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Abstract—We present results of a novel experimental com-
parison of global and local probabilistic approximations.
Global approximations are unions of characteristic sets while
local approximations are constructed from blocks of attribute-
value pairs. Two interpretations of missing attribute values
are discussed: lost values and “do not care” conditions. Our
main objective was to compare global and local probabilistic
approximations in terms of the error rate. For our experi-
ments we used six incomplete data sets with many missing
attribute values. The best results were accomplished by global
approximations (for two data sets), by local approximations
(for one data set), and for the remaining three data sets the
experiments ended with ties. Our next objective was to check
the quality of non-standard probabilistic approximations, i.e.,
probabilistic approximations that were neither lower nor upper
approximations. For four data sets the smallest error rate was
accomplished by non-standard probabilistic approximations,
for the remaining two data sets the smallest error rate was
accomplished by upper approximations. Our final objective
was to compare two interpretations of missing attribute values.
For three data sets the best interpretation was the lost value,
for one data set it was the “do not care” condition, for the
remaining two cases there was a tie.

Keywords-Data mining, rough set theory, probabilistic ap-
proximations, parameterized approximations, MLEM2 rule
induction algorithm

I. INTRODUCTION

Rough set theory is one of the basic approaches used
in data mining. Fundamental ideas of rough set theory
are approximations of a concept (a subset of the universe
with the same decision value). Initially, lower and upper
approximations were used for complete data sets, i.e., data
sets with only specified, known attribute values.

For incomplete data sets, in which some attribute values
are missing, there exist many definitions of approximations.
Three frequently used are: singleton, subset and concept ap-
proximations [10], [11]. All three approximations are global,
in the sense that they are constructed from characteristic
sets, by analogy with approximations for complete data
sets, which are created from elementary sets (equivalence

classes of the indiscernibility relation), [19], [20]. Both
characteristic sets and elementary sets are defined using the
set of all cases.

A probabilistic approximation, associated with an addi-
tional parameter (probability) α, is a generalization of lower
and upper approximations. For α = 1, the probabilistic
approximation of the set X , a subset of the universe U , is a
lower approximation of X . For a quite small α it becomes
an upper approximation of X . Probabilistic approximations
for complete data sets were investigated for years, the idea
was introduced in [23] and studied in many papers [18], [21],
[22], [24], [25]. In these papers mostly theoretical properties
of such approximations were discussed. The first paper on
experimental validation of probabilistic approximations for
complete data sets was [1].

For incomplete data sets global approximations were
generalized to global probabilistic approximations in [12].
Results of experiments on global probabilistic approximation
on incomplete data sets were published in [1]–[5].

Additionally, in [7] global probabilistic approximations
for incomplete data were compared with probabilistic ap-
proaches to missing attribute values. The approaches in-
cluded the most common value for symbolic attributes, the
average value for numerical attributes, the concept most
common value for symbolic attributes, and the concept
average value for numerical attributes. The most common
value and average value probabilistic approaches were se-
lected since they belong to the most successful approaches
to missing attribute values [15]. It turned out that global
probabilistic approaches were better for five out of six data
sets with many missing attribute values, the same data sets
that were used for experiments described in this paper.

A new type of approximation, used for incomplete data
sets, is a local approximation, introduced in [16]. This
approximation is defined using blocks of attribute-value
pairs, smaller granules than characteristic sets. Local approx-
imations were extended to local probabilistic approximations
in [6], [14].



Table I
AN INCOMPLETE DECISION TABLE

Attributes Decision

Case Age Education Gender Hobby

1 under-21 elementary male fishing
2 ? secondary female fishing
3 21–40 * ? fishing
4 41-and-over higher male hunting
5 21–40 ? female hunting
6 ? * female jogging
7 21–40 secondary female jogging
8 under-21 elementary * jogging

In the experiments reported in this paper we distinguish
between two interpretations of missing attribute values:
lost values and “do not care” conditions. We assume that
lost values were erased and are not accessible since an
operator forgot to enter the value, etc. We induce rules
only from existing, known attribute values. “Do not care”
conditions are interpreted as a result of a refusal to answer
a question since the question is considered to be irrational,
embarrassing, etc. In this case we assume that such a missing
attribute values may be replaced by any existing, known
attribute value.

The main objective of this paper was to compare global
and local approximations in terms of the error rate, computed
as a result of ten-fold cross validation. For our experiments,
we used six incomplete data sets with as many missing
attribute values as possible, i.e., any additional incremental
replacement of known values by missing attribute values
resulted in the entire records filled with only missing at-
tribute values. Our next objective was to check the quality
of non-standard probabilistic approximations, i.e., proba-
bilistic approximations that were neither lower nor upper
approximations. Our final objective was to compare two
interpretations of missing attribute values, lost values and
“do not care” conditions.

II. CHARACTERISTIC SETS

We assume that the input data sets are presented in the
form of a decision table. An example of a decision table
is shown in Table I. Rows of the decision table represent
cases, while columns are labeled by variables. The set of
all cases is denoted by U . In Table I, U = {1, 2, 3, 4, 5, 6, 7,
8}. Some variables are called attributes while one selected
variable is called a decision and is denoted by d. The set of
all attributes will be denoted by A. In Table I, A = {Age,
Education, Gender} and d = Hobby.

An important tool to analyze data sets is a block of an
attribute-value pair. Let (a, v) be an attribute-value pair. For
complete decision tables, i.e., decision tables in which every
attribute value is specified, a block of (a, v), denoted by

[(a, v)], is the set of all cases x for which a(x) = v, where
a(x) denotes the value of the attribute a for the case x. For
incomplete decision tables the definition of a block of an
attribute-value pair is modified.
• If for an attribute a there exists a case x such that
a(x) = ?, i.e., the corresponding value is lost, then the
case x should not be included in any blocks [(a, v)] for
all values v of attribute a,

• If for an attribute a there exists a case x such that the
corresponding value is a “do not care” condition, i.e.,
a(x) = ∗, then the case x should be included in blocks
[(a, v)] for all specified values v of attribute a.

A special block of a decision-value pair is called a con-
cept. In Table I, [(Hobby, fishing)] = {1, 2, 3}. Additionally,
for Table I

[(Age, under-21)] = {1, 8},
[(Age, 21–40)] = {3, 5, 7},
[(Age, 41-and-over)] = {4},
[(Education, elementary)] = {1, 3, 6, 8},
[(Education, secondary)] = {2, 3, 6, 7},
[(Education, higher)] = {3, 4, 6},
[(Gender, female)] = {2, 5, 6, 7, 8},
[(Gender, male)] = {1, 4, 8}.
For a case x ∈ U the characteristic set KB(x) is defined

as the intersection of the sets K(x, a), for all a ∈ B, where
the set K(x, a) is defined in the following way:
• If a(x) is specified, then K(x, a) is the block

[(a, a(x))] of attribute a and its value a(x),

• If a(x) =? or a(x) = ∗ then the set K(x, a) = U.

Characteristic set KB(x) may be interpreted as the set of
cases that are indistinguishable from x using all attributes
from B and using a given interpretation of missing attribute
values. For Table I and B = A,

KA(1) = {1, 8} ∩ {1, 3, 6, 8} ∩ {1, 4, 8} = {1, 8},
KA(2) = U ∩ {2, 3, 6, 7} ∩ {2, 5, 6, 7, 8} = {2, 6, 7},
KA(3) = {3, 5, 7} ∩ U ∩ U = {3, 5, 7},
KA(4) = {4} ∩ {3, 4, 6} ∩ {1, 4, 8} = {4},
KA(5) = {3, 5, 7} ∩ U ∩ {2, 5, 6, 7, 8} = {5, 7},
KA(6) = U ∩ U ∩ {2, 5, 6, 7, 8} = {2, 5, 6, 7, 8},
KA(7) = {3, 5, 7}∩{2, 3, 6, 7∩{2, 5, 6, 7, 8} = {7}, and
KA(8) = {1, 8} ∩ {1, 3, 6, 8} ∩ U = {1, 8}.

III. GLOBAL PROBABILISTIC APPROXIMATIONS

There are three different global probabilistic approxima-
tions, called singleton, subset and concept, as discussed,
e.g., in [12]. For our experiments we used only concept
probabilistic approximations since it has been proved that
the are the best approaches among global probabilistic
approximations to handle missing attribute values [7].

A concept probabilistic approximation of the set X with
the threshold α, 0 < α ≤ 1, denoted by apprconceptα (X), is
defined as follows



∪{KB(x) | x ∈ X, Pr(X|KB(x)) ≥ α},

where Pr(X|KA(x)) =
|X∩KA(x)|
|KA(x)| is the conditional prob-

ability of X given KA(x).
For Table I, all distinct concept probabilistic approxima-

tions for [(Hobby, fishing)] = {1, 2, 3} are

apprconcept0.333 ({1, 2, 3}) = {1, 2, 3, 5, 6, 7, 8},

apprconcept0.5 ({1, 2, 3}) = {1, 8} and

apprconcept1 ({1, 2, 3}) = ∅.

Note that if, for a given set X , a global probabilistic
approximation of X , associated with β, 0 < β ≤ 1,
not listed above, it is equal to the closest global prob-
abilistic approximation of the same type with α larger
than or equal to β. For example, apprconcept0.4 ({1, 2, 3}) =
apprconcept0.5 ({1, 2, 3}) = {1, 8}. Additionally, if α is small
but greater than 0 (in our experiments such α was equal to
0.001), a probabilistic approximation is called upper [12].
For α = 1, a probabilistic approximation is called lower [12].

IV. LOCAL PROBABILISTIC APPROXIMATIONS

A set T of attribute-value pairs, where all attributes belong
to the set A of all attributes and are distinct, will be called
a complex. We will discuss only nontrivial complexes, i.e.,
such complexes that the intersection of all attribute-value
blocks from a given complex is not the empty set. A block
of the complex T , denoted by [T ], is a subset of the set U ,
defined as the set ∩{[t] | t ∈ T}.

A local probabilistic approximation of the set X with
the parameter α, 0 < α ≤ 1, denoted by apprlocalα (X), is
defined as follows

∪{[T ] | ∃ a family T of complexes T of X ,T ∈ T ,
P r(X|[T ]) ≥ α}.

For a given set X and parameter α, in general, there
exist many local probabilistic approximations. Addition-
ally, searching for all local probabilistic approximations is
a process of exponential complexity [14]. Therefore, in
our experiments we used a heuristic approach to comput-
ing another local probabilistic approximation, denoted by
apprmlem2

α (X), since it uses ideas of the MLEM2 rule in-
duction algorithm [17]. Using this approach, apprmlem2

α (X)
is constructed from the complexes T that are the most
relevant to X , i.e., with |X ∩ [T ]| as large as possible, if
there is more than one complex that satisfies this criterion,
the largest conditional probability of X given [T ] is the next
criterion to select a complex. Note that if two complexes are
equally relevant, then the second criterion selects a complex

with the smaller cardinality of [T ]. This criterion selects the
complex with the larger conditional probability of X given
T .

To be more specific, a local probabilistic approximation
apprmlem2

α (X) is defined by the following algorithm that
computes not only the approximation apprlocalα (X) but also
the corresponding rule set [14]. The rule set is represented by
the family T of complexes T , where every T corresponds to
a rule. The local probabilistic approximation apprmlem2

α (X)
is defined as ∪{[T ] | T ∈ T }.

Algorithm for determining
a single local probabilistic approximation
input: a set X (a subset of U ) and a parameter α,
output: a set T of the set X ,
begin
G := X;
D := X;
T := ∅;
J := ∅;
while G 6= ∅

begin
T := ∅;
Ts := ∅;
Tn := ∅;
T (G) := {t | [t] ∩G 6= ∅};
while (T = ∅ or [T ] 6⊆ D) and T (G) 6= ∅

begin
select a pair t = (at, vt) ∈ T (G) such that
|[t] ∩G| is maximum; if a tie occurs, select
a pair t ∈ T (G) with the smallest cardinality
of [t]; if another tie occurs, select first pair;
T := T ∪ {t};
G := [t] ∩G;
T (G) := {t | [t] ∩G 6= ∅};
if at is symbolic {let Vat be the domain of at}

then
Ts := Ts ∪ {(at, v) | v ∈ Vat}

else {at is numerical, let t = (at, u..v)}
Tn := Tn ∪ {(at, x..y) | disjoint x..y
and u..v} ∪ {(at, x..y) | x..y ⊇ u..v};

T (G) := T (G)− (Ts ∪ Tn);
end {while};
if Pr(X | [T ]) ≥ α

then
begin
D := D ∪ [T ];
T := T ∪ {T};

end {then}
else J := J ∪ {T};

G := D − ∪S∈T ∪J [S];
end {while};

for each T ∈ T do
for each numerical attribute at with (at, u..v) ∈ T do



Table II
DATA SETS USED FOR EXPERIMENTS

Data set Number of Percentage of

cases attributes concepts missing attribute values

Breast cancer 277 9 2 44.81
Echocardiogram 74 7 2 40.15
Hepatitis 155 19 2 60.27
Image segmentation 210 19 7 69.85
Lymphography 148 18 4 69.89
Wine recognition 178 13 3 64.65

while (T contains at least two different
pairs (at, u..v) and (at, x..y) with
the same numerical attribute at)

replace these two pairs with a new pair
(at, common part of (u..v) and (x..y));

for each t ∈ T do
if [T − {t}] ⊆ D then T := T − {t};

for each T ∈ T do
if ∪S∈(T −{T})[S] = ∪S∈T [S] then T := T − {T};

end {procedure}.

For Table I, all distinct local probabilistic approximations
of the type apprmlem2

α (X), for [(Hobby, fishing)] = {1, 2,
3}, are

apprmlem2
1 ({1, 2, 3}) = ∅,

apprmlem2
0.5 ({1, 2, 3}) = {1, 3, 7, 8},

apprmlem2
0.333 ({1, 2, 3}) = {1, 2, 3, 6, 7, 8},

V. EXPERIMENTS

For our experiments we used six real-life data sets that are
available on the University of California at Irvine Machine
learning Repository, see Table II. For every data set a set of
templates was created. Templates were formed by replac-
ing incrementally (with 5% increment) existing specified
attribute values by lost values. Thus, we started each series
of experiments with no lost values, then we added 5% of
lost values, then we added additional 5% of lost values,
etc., until at least one entire row of the data sets was full
of lost values. Then three attempts were made to change
configuration of new lost values and either a new data set
with extra 5% of lost values were created or the process was
terminated. Additionally, the same formed templates were
edited for further experiments by replacing question marks,
representing lost values by “*”s, representing “do not care”
conditions.

For any data set there was some maximum for the
percentage of missing attribute values. For example, for the
Breast cancer data set, it was 44.81%.
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Figure 1. Results of experiments with Breast cancerdata set

Rule sets were induced from data sets with many miss-
ing attribute values using two different algorithms, based
on global and local probabilistic approximations. For rule
induction using global probabilistic approximations we used
the methodology explained in [12], [13]. Using this ap-
proach, rule sets were induced from modified data sets.
For a given data set, for any concept, a modified data
set was constructed in which for all cases from a global
concept approximation of the concept the decision values
were the same as in the original data set. For all remaining
cases the decision values were special (non-existing in the
original data set). Only rules indicating concept were saved,
all remaining rules, with special values on the right-hand
side, were deleted. A union of such rule sets was the final
rule set. For rule induction we used the Modified Learning
from Examples Module version 2 (MLEM2) rule induction
algorithm, a component of the Learning from Examples
based on Rough Sets (LERS) data mining system [8], [9].

An algorithm for rule induction using local probabilistic
approximations was explained in Section IV.

Results of ten-fold cross validation are presented in Fig-
ures 1–6. In these figures the global concept probabilistic
approximation is denoted by “Concept”. In the same figures,
local probabilistic approximations are denoted by “Local”.
Additionally, both methods may be applied to data sets with
lost values, denoted by “?” and by “do not care” conditions
denoted by “*”.

VI. CONCLUSIONS

Our main objective was to compare global and local prob-
abilistic approximations in mining data with many missing
attribute values. In two cases (hepatitis and lymphography
data sets) the best results were accomplished by global
approach, in one case the winner was a local approach
(echocardiogram data set), in remaining three cases there
was a tie.
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Figure 2. Results of experiments with Echocardiogram data set
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Figure 3. Results of experiments with Hepatitis data set
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Figure 4. Results of experiments with Image Segmentation data set
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Figure 5. Results of experiments with Lymphography data set
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Figure 6. Results of experiments with Wine recognition data set

In our experiments, for four data sets the best results
(the smallest error rate) were accomplished by non-standard
probabilistic approximations, i.e., probabilistic approxima-
tions that were neither lower nor upper approximations. In
two cases (echocardiogram and image segmentation data
sets) the same results could be accomplished by upper
approximations. An error rate may increase for some prob-
abilistic approximations different from lower and upper ap-
proximations. For example, for lymphography data set with
lost values, for the global approach the error rate was 39.19%
for lower approximation, 43.92% for upper approximation,
and 47.97% for the probabilistic approximation with α =
0.3.

The next problem was what the better interpretation of
missing attribute values is: lost values or “do not care”
conditions. In three cases (echocardiogram, hepatitis and
lymphography data sets) the best approach was a lost value
interpretation, in one case (wine recognition data set) it was



a “do not care” condition, in remaining two cases there was
a tie.

Data sets with many “do not care” conditions and α close
to 1 may cause the error rate for lower approximation to
increase up to 100% due to so large characteristic sets that
the corresponding probabilistic approximations are empty.

For a given data set, choice for the interpretation of the
missing attribute value type and the approximation type
should be selected individually.
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