations
are

A{1, 2, 3, 4} = {1, 2, 3},

A{5, 6, 7} = {5, 6, 7},

A{1, 2, 3, 4} = {1, 2, 3, 4, 5},

A{5, 6, 7} = {4, 5, 6, 7}.

The second possibility is to modify the subset definition of lower and upper approximation by re-
placing the universeU from the subset definition by a conceptX. A conceptB-lower approximation of
the conceptX is defined as follows:

BX = ∪{KB(x)|x ∈ X,KB(x) ⊆ X}.

Obviously, the subsetB-lower approximation ofX is the same set as the conceptB-lower approxi-
mation ofX. A conceptB-upper approximation of the conceptX is defined as follows:

BX = ∪{KB(x)|x ∈ X,KB(x) ∩ X 6= ∅} = ∪{KB(x)|x ∈ X}.

For the decision table presented in Table 1, the conceptA-lower andA-upper approximations are

A{1, 2, 3, 4} = {1, 2, 3},

A{5, 6, 7} = {5, 6, 7},

A{1, 2, 3, 4} = {1, 2, 3, 4, 5},

A{5, 6, 7} = {5, 6, 7}.

Note that for complete decision tables, all three definitions of lower approximations, singleton, subset
and concept, are reduced to the same definition. Also, for complete decision tables, all three definitions
of upper approximations are reduced to the same definition. This is not true for incomplete decision
tables, as our example shows.

For incomplete data sets, a setX will be calledB-globally definableif it is KB-definable, i.e., if
X is a union of members of the familyKB . A set that isA-globally definable will be calledglobally
definable.
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A setT of attribute-value pairs, where all attributes belong to set B and are distinct, will be called
aB-complex. Any A-complex will be called—for simplicity—acomplex. Obviously, any set containing
a single attribute-value pair is a complex. For the rest of the paper we will discuss onlynontrivial
complexes, i.e., such complexes that the intersection of all attribute-value blocks from a given complex
is not the empty set.

SetX dependson a complexT if and only if

∅ 6= [T ] =
⋂

{[t] | t ∈ T} ⊆ X.

SetT is aminimal complexof X if and only if X depends onT and no proper subsetT ′ of T exists
such thatX depends onT ′.

Let T be a nonempty collection of nonempty sets of attribute-value pairs. ThenT is alocal covering
of X if and only if the following conditions are satisfied:

(a) each memberT of T is a minimal complex ofX,

(b)∪{[T ] |T ∈ T } = X, and

(c) T is minimal, i.e.,T has the smallest possible number of members.

Both LEM2 and global version of MLEM2 are based on global approximations, however, they are
using local coverings. The input setX for such algorithms is either a lower or upper global approximation
of some concept. The original LEM2 rule induction algorithmwas described in many papers, see, e.g.,
[11]. For description of MLEM2 see, e.g., [12].

For an incomplete decision table and a subsetB of the setA of all attributes, a union of intersections
of attribute-value pair blocks of attribute-value pairs from some B-complexes, will be called aB-locally
definableset. A-locally definablesets will be calledlocally definable. Any setX that isB-globally
definable isB-locally definable.

The singleton upper approximation of the concept{1, 2, 3, 4} is not A-locally definable since all
blocks of attribute-value pairs containing case 4 contain case 5 as well.

The importance of the idea of local definability is a consequence of the following fact: A set is locally
definable if and only if it can be expressed by rule sets. This is why it is so important to distinguish
between locally definable sets and those that are not locallydefinable.

6. Local Approximations

Let X be any subset of the setU of all cases. In general,X is not aB-definable set, locally or globally.
Let B ⊆ A. TheB-local lowerapproximation of the conceptX is defined as follows

⋃
{[T ] | T is a complex of X , [T ] ⊆ X }.

TheB-local upperapproximation of the conceptX is defined as the minimal set containingX and
defined in the following way

⋃
{[T ] | ∃ a family T of complexes T of X with ∀ T ∈ T , [T ] ∩ X 6= ∅}.
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Table 2. Data sets

Data set Number of

cases attributes concepts

Bankruptcy 66 5 2

Breast Slovenia 286 9 2

Breast Wisconsin 625 9 9

Bupa 345 6 2

Echocardiogram 74 7 2

Glass 214 9 6

Hepatitis 155 19 2

Horse 299 21 2

House 434 16 2

Iris 150 4 3

Lymphography 148 18 4

Primary Tumor 339 17 21

Segmentation 210 19 7

Wine 178 13 3

Obviously, theB-local lower approximation ofX is unique and it is the largestB-locally definable
set contained inX. Any B-local upper approximation ofX is B-locally definable, it containsX, and is,
by definition, the smallest. Note that a concept may have morethan one local upper approximation [17].

For a setT of attribute-value pairs, the intersection of blocks for all t from T will be denoted by[T ].
Let X be a nonempty subset of the universeU . For the rest of the paper we will assume that any setT

consists of attribute-value pairs with all different attributes (thus, any setT may consists of at most|A|
attribute-value pairs). LetT be a family of setsT of attribute-value pairs.

A setT will be called alocal lower coveringof X if and only if the following three conditions are
satisfied:

(1)
⋃

T∈T [T ] ⊆ X,

(2) everyT ∈ T is minimal, i.e., no proper subsetT ′ of T exists with[T ′] ⊆ X,

(3) T is minimal, i.e., for everyT ∈ T ,
⋃

S∈T −{T}[S] 6=
⋃

S∈T [S].

Note that thelocal lower coveringshould not be confused with thelocal covering. The former is
computable for any subsetX of U , e.g., a concept, the latter is computable only for a lower orupper
global approximation of the concept. The procedure for determining a single local lower covering, based
on the MLEM2 algorithm, is presented below.
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Table 3. Numerical data sets

Data set Local MLEM2 algorithm Global MLEM2 algorithm

Certain rules Possible rules Certain Possible

All Selected All Selected rules rules

cutpoints cutpoints cutpoints cutpoints

Bankruptcy 4.55% 6.06% 4.55% 6.06% 4.55% 4.55%

Echocardiogram 29.73% 27.03% 27.03% 27.03% 40.54% 40.54%

Glass 28.50% 32.71% 33.18% 29.44% 29.44% 29.44%

Hepatitis 18.71% 17.42% 20.65% 18.71% 17.42% 20.65%

Horse 33.78% 35.12% 39.80% 40.13% 35.45% 40.80%

Iris 4.67% 4.67% 4.67% 4.67% 4.67% 4.67%

Wine 10.67% 11.80% 10.67% 11.80% 11.24% 11.24%

Table 4. Symbolic data sets

Data set Local MLEM2 algorithm Global MLEM2 algorithm

Certain Possible Certain Possible

rules rules rules rules

Breast-Slov. 27.97% 29.02% 29.72% 29.72%

Breast-Wisc. 20.64% 21.12% 21.12% 20.96%

Bupa 35.65% 35.65% 34.78% 34.78%

Glass 32.24% 30.37% 30.84% 30.84%

Hepatitis 17.42% 15.48% 17.42% 17.42%

House 4.84% 7.14% 4.84% 6.45%

Lymphography 19.59% 15.54% 18.92% 18.92%

Primary Tumor 69.62% 61.36% 69.05% 61.36%

Segmentation 19.05% 16.67% 19.05% 19.05%

Wine 6.74% 7.87% 6.18% 6.18%
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Procedure for determining a single local lower covering
input: a setX (a subset ofU ),
output: a single local lower coveringT of the setX,
begin

G := X;
T := ∅;
J := ∅;
while G 6= ∅

begin
T := ∅;
Ts := ∅;
Tn := ∅;
T (G) := {t | [t] ∩ G 6= ∅};
while (T = ∅ or [T ] 6⊆ X) and T (G) 6= ∅

begin
select a pairt = (at, vt) ∈ T (G) such that|[t] ∩ G| is maximum;
if a tie occurs, select a pairt ∈ T (G) with the smallest cardinality of[t];
if another tie occurs, select first pair;
T := T ∪ {t};
G := [t] ∩ G;
T (G) := {t | [t] ∩ G 6= ∅};
if at is symbolic{let Vat

be the domain ofat}
then

Ts := Ts ∪ {(at, v) | v ∈ Vat
}

else {at is numerical, lett = (at, u..v)}
Tn := Tn ∪ {(at, x..y) | disjoint x..y andu..v}∪

{(at, x..y) | x..y ⊇ u..v};
T (G) := T (G) − (Ts ∪ Tn);

end {while};
if [T ] ⊆ X

then
begin

for each numerical attributeat with (at, u..v) ∈ T do
while (T contains at least two different
pairs(at, u..v) and(at, x..y) with
the same numerical attributeat)

replace these two pairs with a new pair
(at, common part ofu..v andx..y);

for each t in Tdo
if [T − {t}] ⊆ X then T := T − {t};

T := T ∪ {T};
end {then}

else J := J ∪ {T};
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G := X − ∪S∈T ∪J [S];
end {while};
for eachT ∈ T do

if
⋃

S∈T −{T}[S] =
⋃

S∈T [S] then T := T − {T};
end {procedure}.

Note that for a local lower coveringT of X, the set
⋃

S∈T [S] is a lower approximation ofX, how-
ever it does not need to be the best lower approximation, i.e., the local lower approximation (excluding
complete decision tables).

Let us illustrate this procedure. We will induce rules for the concept[(Flu, yes)] = {1, 2, 3, 4} from
Table 1. Initially, we need to compute blocks for all attribute-value pairs. This time, values for numerical
attributes are intervals, since our goal is to induce rules.Let us use selected cutpoints option of MLEM2.
Thus, the set of all attribute-value pair blocks is:

[(Temperature, 36.8..37.6)] ={6},
[(Temperature, 37.6..40.8)] ={1, 3, 5, 7},
[(Temperature, 36.8..39.1)] ={6, 7},
[(Temperature, 39.1..40.8)] ={1, 3, 5},
[(Temperature, 36.8..40.3)] ={1, 5, 6, 7},
[(Temperature, 40.3..40.8)] ={3},
[(Headache, yes)] ={1, 2, 3, 6},
[(Headache, no)] ={4, 5, 7},
[(Cough, yes)] ={1, 2, 7}.
[(Cough, no)] ={4, 5, 6}.

The setT (G) of all relevant attribute-value pairs withG = {1, 2, 3, 4} is {(Temperature, 39.1..40.8),
(Temperature, 36.8..40.3), (Temperature, 40.3..40.8), (Headache, yes), (Headache, no), (Cough, yes),
(Cough, no)}.

The set[t] ∩ G is the largest fort = (Headache, yes) (and is equal to{1, 2, 3}), so we select
(Headache, yes). The attributeHeadacheis symbolic,Ts = {(Headache, yes), (Headache, no)}. Since
[(Headache, yes)] 6⊆ {1, 2, 3, 4}, we need to go through a second iteration of the innerwhile loop.
This timeG = {1, 2, 3}, and the setT (G), after subtractingTs ∪ Tn, is {(Temperature, 39.1..40.8),
(Temperature, 36.8..40.3), (Temperature, 40.3..40.8), (Cough, yes)}.

For two attribute-value pairst, (Temperature, 39.1..40.8) and (Cough, yes), the intersection of[t] and
G is the largest. Also, results of the second criterion, size of [t] are the same for both attribute-value
pairs, so we select the first, i.e., (Temperature, 39.1..40.8). ThusT = {(Headache, yes), (Temperature,
39.1..40.8)}, [T ] = {1, 3} ⊆ {1, 2, 3, 4}, so the first candidate for an element of the local lower covering
is identified, it isT . There is afor loop to check whether T is minimal, T is minimal, so it is the first
minimal complex andT = {T}.

Our new goal isG = X − [T ] = {1, 2, 3, 4} − {1, 3} = {2, 4}. The setT (G) of all relevant
attribute-value pairs associated with our newG is {(Headache, yes), (Headache, no), (Cough, yes),
(Cough, no)}. The first criterion, related to|[t]∩G|, does not select any attribute-value pair. The second
criterion, the size of[t], end up with three candidates: (Headache, no), (Cough, yes), (Cough, no), so
we select the first attribute-value pair among these three:t = (Headache, no). Note that[t] = {4, 5, 7}
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andG = {4}. Since[T ] = [{(Headache, no)}] 6⊆ {1, 2, 3, 4}, we need a second iteration of the inner
while loop. The only relevant attribute-value pair is (Cough, no), soT = {(Headache, no), (Cough, no)},
[T ] = {4, 5} 6⊆ {1, 2, 3, 4}, andG = {4}, however,T (G) = ∅. This setT becomes an element ofJ .

The next goal is{1, 2, 3, 4}− ({1, 3}∪ {4, 5}) = {2}. The only relevant attribute-value pairs, mem-
bers ofT (G), are (Headache, yes) and (Cough, yes). It is not difficult to see that in the two consecutive
iterations of the innerwhile loop both attribute-value pairs will be selected and that [{(Headache, yes),
(Cough, yes)}] = {1, 2} ⊆ {1, 2, 3, 4}. This set will pass unchanged through the firstfor loop, so it is a
minimal complex. Thus, the local lower coveringT is

{{(Headache, yes), (Temperature, 39.1..40.8)}, {(Cough, yes), (Headache, yes)}}.

Again, it is not difficult to see that the secondfor loop, designed to eliminate redundant minimal
complexes, will not changeT . Therefore, the set of certain rules describing the concept[(Flu, yes)] =
{1, 2, 3, 4} is

2, 2, 2
(Headache, yes) & (Temperature, 39.1..40.8) –> (Flu, yes),
2, 2, 2
(Cough, yes) & (Headache, yes) –> (Flu, yes).

Additionally, the lower approximation of{1, 2, 3, 4} is {1, 3} ∪ {1, 2} = {1, 2, 3}. For the concept
[(Flu, no)] = {5, 6, 7} this procedure will return

T ={{(Temperature, 36.8..39.1)}, {(Temperature, 39.1..40.8), (Headache, no)}},

so the correspondingcertain rules are

1, 2, 2
(Temperature, 36.8..39.1) –> (Flu, no),
2, 1, 1
(Temperature, 39.1..40.8) & (Headache, no) –> (Flu, no).

The lower approximation of{5, 6, 7} is the same set.

A setT will be called alocal upper coveringof X if and only if the following three conditions are
satisfied:

(1) X ⊆
⋃

T∈T [T ],

(2) everyT is minimal, i.e., no proper subsetT ′ of T exists with[T ′] ⊆
⋃

T∈T [T ],

(3) T is minimal, i.e., for everyT ∈ T , X 6⊆
⋃

S∈T −{T}[S].

Again, thelocal upper coveringshould not be confused withlocal covering. The former is defined for
any subsetX of U , e.g., a concept, the latter is defined only for a lower or upper global approximation of
the concept. The modified MLEM2 procedure for determining a single local upper covering is presented
below.

Procedure for determining a single local upper covering
input: a setX (a subset ofU ),
output: a single local upper coveringT of the setX,
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begin
G := X;
D := X;
T := ∅;
while G 6= ∅

begin
T := ∅;
Ts := ∅;
Tn := ∅;
T (G) := {t | [t] ∩ G 6= ∅};
while (T = ∅ or [T ] 6⊆ D) and T (G) 6= ∅

begin
select a pairt = (at, vt) ∈ T (G) such that|[t] ∩ G| is maximum;
if a tie occurs, select a pairt ∈ T (G) with the smallest cardinality of[t];
if another tie occurs, select first pair;
T := T ∪ {t};
G := [t] ∩ G;
T (G) := {t | [t] ∩ G 6= ∅};
if at is symbolic{let Vat

be the domain ofat}
then

Ts := Ts ∪ {(at, v) | v ∈ Vat
}

else {at is numerical, lett = (at, u..v)}
Tn := Tn ∪ {(at, x..y) | disjoint x..y andu..v}∪

{(at, x..y) | x..y ⊇ u..v};
T (G) := T (G) − (Ts ∪ Tn);

end {while};
D := D ∪ [T ];
T := T ∪ {T};
G := D − ∪S∈T [S];

end {while};
for eachT ∈ T do

for each numerical attributeat with (at, u..v) ∈ T do
while (T contains at least two different
pairs(at, u..v) and(at, x..y) with
the same numerical attributeat)

replace these two pairs with a new pair
(at, common part of(u..v) and(x..y));

for eacht ∈ T do
if [T − {t}] ⊆ D then T := T − {t};

for eachT ∈ T do
if

⋃
S∈T −{T}[S] ⊇ X then T := T − {T};

end {procedure}.
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For a local upper coveringT of X, the set
⋃

S∈T [S] is an upper approximation ofX, however it does
not need to be the best upper approximation, i.e., the local upper approximation (excluding complete
decision tables).

In our example from Table 1, for the concept [(Flu, yes)] = {1, 2, 3, 4}, our algorithm returns the
following local upper covering of{1, 2, 3, 4}:

{{(Temperature, 39.1..40.8)}, {(Headache, no), (Cough, no)}, {(Cough, yes), (Headache, yes)}}.
Thus, the corresponding upper approximation of{1, 2, 3, 4} is {1, 3, 5} ∪ ({4, 5, 7} ∩ {4, 5, 6}) ∪

({1, 2, 7} ∩ {1, 2, 3, 6}) = {1, 2, 3, 4, 5}.
For the concept [(Flu, no)] = {5, 6, 7}, the algorithm returns the following local upper covering of

{5, 6, 7}:
{{(Temperature, 36.8..39.1)}, {(Temperature, 39.1..40.8), (Headache, no)}},

(the same as the local lower covering for the same concept). The corresponding upper approximation of
{5, 6, 7} is {6, 7} ∪ ({1, 3, 5} ∩ {4, 5, 7}) = {5, 6, 7}.

Furthermore,possiblerules are:

1, 2, 3
(Temperature, 39.1..40.8) –> (Flu, yes),
2, 1, 2
(Headache, no) & (Cough, no) –> (Flu, yes),
2, 2, 2
(Cough, yes) & (Headache, yes) –> (Flu, yes),
1, 2, 2
(Temperature, 36.8..39.1) –> (Flu, no),
2, 1, 1
(Temperature, 39.1..40.8) & (Headache, no) –> (Flu, no).

7. Experiments

For our experiments we used 14 data sets, summarized in Table2. All of these data sets, except
bankruptcy, are available on the Machine Learning Repository at the University of California at Irvine.
The bankruptcy data set was used by E. Altman to predict bankruptcy of companies.

Note that some of these data sets (bupa, glass, segmentationandwine) were discretized using the
agglomerative cluster analysis method [4, 5] and thehepatitisdata set was discretized using the divisive
cluster analysis method [24], both methods are implementedin the LERS data mining system. Thus,
some of these data sets may appear in both tables, 3 and 4.

Additionally, some of these data sets are incomplete (breast Slovenia, hepatitis, horse, houseandpri-
mary tumor. For incomplete data sets, the same interpretation of missing attribute values (lost) was used
in all experiments. For data sets with all missing attributevalues interpreted aslost, local approximations
are reduced to global approximations [8]. Thus, in our experiments the fact that our new algorithms are
based on local approximations was not crucial. However, there is a number of other differences between
local and global versions of MLEM2, the main is both the localversions compute local lower and upper
coverings from scratch while the lower and upper approximations are also computed as a side effect.
Also, there are other differences, e.g., in handling numerical attributes.
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For the older, global version of the MLEM2 algorithm all approximations were of the typeconcept.
In the Tables 3 and 4 error rates, computed as a result often-fold cross validation, are presented.

8. Conclusions

We conducted experiments comparing the new, local version of MLEM2 with the older, global version
of MLEM2. The local version of MLEM2 starts from a concept while in the older version of MLEM2
starts from the previously computed global lower or upper approximations of the concept. There are two
new MLEM2 algorithms, for computing certain and possible rules. There is only one older MLEM2
algorithm, if it starts from a lower approximation of the concept, it produces certain rules; if it starts
from the upper approximation of the concept, it computes possible rules. Thus, the new, local version of
MLEM2 computes rules from a raw data, which may be inconsistent, may have numerical attributes, and
may be incomplete.

Results of our experiments show that the new approach is better: we combined results presented in
both tables, 3 and 4, for every data set we selected the smallest error rate among local MLEM2 algorithm
options and the smallest error rate among the global MLEM2 algorithm options, and then we used the
Wilcoxon matched-pairs signed-ranks test. This test showsthat the new, local version of MLEM2 is
significantly better (2% significance level, two-tailed test) than the older, global version of MLEM2.
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