
Experiments on Probabilistic Approximations

Patrick G. Clark ∗, Jerzy W. Grzymala-Busse ∗†
∗ Department of Electrical Engineering and Computer Science

University of Kansas
Lawrence, KS 66045, USA

† Institute of Computer Science
Polish Academy of Sciences

01-237 Warsaw, Poland
E-mail: pclark@ku.edu, jerzy@ku.edu

Abstract—Recently much attention has been paid to prob-
abilistic (parameterized) approximations that are generaliza-
tions of ordinary lower and upper approximations known from
rough set theory. The first objective of this paper is to compare
the quality of such approximations and ordinary, lower and
upper approximations. The second objective is to show that
the number of distinct probabilistic approximations is quite
limited. In our experiments we used six real-life data sets.
Obviously, inconsistent data sets are required for such experi-
ments, so the level of consistency in all data sets used for our
experiments was decreased to enhance our experiments. Our
main result is rather pessimistic: probabilistic approximations,
different from ordinary lower or upper approximations, were
better than ordinary approximations for only two out of these
six data sets.
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I. INTRODUCTION

Recently much attention has been paid to probabilistic ap-
proximations, also known as parameterized approximations.
Probabilistic approximations are generalizations of ordinary
lower and upper approximations, which are fundamental
concepts of rough set theory. Usually, two definitions of
probabilistic approximations are considered, lower and up-
per, depending on two parameters, α and β, respectively.
Since we are interested in all distinct probabilistic approxi-
mations, it is sufficient to use one parameter, denoted by α.
If the parameter α is a positive number close to zero, the
probabilistic approximation becomes the ordinary possible
approximation, known from the standard rough set theory.
On the other hand, if the parameter α is equal to one, the
probabilistic approximation is identical with the ordinary
lower approximation.

A basic question is whether probabilistic approximations
are more valuable than ordinary approximations. More
precisely, what is the estimate of the error rate for rule
sets induced using probabilistic approximations from real-
life data sets? Thus, the main objective of our research
was to test whether probabilistic approximations, different

Table I
A DECISION TABLE

Attributes Decision

Case Temperature Headache Cough Flu

1 high yes no no
2 high no yes no
3 normal no no no
4 normal no no no
5 high yes no yes
6 high yes no yes
7 high no yes yes
8 high no no maybe
9 high no no maybe

from lower and upper approximations are truly better than
standard lower and upper approximations.

For a given data set the number of distinct probabilistic
approximations is quite limited. In this paper we report the
exact number of distinct probabilistic approximations for six
real-life data sets.

II. INDISCERNIBILITY RELATION

We assume that the input data sets are presented in the
form of a decision table. An example of a decision table
is shown in Table I. Rows of the decision table represent
cases, while columns are labeled by variables. The set of
all cases will be denoted by U . In Table I, U = {1, 2, 3,
4, 5, 6, 7, 8, 9}. Independent variables are called attributes
and a dependent variable is called a decision and is denoted
by d. The set of all attributes will be denoted by A. In Table
I, A = {Temperature, Headache, Cough}. The value for a
case x and an attribute a will be denoted by a(x).

One of the most important ideas of rough set theory [1],
[2] is an indiscernibility relation. Let B be a nonempty
subset of A. The indiscernibility relation R(B) is a relation
on U defined for x, y ∈ U as follows:

(x, y) ∈ R(B) if and only if ∀a ∈ B (a(x) = a(y)).
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The indiscernibility relation R(B) is an equivalence relation.
Equivalence classes of R(B) are called elementary sets of
B and are denoted by [x]B . For Table I, all elementary sets
of A are {1, 5, 6}, {2, 7}, {3, 4} and {8, 9}. A subset of
U is called A-definable if it is a union of elementary sets.

The set X of all cases defined by the same value of
the decision d is called a concept. For example, a concept
associated with the value no of the decision Flu is the
set {1, 2, 3, 4}. This concept is not A-definable. The
largest B-definable set contained in X is called the B-lower
approximation of X , denoted by appr

B
(X), and defined as

follows
∪{[x]B | [x]B ⊆ X}

while the smallest B-definable set containing X , denoted by
apprB(X) is called the B-upper approximation of X , and
is defined as follows

∪{[x]B | [x]B ∩X �= ∅}.
For a variable a and its value v, (a, v) is called a

variable-value pair. A block of (a, v), denoted by [(a, v)],
is the set {x ∈ U | a(x) = v} [3]. For Table I, there
are three concepts: the blocks [(Flu, no)] = {1, 2, 3, 4},
[(Flu, yes)] = {5, 6, 7}, and [(Flu, maybe)] = {8, 9}. A-
approximations of the concept {1, 2, 3, 4} are:

appr
A
([(Flu, no)]) = {3, 4},

apprA([(Flu, no)]) = {1, 2, 3, 4, 5, 6, 7}.

III. PROBABILISTIC APPROXIMATIONS

In this paper we will assume that a data set is described
by an indiscernibility relation R(A) which is an equivalence
relation. Additionally, we will denote the A-elementary set
[x]A by [x].

A generalization of ordinary lower and upper approxima-
tions, based on probability theory was introduced in [4] and
then studied in many papers [5]–[14]. Such approximations
are called probabilistic or parameterized.

In the variable precision asymmetric rough set model, see,
e.g., [8], [14], probabilistic lower and upper approximations
of the set X ⊆ U are defined using the prior probability
P (X), a conditional probability P (X | [x]), and two param-
eters, denoted by α and β, where 1 ≥ α > P (X) > β ≥ 0.
The lower probabilistic approximation of X (also called a
positive region of X) is defined by

appr
α
(X) = ∪{[x] | x ∈ U, P (X | [x]) ≥ α}

and the boundary region of X (the difference between
the upper and lower probabilistic approximations of X) is
defined by

BNDα,β(X) = ∪{[x] | x ∈ U, β < P (X | [x]) < α}.

Table II
CONDITIONAL PROBABILITIES

[x] {1, 5, 6} {2, 7} {3, 4} {8, 9}
P ({1, 2, 3, 4} | [x]) 0.333 0.5 1.0 0

Hence the upper approximation of X , defined as a union
of the lower approximation of X and the boundary region
of X , is, in turn, defined by

apprβ = ∪{[x] | x ∈ U, P (X | [x]) > β}.
Similar definitions of probabilistic approximations were

studied in [11].
In this paper we are exploring all probabilistic approx-

imations that can be defined for a given concept X . Our
probabilistic approximation is defined as follows

apprα(X) = ∪{[x] | x ∈ U, P (X | [x]) ≥ α},
where 1 ≥ α > 0. We excluded the case of α = 0 since then
apprα(X) = U for any X . Since we consider all possible
values of α, our definition of apprα(X) covers both lower
and upper probabilistic approximations.

Thus we need only one parameter α (for a similar ap-
proach to probabilistic approximations see [15]). Note that if
α = 1, the probabilistic approximation becomes the standard
lower approximation and if α is small, close to 0, the same
definition describes the standard upper approximation.

For Table I and the concept X = [(Flu, no)] = {1, 2, 3, 4},
for any elementary set [x], x ∈ U , conditional probabilities
P (X |[x]) are presented in Table II.

Thus, for the concept {1, 2, 3, 4} we may define only
three distinct probabilistic approximations:
appr0.333({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 6, 7},
appr0.5({1, 2, 3, 4}) = {2, 3, 4, 7},
appr1.0({1, 2, 3, 4}) = {3, 4}.

Note that there are only three distinct probabilistic ap-
proximations for the concept [(Flu, yes)] as well (the third
one is a lower approximation of the set [(Flu, yes)], equal to
the empty set). For the remaining concept, [(Flu, maybe)],
there exists only one probabilistic approximation (equal to
the lower and upper approximation of this concept and equal
to {8, 9}.

In this paper, for the first time, the results of experiments
on probabilistic approximations are presented. This paper is
a continuation of research presented in [16], where certain,
boundary, and possible rule sets were compared. However,
the main focus of [16] was to compare these three types
of rules, especially to study usefulness of boundary rules,
for α ≥ 0.6. Since the conclusion of [16] was that the
boundary rules are the worst among the three type of
rules, we no longer study this type of rules. In [15] we
also compared performance of ordinary lower and upper
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Table III
A DECISION TABLE

Attributes Decision

Case Temperature Headache Cough Flu

1 high yes no SPECIAL
2 high no yes no
3 normal no no no
4 normal no no no
5 high yes no SPECIAL
6 high yes no SPECIAL
7 high no yes yes
8 high no no SPECIAL
9 high no no SPECIAL

approximations with probabilistic approximations, however,
with two different systems classifying testing cases: for
probabilistic approximations the partial matching factor [17]
was set to one. In experiments presented in this paper
the system classifying testing cases was the same for all
approximations. Additionally, we explore all possible values
of the parameter α.

IV. RULE INDUCTION WITH LERS

The LERS (Learning from Examples based on Rough
Sets) data mining system [3], [18] starts from computing
lower and upper approximations for every concept and then
it induces rules using the MLEM2 (Modified Learning from
Examples Module version 2) rule induction algorithm. Rules
induced from lower and upper approximations are called
certain and possible, respectively [19].

MLEM2 explores the search space of attribute-value pairs.
Its input data set is a lower or upper approximation of a
concept. In general, MLEM2 computes a local covering and
then converts it into a rule set [18].

In order to induce probabilistic rules we have to modify
input data sets. For every probabilistic approximation of the
concept X = [(d, w)], the corresponding region will be
unchanged (every entry will be the same as in the original
data set). For all remaining cases, the decision value will be
set to a special value, not listed in any attribute domain in the
original data set, e.g., let us use the value SPECIAL. Then
we will induce a possible rule set [3] using the MLEM2 rule
induction algorithm. From the induced rule set, only rules
with (d, w) on the right hand side will survive, all remaining
rules (for other values of d and for values SPECIAL) should
be deleted. The final rule set is a union of all rule sets
computed this way separately for all values of d.

For example, if we want to induce probabilistic rules with
α = 0.5 and X = [(Flu, no)] = {1, 2, 3, 4} for the data set
presented on Table I we should construct the decision table
presented as Table III.

Table IV
DATA SETS USED FOR EXPERIMENTS

Data set Number of Consistency

cases attributes concepts

Glass 214 9 6 55.14
Hepatitis 155 19 2 65.81
Iris 150 4 3 56.0
Postoperative patient 90 8 3 84.44
Primary tumor 339 17 21 72.27
Wine recognition 178 13 3 61.80
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Figure 1. Results of experiments with Iris data set

From Table III, the MLEM2 rule induction algorithm
induced the following possible rules with (Flu, no) on right
hand side:

1, 2, 2
(Temperature, normal)→ (Flu, no),
1, 1, 2
(Cough, yes)→ (Flu, no).

Rules for remaining two concepts must be computed
separately. Rules are presented in the LERS format, every
rule is associated with three numbers: the total number of
attribute-value pairs on the left-hand side of the rule, the
total number of cases correctly classified by the rule during
training, and the total number of training cases matching the
left-hand side of the rule, i.e., the rule domain size.

V. EXPERIMENTS

For our experiments we used six real-life data sets that are
available on the University of California at Irvine Machine
learning Repository. These data sets were enhanced by
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Figure 2. Results of single experiments with five remaining data sets

reducing consistency (the percentage of cases not involved
in any conflicts), see Table IV.

The main objective of our research was to test whether
probabilistic approximations, different from lower and up-
per approximations, are truly better than lower and upper
approximations. To accomplish this objective, we conducted
experiments of a single ten-fold cross validation increasing
the parameter α, with increments equal to 0.1, from 0 to 1.0.
For a given data sets, in all of these eleven experiments we
used identical ten pairs of larger (90%) and smaller (10%)
data sets. If during such a sequence of eleven experiments,
the error rate was smaller than the minimum of the error
rates for lower and upper approximations or larger than max-
imum of the error rated for lower and upper approximations,
we selected more precise values of the parameter α, to make
sure that we are reaching an extremum (for example, for the
glass data set, we concluded that the largest error rate is
associated with the parameter α = 0.78). Additionally, for a
value suspected to be an extremum, we conducted additional
30 experiments of ten-fold cross validation. We compared
averages and the standard deviations, using the standard
statistical test for the difference between two averages (two-
tailed test with 5% of significance level).

We conducted extensive experiments for the iris data set
to compare the error rate, a result of a single experiment
of the ten-fold cross validation, using the same sampling
for every experiment, with the error rate computed as an
average of 30 experiments of ten-fold cross validation, where
sampling was different for all experiments of ten-fold cross
validation. As follows from our experiments, presented on
Figure 1, a single experiment of ten-fold cross validation
is a sufficient indicator of reaching an extremum associated
with the average of 30 experiments. Therefore, in remaining
experiments, for every value of the parameter α we used only

Table V
IRIS DATA SET

α Error rate Standard deviation

0.001 23.94 1.2022
0.05 23.01 0.9928
0.1 12.92 2.5101
0.2 9.95 0.3666
0.3 8.43 0.9114
0.4 7.70 0.4461
0.5 7.70 0.1637
0.6 7.66 0.2230
0.7 8.28 0.7779
0.8 10.02 0.3686
0.9 10.66 1.6050
0.95 22.63 1.4957
1 24.82 0.5007

a single experiment of ten-fold cross validation. However, a
suspected extremum was tested using 30 experiments of ten-
fold cross validation.

For the iris data set, as follows from Table V, we conclude
that the difference is statistically significant and the upper
approximation is better if we apply the standard statistical
test for the difference between two averages (two tails and
the significance level of 5%) for the upper approximation
(the parameter α = 0.001) and the lower approximation
(the parameter α = 1). Additionally, for any value of the
parameter α equal to 0.1, 0.2,..., 0.9, and for the upper
approximation, the same test indicates that the difference is
statistically significant—the upper approximation is worse.
In the rest of the paper, whenever we quote this statistical
test, it will be always two two-tail test with the significance
level of 5%.

For the glass data set, the best approximation is upper
(the parameter α = 0.001). With increase of the parameter
α, the error rate increases, up to α = 0.78, where the error
rate is the largest. For the parameter α = 0.78, the average
error rate of 30 experiments of ten-fold cross validation is
38.79%, while the error rate for 30 experiments of ten-fold
cross validation for the parameter α = 0.001 is 37.85%,
with the standard deviations equal to 1.9711 and 1.802,
respectively. Thus, using the same standard statistical test
for the difference between two averages we conclude that
the difference between these two averages is significant, or,
in different words, the probabilistic approximation for the
parameter α = 0.78 is worse than the upper approximation.

For the hepatitis data set there are two promising values
of the parameter α for which we may expect smaller error
rates: 0.25 and 0.6. The average error rates and the standard
deviations for 30 experiments of ten-fold cross validation
are shown in Table VI.

It is not difficult to check that the differences between
the averages for the upper approximation (the parameter α
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Table VI
HEPATITIS DATA SET

α Error rate Standard deviation

0.001 17.18 1.5937
0.25 17.05 1.5029
0.6 16.84 1.5468
1.0 17.53 1.4184

= 0.001) and the probabilistic approximations for α = 0.25,
0.6, and the lower approximation (α = 1) are not significant.
So, as in the glass data set, it is sufficient to consider only
upper approximations and induce possible rule sets. We are
not going to gain anything from considering probabilistic
approximations different from the upper approximation.

For the postoperative patient data set a possible minimum
of the error rate (Figure 2) is associated with the parameter
α = 0.6. The corresponding error rate, a result of 30
experiments of ten-fold cross validation, is 38.63%, with
the standard deviation = 2.5384. However, the error rate for
the parameter α = 1 is 37.19% with the standard deviation =
2.6541, the difference is significant, and the lower approxi-
mation is better than the probabilistic approximation for the
parameter α = 0.6. Moreover, for the upper approximation,
the parameter α = 0.001, the error rate, a result of 30
experiments of ten-fold cross validation, is 39.63% with the
standard deviation = 2.4121, so we may conclude that the
difference between the lower approximation and the upper
approximation is significant. Thus, for the postoperative
patient data set, the lower approximation is the best option
overall. It is the only data set among the six data sets for
which the lower approximation is the best. On the other
hand, any probabilistic approximation different from the
lower approximation provides not better results.

For the primary tumor data set the error rate grows
monotonically, with the increase of the parameter α = 0.001
to the parameter α = 1, so it is clear that we are not going
to gain anything from using a probabilistic approximations
that is different from the upper approximation.

The wine recognition data set is another example of the
data set for which there exists a probabilistic approximation
different from lower and upper approximations that is better
than both lower and upper approximations. Namely, the error
rate for the parameter α = 0.4, a result of 30 experiments
of ten-fold cross validation, is 8.5%, with the standard
deviation = 0.9978, while the error rate for the parameter
α = 0.001 is 9.94% with the standard deviation = 1.0857,
so the difference between the averages is significant.

Our secondary objective was to test how many different
probabilistic approximations there exist for a given concept
of the real-life data set. Results are listed in Tables VII-XII.

Table VII
GLASS DATA SET

Concept Number of distinct
probabilistic approximations

Glass-Type, 1 7
Glass-Type, 2 7
Glass-Type, 3 7

Table VIII
HEPATITIS DATA SET

Concept Number of distinct
probabilistic approximations

Class, 1 5
Class, 2 5

VI. CONCLUSION

The main objective of our research was to test whether
probabilistic approximations, different from lower and up-
per approximations, are truly better than lower and upper
approximations. As follows from our experiments, proba-
bilistic approximations other than lower and upper approxi-
mations are better in two out of six real-life data sets.

However, for the iris data set there exists an entire spec-
trum of probabilistic approximations, different from lower
and upper approximations, all of them better than either
lower or upper approximations, and the difference in perfor-
mance is spectacular. Thus, for some data sets we may gain
a lot in performance by using probabilistic approximations
different from lower and upper approximations.

Our secondary objective was to test how many different
probabilistic approximations there exist for a given concept
of the real-life data set. It turned out that such a number

Table IX
IRIS DATA SET

Concept Number of distinct
probabilistic approximations

Class, Iris-setosa 2
Class, Iris-versicolor 6
Class, Iris-viginica 5

Table X
POSTOPERATIVE PATIENT DATA SET

Concept Number of distinct
probabilistic approximations

ADM-DEC, A 3
ADM-DEC, I 1
ADM-DEC, S 3

148



Table XI
PRIMARY TUMOR DATA SET

Concept Number of distinct
probabilistic approximations

Class, 1 5
Class, 2 3
Class, 3 3
Class, 4 2
Class, 5 5
Class, 6 2
Class, 7 5
Class, 8 2
Class, 9 −
Class, 10 1
Class, 11 5
Class, 12 6
Class, 13 3
Class, 14 4
Class, 15 1
Class, 16 1
Class, 17 3
Class, 18 6
Class, 19 2
Class, 20 1
Class, 21 1
Class, 22 2

Table XII
WINE RECOGNITION DATA SET

Concept Number of distinct
probabilistic approximations

Class, 1 2
Class, 2 6
Class, 3 5

is not large. For some cases this number was equal to
the smallest possible, equal to one, meaning that only one
probabilistic approximation exists.
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