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Abstract.  This paper presents and compares two algorithms of
machine learning from examples, ID3 and AQ, and one recent algorithm
from the same class, called LEM2.  All three algorithms are illustrated
using the same example.  Production rules induced by these algorithms
from the well-known Small Soybean Database are presented.  Finally,
some advantages and disadvantages of these algorithms are shown.

1. Introduction

This paper presents and compares two algorithms of machine learning, ID3 and AQ, and one
recent algorithm, called LEM2.  Among current trends in machine learning: similarity-based
learning (also called empirical learning), explanation-based learning, computational learning
theory, learning through genetic algorithms and learning in neural nets, only the first will be
discussed in the paper.  All three algorithms, ID3, AQ, and LEM2 represent learning from
examples, an approach of  similarity-based learning.  In learning from examples the most
common task is to learn production rules or decision trees.  We will assume that in
algorithms ID3, AQ and LEM2 input data are represented by examples, each example
described by values of some attributes.

Let U denote the set of examples.  Any subset C of U may be considered as a concept to
be learned.  An example from C is called a positive example for C, an example from U – C is
called a negative example for C.  Customarily the concept C is represented by the same,
unique value of a variable d, called a decision.  Thus, each value w of a decision d describes
a unique concept C.

The task of learning from examples is to learn the description D of the concept C [13].
The description D learned from concept C may be expressed by a set of rules or a decision
tree.  The description D, characterizing the set C, is easier to comprehend for humans.  At the
same time, description D is usable by other computer programs, such as expert systems.
Two important properties: completeness and consistency characterize descriptions.  The first
one, completeness, is defined as follows: For any example e from concept C there exists a
description D such that D describes e.  The second one, consistency, means that for every
example e from concept C there are not two different descriptions D and D' such that both D
and D' describe e.

Algorithms, used in learning from examples, usually produce discriminant descriptions,
defined as complete and consistent, although some produce characteristic descriptions,
defined just as complete.  All algorithms, ID3, AQ, and LEM2, presented in this paper,
produce discriminant descriptions.



Many algorithms, used in learning from examples, are equipped with some ways of
generalization of their outputs.  The most common method of generalization is called
dropping conditions and is used for simplification of rules.  Say that the original production
rule is

C1 ∧  C2 ∧  ⋅⋅⋅ ∧  Cj →  A,

where C1, C2,..., Cj are conditions and A is an action.  Usually conditions are presented as

ordered pairs (a, v), where a is an attribute and v is its value, and action A is presented as an

ordered pair (d, w), where d is a decision and w is its value.  Thus (d, w) describes some

concept C.  If the production rule

C1 ∧  C2 ∧  ⋅⋅⋅ ∧  Ci–1 ∧  Ci+ 1  ∧  ⋅⋅⋅ ∧  Cj →  A,

obtained from the original rule by dropping the condition Ci, describes some examples from
the concept C and none from U – C, then it is said to be obtained by dropping condition from
the original production rule.

All three algorithms: ID3, AQ and LEM2 are general—may be used for the entire
spectrum of different real-life problems.  Though there exist incremental versions of all three
algorithms, we will focus our attention on nonincremental ones.  Thus, the entire data are
visible to the algorithms at once, as opposed to incremental algorithms, where data are seen
gradually, one example at a time.  We also will assume that input data are consistent, i.e.,
that two examples characterized the same way by all attributes belong to the same concept.
Finally, any example has a specified value for every attribute, i.e., no missing values of
attributes are considered.

2. ID3 Algorithm—Information Gain Version

The ID3 algorithm [19] is a successor of CLS algorithm [10].  Many algorithms based on
ID3 have been developed, see [5, 11, 12, 15, 16, 17, 20–28].  The main task of ID3 is
constructing a decision tree.  Nodes of the tree are labeled by attributes while arches are
labeled by values of an attribute.  Our assumption is that the set U of examples is partitioned
into at least two concepts.  The attribute that is a label of the root is selected on the basis of
the maximum of information gain criterion.  Let a be an attribute with values a1, a2,..., al and
let d be a decision with values d1, d2,..., dk.  Then the information gain I (a → d ) is equal
to H (d ) – H (d | a ), where H(d ) is the entropy of decision d,

H (d ) = – Σ
i=1

k

 p (di ) ⋅ log p (di ),

and H (d | a ) is the conditional entropy of decision d given attribute a,

H (d | a ) =  Σ
j=1

l

 p (aj ) ⋅ Η (d | aj )

= –  Σ
j=1

l

 p (aj ) ⋅ Σ
i=1

k

 p (di | aj ) ⋅ log p (di | aj ).

At this point, the corresponding decision tree, created by ID3, has the root, labeled by the
attribute a and outgoing arches from the root, each such arch corresponds to a value aj of the
attribute.  The set of all examples with the same value aj  of attribute a consists of a new set S



Table 1

Attributes Decision

Temperature Headache Nausea Flu

1 high yes no yes

2 very_high yes yes yes

3 normal no no no

4 high yes yes yes

5 high no yes no

6 normal yes no no

7 normal no yes no

Temperature

3,    6,    7 1,    4,    5 2

no,   no,   no yes,  yes,  no yes

normal high very_high

Figure 1.  Decision tree—first version

of examples.  When all members of S are members of the same concept C, they do not need
to be further partitioned, so S is a label of the leaf of the tree.  However, when S contains
examples from at least two different concepts, the node of the tree labeled by S is the root of
a new subtree.  An attribute to be a label for the root of this new subtree is selected among
remaining attributes again on the basis of the maximum of information gain criterion.

Table 1 is an example of the decision table with three attributes: Temperature, Headache,
and Nausea, seven examples, and two concepts.  The first concept is the set {1, 2, 4} of
examples that have value yes for the decision Flu, the second concept is the set {3, 5, 6, 7}
of examples that have value no for the same decision.  The entropy of the decision Flu is

H (Flu) = – 37 ⋅log 3
7  –  47 ⋅log 4

7  =  0.985.

Note that the entropy H (Flu) is computed from relative frequencies rather than from
probabilities.  The first candidate to be a label for the root of decision tree is the attribute
Temperature.  The corresponding partitioning of set U of examples is presented in Figure 1.

The conditional entropy of decision Flu given attribute Temperature is



Headache

3,    5,    7

yes,  yes,  yes,  no no,   no,   no

yes no

1,    2,    4,    6

Figure 2.  Decision tree—second version

Nausea

1,    3,    6

yes,  yes,  no,  no yes,   no,   no

yes no

2,    4,    5,    7

Figure 3.  Decision tree—third version

H (Flu | Temperature) = – 37 ⋅0 – 37 ⋅(1
3 ⋅log 1

3 + 23 ⋅log 23 ) –  17 ⋅0 = 0.394,

and the corresponding information gain is

I (Temperature  → Flu) = 0.985 – 0.394 = 0.591.

The next candidate to be a label for the root of the decision tree is attribute Headache, see
Figure 2.

In this case,

H (Flu | Headache) = – 47 ⋅(1
4 ⋅log 1

4 + 34 ⋅log 34 ) – 37 ⋅0 = 0.464,

and

I (Headache  → Flu) = 0.985 – 0.464 = 0.521.

For the remaining attribute, Nausea, the partitioning of examples is presented in Figure 3,

H (Flu | Nausea) = – 47 ⋅(1
2 ⋅log 1

2 + 12 ⋅log 12 )  – 37 ⋅(1
3 ⋅log 1

3 + 23 ⋅log 23 ) = 0.965,

and

I (Nausea  → Flu) = 0.985 – 0.965 = 0.020.

It is clear that the attribute Temperature is the best candidate to be a label for the root of



Headache

5

yes,   yes no

yes no

1,      4

Figure 4.  Decision tree—second level

Nausea

1

yes,   no yes

yes no

4,      5

Figure 5.  Decision tree—second level

the decision tree since the corresponding information gain is maximal.  As follows from
Figure 1, the next step is to find an attribute to distinguish examples from the set {1, 4, 5}
(all examples from this set are characterized by value high of attribute Temperature) since
examples 1 and 4 belong to another concept then example 5.  Remaining attributes are
Headache and Nausea.  As follows from Figures 4 and 5, attribute Headache should be
selected since the corresponding information gain is maximal. The resulting decision tree is
presented in Figure 6.

From the decision tree (see Figure 6) the following rules may be induced

(Temperature, normal) → (Flu, no),

(Temperature, high) ∧  (Headache, yes) → (Flu, yes),

(Temperature, high) ∧  (Headache, no) → (Flu, no),

(Temperature, very_high) → (Flu, yes).
From the rule

(Temperature, high) ∧  (Headache, yes) → (Flu, yes)

neither condition (Temperature, high) nor condition (Headache, yes) may be dropped.

However, from the rule

(Temperature, high) ∧  (Headache, no) → (Flu, no)



Table 2

Attribute Gain Ratio

Temperature 0.408

Headache 0.529

Nausea 0.020

Temperature

3,    6,    7 2

no,   no,   no yes

normal high very_high

Headache

5

yes,   yes no

yes no

1,      4

Figure 6.  Final decision tree

the first condition, (Temperature, high), may be dropped, the resulting rule is

(Headache, no) → (Flu, no).

3. ID3 Algorithm—Gain Ratio Version

The information gain version of ID3, listed in Section 2, builds the decision tree with some
bias—attributes with greater number of values are preferred by the algorithm.  In order to
avoid this bias, another version of ID3 [21] has been developed.  This version uses another
criterion for attribute selection, called gain ratio.  The gain ratio is defined as follows

I (a  →  d)
H (a)



Temperature

6 1,    4 2

no yes,  yes yes

normal high very_high

Figure 7. Decision tree—second level

Nausea

1,    6

yes,   yes yes,  no

yes no

2,      4

Figure 8.  Decision tree—second level

where a is an attribute and d is a decision.  The gain ratio version of ID3 is the same as the
algorithm ID3 described in Section 2 with only one change—information gain criterion is
replaced by gain ratio criterion.  Gain ratios for all attributes from Table 1 are presented in
Table 2.

The attribute Headache should be selected as the label of the root for the decision tree.
The next question is what an attribute should be selected to distinguish examples from the set
{1, 2, 4, 6}.  The subtrees, resulting from the remaining two candidates, attributes
Temperature and Nausea, are presented in Figures 7 and 8.  It is immediately clear that
attribute Temperature is the correct choice, since it partitions examples into classes with the
same values of the decision.

The final decision tree, induced by the gain ratio version of ID3, is presented in Figure 9.
From the decision tree, presented in Figure 9, the following rules may be induced

(Headache, yes) ∧  (Temperature, normal) → (Flu, no),

(Headache, yes) ∧  (Temperature, high) → (Flu, yes),

(Headache, yes) ∧  (Temperature, very_high) → (Flu, yes),

(Headache, no) → (Flu, no).

The simplified rules, after dropping conditions, are

(Temperature, normal) → (Flu, no),



Headache

3,    5,    7

no,   no,   no

yes

no

Temperature

6 1,    4 2

no yes,  yes yes

normal high very_high

Figure 9.  Final decision tree

(Headache, yes) ∧  (Temperature, high) → (Flu, yes),

(Temperature, very_high) → (Flu, yes),

(Headache, no) → (Flu, no).

4. AQ Algorithm

Another method of learning from examples, developed by R. S. Michalski and his
collaborators in the early seventies, is an algorithm called AQ.  Many versions of the
algorithm, under different names, have been developed.  The newer version is AQ15 [14].

Let us start by quoting some definitions from [14].  A seed is a member of the concept,
i.e., a positive example.  A selector is an expression that associates a variable (attribute or
decision) to a value of the variable, e.g., a negation of value, a disjunction of values, etc.  A
complex is a conjunction of selectors.  A partial star G(e | e1) is a set of all complexes
describing the seed e = (x1, x2,..., xk) and not describing a negative example e1 = (y1,
y2,..., yk).  Thus, the complexes of G(e | e1) are all selectors of the form (xi, ¬yi), where xi

≠ yi.  A star G(e | F) is constructed from all partial stars G(e | ei), for all ei ∈  F, and then by
conjuncting these partial stars by each other, using absorption law to eliminate redundancy.
For a given concept C, a cover is a disjunction of complexes describing all positive examples
from C and not describing any negative examples from F = U – C.

The main idea of the AQ algorithm is to generate a cover for each concept by computing
stars and selecting from them single complexes to the cover.

For the example from Table 1, and concept C = {1, 2, 4} described by (Flu, yes), set F



of negative examples is equal to {3, 5, 6, 7}.  A seed is any member of C, say that it is
example 1.  Then the partial star G(1 | 3) is equal to

{(Temperature, ¬normal), (Headache, yes)}.

Obviously, partial star G(1 | 3) describes negative example 5.  The partial star G(1 | 5)
equals

{(Headache, yes), (Nausea, no)}.

The conjunct of G(1 | 3) and G(1 | 5) is equal to

{(Temperature, ¬normal) ∧  (Headache, yes),

(Temperature, ¬normal) ∧  (Nausea, no),

(Headache, yes) ∧  (Headache, yes),

(Headache, yes) ∧  (Nausea, no)},

after using absorption law, this set is reduced to the following set

{(Temperature, ¬normal) ∧  (Nausea, no),

(Headache, yes)}.

The preceding set describes negative example 6. The partial star G(1 | 6) is equal to

{(Temperature, ¬normal)}.

The conjunct of the preceding two sets:

{(Temperature, ¬normal) ∧  (Nausea, no),

(Temperature, ¬normal) ∧  (Headache, yes)}

already is a star G(1 | F).  Both complexes contain two selectors.  However, the first
complex describes only one positive example 1, while the second complex describes all three
positive examples: 1, 2, and 4.  Therefore, the complex

(Temperature, ¬normal) ∧  (Headache, yes)

should be selected to be the only member of the cover of C.  The corresponding rule is

(Temperature, ¬normal) ∧  (Headache, yes) → (Flu, yes).

If rules without negation are preferred, the preceding rule may be replaced by the
following two rules

(Temperature, high) ∧  (Headache, yes) → (Flu, yes),

(Temperature, very_high) ∧  (Headache, yes) → (Flu, yes),



or, after dropping conditions,

(Temperature, high) ∧  (Headache, yes) → (Flu, yes),

(Temperature, very_high) → (Flu, yes).

The production rules for the concept {3, 5, 6, 7} may be induced by AQ in a similar
way.  Note that the AQ algorithm demands computing conjuncts of partial stars.  In the worst
case, time complexity of this computation is O(nm), where n is the number of attributes and
m is the number of examples.  The authors of AQ suggest using the parameter MAXSTAR
as a method of reducing the computational complexity.  According to this suggestion, any
set, computed by conjunction of partial stars, is reduced in size if the number of its members
is greater than MAXSTAR.  Obviously, the quality of the output of the algorithm is reduced
as well.

5. LEM2 Algorithm

The LEM2 algorithm [3] is a local algorithm, dealing with attribute-value pairs, as opposed
to global algorithms, such as ID3 or AQ, dealing with entire attributes.  Another example of a
local algorithm has been presented in [4].  The algorithm LEM2 does not need dropping
conditions for rules because it is local.  There exists a global algorithm LEM as well [6].
Both LEM and LEM2 algorithms are used as modules in the algorithm LERS for learning
from examples based on rough sets [1, 2, 7–9].  The idea of a rough set has been introduced
in [18].

The following is a summary of the main ideas of the LEM2 algorithm.  A block of an
attribute-value pair t = (a, v), denoted [t], is the set of all examples that for attribute a have
value v.  A concept, described by the value w of decision d, is denoted [(d, w)], and it is the
set of all examples that have value w for decision d.  Let C be a concept and let T be a set of
attribute-value pairs.  Concept C depends on a set T if and only if

Ø ≠ [T] = ∩
t∈ T

 [t] ⊆ C.

Set T is a minimal complex of concept C if and only if C depends on T and T is minimal.
Let  T be a nonempty collection of nonempty sets of attribute-value pairs.  Set T is a local
covering of C if and only if the following three conditions are satisfied:

(1) each member of T is a minimal complex of C,

(2) ∪
T∈ T

 [T]  = B,

and
(3) T is minimal, i.e., T has the smallest possible number of members.

For each concept C, the LEM2 algorithm induces production rules by computing a local
covering T.  Any set T, a minimal complex which is a member of T, is computed from
attribute-value pairs selected from the set T(G) of attribute-value pairs relevant with a current
goal G, i.e., pairs whose blocks have nonempty intersection with G.  The initial goal G is
equal to the concept and then it is iteratively updated by subtracting from G the set of
examples described by the set of minimal complexes computed so far.  Attribute-value pairs
from T which are selected as the most relevant, i.e., on the basis of maximum of the
cardinality of [t] ∩ G, if a tie occurs, on the basis of the smallest cardinality of [t].  The last
condition is equivalent to the maximal conditional probability of goal G given attribute-value



Table 3

t [t] ∩∩∩∩  G

(Temperature, high) {1, 4}

(Temperature, very_high) {2}

(Headache, yes) {1, 2, 4}

(Nausea, no) {1}

(Nausea, yes) {2, 4}

Table 4

t [t] ∩∩∩∩  G

(Temperature, high) {1, 4}

(Temperature, very_high) {2}

(Nausea, no) {1}

(Nausea, yes) {2, 4}

pair t.
For the example from Table 1, the blocks of all attribute-value pairs are

[(Temperature, high)] = {1, 4, 5},

[(Temperature, very_high)] = {2},

[(Temperature, normal)] = {3, 6, 7},

[(Headache, yes)] = {1, 2, 4, 6},

[(Headache, no)] = {3, 5, 7},

[(Nausea, no)] = {1, 3, 6],

[(Nausea, yes)] = {2, 4, 5, 7}.

Say that the concept C is the set {1, 2, 4}.  Initially, the goal G is equal to C.  The set
T(G) of all attribute-value pairs relevant with goal G is

{(Temperature, high), (Temperature, very_high),

(Headache, yes), (Nausea, no), (Nausea, yes)}.

As follows from Table 3, the attribute-value pairs (Headache, yes) should be selected as
the most relevant with goal G.

Furthermore, [(Headache, yes)] = {1, 2, 4, 6} /⊆  {1, 2, 4}, so (Headache, yes) is not a



Table 5

t [t] ∩∩∩∩  G

(Temperature, very_high) {2}

(Headache, yes) {2}

(Nausea, yes) {2}

minimal complex of C.  The algorithm LEM2 looks for another attribute-value pair t.
Remaining attribute-value pairs, relevant with G, are listed in Table 4.

There is a tie between (Temperature, high) and (Nausea, yes).  The attribute-value pair
(Temperature, high) is selected because |{(Temperature, high)]| = 3 and |[(Nausea, yes)]| =
4.  The first minimal complex T is equal to

{(Headache, yes), (Temperature, high)},

because [(Headache, yes)] ∩ [(Temperature, high)] = {1, 4}.
The set T describes examples {1, 4}, thus the goal G is equal to the set consisting of the

remaining example 2.  The set T(G) of all relevant attribute-value pairs is

{(Temperature, very_high), (Headache, yes), (Nausea, yes)}.

As follows from Table 5, there is a tie between all three attribute-value pairs.  The
cardinality of the block of (Temperature, very_high) is minimal, hence this pair should be
selected.  At the same time, {(Temperature, very_high)} is a minimal complex.  Thus, the
local covering of the concept C = {1, 2, 4} is the following set

{{(Headache, yes), (Temperature, high)},

{(Temperature, very_high)}}.

The corresponding production rules are

(Headache, yes) ∧  (Temperature, high) → (Flu, yes),

(Temperature, very_high) → (Flu, yes).

The production rules for the concept {3, 5, 6, 7} may be induced by LEM2 in a similar
way.

6. Production Rules Induced from the Small Soybean Database

The Small Soybean Database has been frequently used in the area of machine learning to
compare different algorithms.  The database presents soybean disease diagnosis.  It has 35
attributes a1, a2,..., a35 and 47 examples.  The following production rules have been
induced by the preceding algorithms.



ID3—Information Gain Version (without dropping conditions)

(a22, 2) → (class, D4),

(a22, 3) → (class, D2),

(a22, 0) → (class, D1),

(a22, 1) ∧  (a28, 0) → (class, D1),

(a22, 1) ∧  (a28, 3) → (class, D3).

ID3—Gain Ratio Version (without dropping conditions)

(a23, 0) ∧  (a22, 1) → (class, D3),

(a23, 0) ∧  (a22, 3) → (class, D2),

(a23, 0) ∧  (a22, 2) → (class, D4),

(a23, 1) → (class, D1).
AQ

(a23, ¬ 0) → (class, D1),

(a26, ¬ 0) → (class, D2),

(a22, ¬ 0) ∧  (a28, ¬ 0) → (class, D3),

(a12, ¬ 0) ∧  (a35, ¬ 0) → (class, D4).

LEM2

(a21, 3) → (class, D1),

(a3, 0) → (class, D2),

(a4, 0) ∧  (a22, 1) → (class, D3),

(a22, 2) → (class, D4).

7. Conclusions

This paper presents three different algorithms of machine learning from examples.  The first
algorithm, ID3, although very simple, produces decision trees instead of production rules.
Production rules must then be induced from the decision tree.  Thus the entire algorithm is
biased.  Another bias is introduced by the criterion for the choice of attributes as labels for
the decision tree.

The main advantage of the second algorithm, AQ, is that induced production rules may
easily express negation.  Thus the production rules may be simpler than the production rules
induced by other algorithms.  However, the time complexity of AQ is exponential, and with
the use of the parameter MAXSTAR the induced rules may be of poor quality.  Moreover, if
induced rules need to be converted into different format, e.g., when negation is not desired,
the quality of the new rules may further deteriorate.

Algorithm LEM2 is of polynomial time complexity and is inducing the minimal
discriminant description.  However, as with any machine learning algorithms of polynomial
complexity, there is no guarantee that the induced description is optimal, i.e., that there is no
other minimal discriminant description with the smaller number of conditions.
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