
Chapter 1

RULE INDUCTION

Jerzy W. Grzymala-Busse
University of Kansas

Abstract This chapter begins with a brief discussion of some problems associated
with input data. Then different rule types are defined. Three represen-
tative rule induction methods: LEM1, LEM2, and AQ are presented.
An idea of a classification system, where rule sets are utilized to classify
new cases, is introduced. Methods to evaluate an error rate associated
with classification of unseen cases using the rule set are described. Fi-
nally, some more advanced methods are listed.

Keywords: Rule induction algorithms LEM1, LEM2, and AQ; LERS data mining
system, LERS classification system, rule set types, discriminant rule
sets, validation.

1. Introduction
Rule induction is one of the most important techniques of machine

learning. Since regularities hidden in data are frequently expressed in
terms of rules, rule induction is one of the fundamental tools of data
mining at the same time. Usually rules are expressions of the form

if (attribute − 1, value − 1) and (attribute − 2, value − 2) and · · ·
and (attribute − n, value − n) then (decision, value).

Some rule induction systems induce more complex rules, in which
values of attributes may be expressed by negation of some values or by
a value subset of the attribute domain.

Data from which rules are induced are usually presented in a form sim-
ilar to a table in which cases (or examples) are labels (or names) for rows
and variables are labeled as attributes and a decision. We will restrict

2

our attention to rule induction which belongs to supervised learning :
all cases are preclassified by an expert. In different words, the decision
value is assigned by an expert to each case. Attributes are independent
variables and the decision is a dependent variable. A very simple ex-
ample of such a table is presented as Table 1.1, in which attributes are:
Temperature, Headache, Weakness, Nausea, and the decision is Flu. The
set of all cases labeled by the same decision value is called a concept. For
Table 1.1, case set {1, 2, 4, 5} is a concept of all cases affected by flu
(for each case from this set the corresponding value of Flu is yes).

Table 1.1. An Example of a Dataset.

Case Attributes Decision
Temperature Headache Weakness Nausea Flu

1 very high yes yes no yes
2 high yes no yes yes
3 normal no no no no
4 normal yes yes yes yes
5 high no yes no yes
6 high no no no no
7 normal no yes no no

Note that input data may be affected by errors. An example of such
a data set is presented in Table 1.2. The case 7 has value 42.5 for
Weakness, an obvious error, since the attribute Weakness is symbolic,
with possible values yes and no. Such errors must be corrected before
rule induction.

Table 1.2. An Example of an Erroneous Dataset

Case Attributes Decision
Temperature Headache Weakness Nausea Flu

1 very high yes yes no yes
2 high yes no yes yes
3 normal no no no no
4 normal yes yes yes yes
5 high no yes no yes
6 high no no no no
7 normal no 42.5 no no

Another problem is caused by numerical attributes, for example, Tem-
perature may be represented by real numbers, as in Table 1.3.

Rule Induction 3

Obviously, numerical attributes must be converted into symbolic at-
tributes before or during rule induction. The process of converting nu-
merical attributes into symbolic attributes is called discretization (or
quantization).

Table 1.3. An Example of a Dataset with a Numerical Attribute.

Case Attributes Decision
Temperature Headache Weakness Nausea Flu

1 41.6 yes yes no yes
2 39.8 yes no yes yes
3 36.8 no no no no
4 37.0 yes yes yes yes
5 38.8 no yes no yes
6 40.2 no no no no
7 36.6 no yes no no

Input data may be incomplete, i.e., some attributes may have missing
attribute values, as in Table 1.4, where ? denotes lack of the attribute
value (for example, the original value was not recorded or was erased).

Table 1.4. An Example of a Dataset with Missing Attribute Values.

Case Attributes Decision
Temperature Headache Weakness Nausea Flu

1 very high yes yes no yes
2 ? yes no yes yes
3 normal no ? no no
4 normal ? yes yes yes
5 high no yes no yes
6 high no no no no
7 normal no yes no no

Additionally, input data may be inconsistent, i.e., some cases may
conflict with each other. Conflicting cases have the same attribute values
yet different decision values. An example of an inconsistent data set is
presented in Table 1.5. Cases 7 and 8 are conflicting.

In Section 2 a brief discussion of different rule types is presented. In
the next section a few representative rule induction algorithms are dis-
cussed. Section 4 presents the main application of rule sets, classification
systems, which are used to classify new cases on the basis of induced rule
sets.

4

Table 1.5. An Example of an Inconsistent Dataset

Case Attributes Decision
Temperature Headache Weakness Nausea Flu

1 very high yes yes no yes
2 high yes no yes yes
3 normal no no no no
4 normal yes yes yes yes
5 high no yes no yes
6 high no no no no
7 normal no yes no no
8 normal no yes no yes

2. Types of Rules
A case x is covered by a rule r if and only if every condition (attribute-

value pair) of r is satisfied by the corresponding attribute value for x.
The concept C defined by the right hand side of rule r is indicated by
r. We say that a concept C is completely covered by a rule set R if and
only if for every case x from C there exists a rule r from R such that r
covers x. A rule set R is complete if and only if every concept from the
data set is completely covered by R.

A rule r is consistent (with the data set) if and only if for every case
x covered by r, x is a member of the concept C indicated by r. A rule
set R is consistent if and only if every rule from R is consistent with the
data set.

For example, case 1 from Table 1.1 is covered by the following rule r:

(Headache, yes) → (Flu, yes).

The rule r indicates concept {1, 2, 4, 5}. Additionally, the concept
{1, 2, 4, 5} is not completely covered by a rule set consisting of r, since
r covers only cases 1, 2, and 4, but the rule r is consistent with the data
set from Table 1.1.

On the other hand, the single rule

(Headache, no) → (Flu, no)

completely covers the concept {3, 6, 7} in Table 1.1, though this rule is
not consistent. The above rule covers cases 3, 5, 6, and 7.

Any of the following two rules:

(Headache, yes) & (Weakness, yes) → (Flu, yes)

Rule Induction 5

and

(Temperature, high) & (Headache, yes) → (Flu, yes)

is consistent with the data set from Table 1.1, but the concept {1, 2, 4,
5} is not completely covered by the rule set consisting of the above two
rules since case 5 is not covered by any rule. The first rule covers cases
1 and 4, the second rule covers case 2.

The most frequent task of rule induction is to induce a rule set R
that is consistent and complete. Such a rule set R is called discriminant
[Michalski, 1983]. For Table 1.1, the rule set consisting of the following
four rules:

(Headache, yes) → (Flu, yes),

(Temperature, high) & (Weakness, yes) → (Flu, yes),

(Temperature, normal) & (Headache, no) → (Flu, no),

(Headache, no) & (Weakness, no) → (Flu, no).

is discriminant.
There are many other types of rules that are used. For example,

some rule induction systems induce rule sets consisting of strong rules,
i.e., rule sets in which every rule covers many cases. Another task is to
induce associative rules, in which in both sides of a rule, left and right,
involved variables are attributes. For Table 1.1, an example of such an
associative rule is

(Nausea, yes) → (Headache, yes).

3. Rule Induction Algorithms
In this section we will assume that input data sets are free of er-

rors, numerical attributes were already discretized, no missing attribute
values are present in the input data sets, and that input data sets are
consistent.

In general, rule induction algorithms may be categorized as global and
local. In global rule induction algorithms the search space is the set of
all attribute values, while in local rule induction algorithms the search
space is the set of attribute-value pairs.

There exist many rule induction algorithms, we will discuss only three
representative algorithms, all inducing discriminant rule sets. The first is
an example of a global rule induction algorithm called LEM1 (Learning
from Examples Module version 1).

6

3.1 LEM1 Algorithm
The algorithm LEM1, a component of the data mining system LERS

(Learning from Examples using Rough Sets), is based on some rough set
definitions [Pawlak, 1982], [Pawlak, 1991], [Pawlak et al., 1995]. Let B
be a nonempty subset of the set A of all attributes. Let U denote the
set of all cases. The indiscernibility relation IND(B) is a relation on U
defined for x, y ∈ U by (x, y) ∈ IND(B) if and only if for both x and y
the values for all attributes from B are identical.

The indiscernibility relation IND(B) is an equivalence relation. Equiv-
alence classes of IND(B) are called elementary sets of B. For example,
for Table 1.1, and B = {Temperature, Headache}, elementary sets of
IND(B) are {1}, {2}, {3, 7}, {4}, {5, 6}.

The family of all B-elementary sets will be denoted B∗, for example,
in Table 1.1,

{Temperature,Headache}∗ = {{1}, {2}, {3, 7}, {4}, {5, 6}}.

For a decision d we say that {d} depends on B if and only if B∗ ≤ {d}∗.
A global covering (or relative reduct) of {d} is a subset B of A such that
{d} depends on B and B is minimal in A. Thus, global coverings of {d}
are computed by comparing partitions B∗ with {d}∗. The algorithm to
compute a single global covering is presented below.

Algorithm to compute a single global covering
(input: the set Aof all attributes, partition {d}∗ on U ;
output: a single global covering R);
begin
compute partition A∗;
P : = A;
R := ∅;

if A∗ ≤ {d}∗
then

begin
for each attribute a in A do

begin
Q := P − {a};
compute partition Q∗;
if Q∗ ≤ {d}∗ then P := Q

end {for}
R := P

end {then}
end {algorithm}.

Rule Induction 7

On the basis of a global covering rules are computed using the dropping
conditions technique [Michalski, 1983]. For a rule of the form

C1 & C2 & ... & Cn → D

dropping conditions means scanning the list of all conditions, from the
left to the right, with an attempt to drop any condition, checking against
the decision table where the simplified rule does not violate consistency
of the discriminant description.

For Table 1.1,

{Temperature, Headache, Weakness, Nausea}∗ =
{{1}, {2}, {3}, {4}, {5}, {6}, {7}},

{Flu}∗ = {{1, 2, 4, 5}, {3, 6, 7}},

and

{Temperature, Headache, Weakness, Nausea}∗ ≤ {Flu}∗.

Next we need to check whether

{Headache, Weakness, Nausea}∗ ≤ {Flu}∗.

This condition is false since

{Headache, Weakness, Nausea}∗ =
{{1}, {2}, {3, 6}, {4}, {5, 7}}.

Then we compute

{Temperature, Weakness, Nausea}∗ =
{{1}, {2}, {3}, {4}, {5}, {6}, {7}},

We observe that

{Temperature, Weakness, Nausea}∗ ≤ {Flu}∗.

The next partition to compute is

{Temperature, Nausea}∗,

8

equal to

{{1}, {2}, {3, 7}, {4}, {5, 6}},

and

{Temperature, Nausea}∗ 6≤ {Flu}∗.

The last step is to compute

{Temperature, Weakness}∗,

equal to

{{1}, {2, 6}, {3}, {4, 7}, {5}},

since

{Temperature, Weakness}∗ 6≤ {Flu}∗,

the total covering is

{Temperature, Weakness, Nausea}.

The first case from Table 1.1 implies the following preliminary rule

(Temperature, very high) & (Weakness, yes) & (Nausea, no)
→ (Flu, yes)

The above rule covers only the first case. The first condition,

(Temperature, very high),

cannot be dropped since the rule

(Weakness, yes) & (Nausea, no) → (Flu, yes)

covers cases 1 and 7 from different concepts. However, an attempt to
drop the next condition, (Weakness, yes) is successful since the rule

(Temperature, very high) & (Nausea, no) → (Flu, yes)

covers only case 1. The next possibility, to drop the last condition
(Weakness, yes) is successful as well, since the resulting rule

(Temperature, very high) → (Flu, yes)

Rule Induction 9

covers only case 1.
In a similar way the remaining rules are induced. The final rule set,

induced by LEM1, is

(Temperature, very high) → (Flu, yes)
(Nausea, yes) → (Flu, yes)
(Temperature, high) & (Weakness, yes) → (Flu, yes)
(Weakness, no) & (Nausea, no) → (Flu, no)
(Temperature, normal) & (Nausea, no) → (Flu, no)

For Table 1.1, the second global covering is

{Temperature, Headache, Weakness}.

3.2 LEM2
An idea of blocks of attribute-value pairs is used in the rule induction

algorithm LEM2 (Learning from Examples Module, version 2), another
component of LERS. The option LEM2 of LERS is most frequently
used since—in most cases—it gives better results. LEM2 explores the
search space of attribute-value pairs. Its input data file is a lower or
upper approximation of a concept (for definitions of lower and upper
approximations of a concept see, e.g., [Grzymala-Busse, 1997]), so its
input data file is always consistent. In general, LEM2 computes a lo-
cal covering and then converts it into a rule set. We will quote a few
definitions to describe the LEM2 algorithm [Chan and Grzymala-Busse,
1991], [Grzymala-Busse, 1992].

For an attribute-value pair (a, v) = t, a block of t, denoted by [t], is a
set of all cases from U such that for attribute a have value v. Let B be
a nonempty lower or upper approximation of a concept represented by
a decision-value pair (d,w). Set B depends on a set T of attribute-value
pairs t = (a, v) if and only if

∅ 6= [T] =
⋂

t∈T

[t] ⊆ B.

Set T is a minimal complex of B if and only if B depends on T and
no proper subset T ′ of T exists such that B depends on T ′. Let T be a
nonempty collection of nonempty sets of attribute-value pairs. Then T
is a local covering of B if and only if the following conditions are satisfied:

(1) each member T of T is a minimal complex of B,

(2)
⋃

t∈T [T] = B, and

T is minimal, i.e., T has the smallest possible number of members.

10

The procedure LEM2 is presented below.

Procedure LEM2
(input: a set B,
output: a single local covering T of set B);
begin

G := B;
T := ∅;
while G 6= ∅

begin
T := ∅;
T (G) := {t|[t] ∩ G 6= ∅} ;
while T = ∅ or [T] 6⊆ B

begin
select a pair t ∈ T (G) such that |[t] ∩ G| is
maximum; if a tie occurs, select a pair t ∈ T (G)
with the smallest cardinality of [t];
if another tie occurs, select first pair;
T := T ∪ {t} ;
G := [t] ∩ G ;
T (G) := {t|[t] ∩ G 6= ∅};
T (G) := T (G) − T ;
end {while}

for each t ∈ T do
if [T − {t}] ⊆ B then T := T − {t};

T := T ∪ {T};
G := B − ∪T∈T [T];

end {while};
for each T ∈ T do

if
⋃

S∈T −{T}[S] = B then T := T − {T};
end {procedure}.

For a set X, |X| denotes the cardinality of X.
The first step of the algorithm LEM2 is to compute all
attribute-value pair blocks. For Table 1.1. these blocks are

[(Temperature, very high)] = {1},
[(Temperature, high)] = {2, 5, 6},
[(Temperature, normal)] = {3, 4, 7},
[(Headache, yes)] = {1, 2, 4},
[(Headache, no)] = {3, 5, 6, 7},
[(Weakness, yes)] = {1, 4, 5, 7},

Rule Induction 11

[(Weakness, no)] = {2, 3, 6},
[(Nausea, no)] = {1, 3, 5, 6, 7},
[(Nausea, yes)] = {2, 4}.
Let us induce rules for the concept {1, 2, 4, 5}. Hence, B = G =

{1, 2, 4, 5}. The set T (G) of all relevant attribute-value pairs is

{(Temperature, very high), (Temperature, high),
(Temperature, normal), (Headache, yes),

(Headache, no), (Weakness, yes),
(Weakness, no), (Nausea, no), (Nausea, yes)}.

The next step is to identify attribute-value pairs (a, v) with the largest
|[(a, v)]∩G|. For two attribute-value pairs from T (G), (Headache, yes)
and (Weakness, yes), the cardinality of the set |[(a, v)] ∩ G| is equal to
three. The next criterion is the size of the attribute-value pair block,
this size is smaller for (Headache, yes) than for (Weakness, yes),
so we select (Headache, yes). Besides, [(Headache, yes)] ⊆ B, so
(Headache, high) is the first minimal complex of G.

The new set G is equal to B − [(Headache, yes)] = {1, 2, 4, 5} −
{1, 2, 4} = {5}. A new set T (G) is equal to

{(Temperature, high), (Headache, no), (Weakness, yes), (Nausea, no)}.

This time the first criterion, the largest |[(a, v)]∩G|, identifies all four
attribute-value pairs. The second criterion, the size of the attribute-
value block, selects (Temperature, high). However,

[(Temperature, high)] = {2, 5, 6} 6⊆ B,

so we have to go through an additional iteration of the internal loop.
The next candidates are (Headache, no) and (Weakness, yes), since
for both of these attribute-value pairs the sizes of their blocks are equal
to four. On the basis of heuristics, we will select (Headache, no). But

[(Temperature, high)] ∩ [(Headache, no)] = {5, 6} 6⊆ B = {1, 2, 4, 5},

so we have to add (Weakness, yes)] as well. This time

[(Temperature, high)] ∩ [(Headache, no)] ∩ [(Weakness, yes)] =
{5} ⊆ B = {1, 2, 4, 5},

so our candidate for a minimal complex is the set

12

{(Temperature, high), (Headache, no), (Weakness, yes)}.

We have to run the following part of the LEM2 algorithm:

for each t ∈ T do
if [T − {t}] ⊆ B then T := T − {t};

As a result, the second minimal complex is identified:

{(Temperature, high), (Weakness, yes)}.

Eventually, the local covering of B = {1, 2, 4, 5} is the set

{{(Headache, yes)}, {(Temperature, high), (Weakness, yes)}}.

The complete rule set, induced by LEM2, is

(Headache, yes) → (Flu, yes)
(Temperature, high) & (Weakness, yes) → (Flu, yes)
(Temperature, normal) & (Headache, no) → (Flu, no)
(Headache, no) & (Weakness, no) → (Flu, no)

Obviously, in general, rule sets induced by LEM1 differ from rule sets
induced by LEM2 from the same data sets.

3.3 AQ
Another rule induction algorithm, developed by R. S. Michalski and

his collaborators in the early seventies, is an algorithm called AQ. Many
versions of the algorithm have been developed, under different names
[Michalski et al., 1986A], [Michalski et al., 1986B].

Let us start by quoting some definitions from [Michalski et al., 1986A],
[Michalski et al., 1986B]. Let A be the set of all attributes, A = {A1, A2, ..., Ak}.
A seed is a member of the concept, i.e., a positive case. A selector is an
expression that associates a variable (attribute or decision) to a value
of the variable, e.g., a negation of value, a disjunction of values, etc.
A complex is a conjunction of selectors. A partial star G(e|e1) is a set
of all complexes describing the seed e = (x1, x2, ..., xk) and not describ-
ing a negative case e1 = (y1, y2, ..., yk). Thus, the complexes of G(e|e1)
are conjunctions of selectors of the form (Ai,¬yi), for all i such that
xi 6= yi. A star G(e|F) is constructed from all partial stars G(e|ei), for
all ei ∈ F , and by conjuncting these partial stars by each other, using
absorption law to eliminate redundancy. For a given concept C, a cover

Rule Induction 13

is a disjunction of complexes describing all positive cases from C and
not describing any negative cases from F = U − C.

The main idea of the AQ algorithm is to generate a cover for each
concept by computing stars and selecting from them single complexes to
the cover.

For the example from Table 1.1, and concept C = {1, 2, 4, 5} described
by (Flu, yes), set F of negative cases is equal to 3, 6, 7. A seed is any
member of C, say that it is case 1. Then the partial star G(1|3) is equal
to

{(Temperature,¬normal), (Headache,¬no), (Weakness,¬no)}.

Obviously, partial star G(1|3) describes negative cases 6 and 7. The
partial star G(1|6) equals

{(Temperature,¬high), (Headache,¬no), (Weakness,¬no)}

The conjunct of G(1|3) and G(1|6) is equal to

{(Temperature, very high),
(Temperature,¬normal) & (Headache,¬no),
(Temperature,¬normal) & (Weakness,¬no),

(Temperature,¬high) & (Headache,¬no),
(Headache,¬no),

(Headache,¬no) & (Weakness,¬no),
(Temperature,¬high) & (Weakness,¬no),

(Headache,¬no) & Weakness,¬no),
(Weakness,¬no)},

after using the absorption law, this set is reduced to the following set
G(1|{3, 6}):

{(Temperature, very high), (Headache¬no), (Weakness,¬no)}.

The preceding set describes negative case 7. The partial star G(1|7)
is equal to

{(Temperature,¬normal),Headache,¬no)}.

The conjunct of G(1|{3, 6}) and G(1|7) is

14

{(Temperature, very high),
(Temperature, very high) & (Headache,¬no),
(Temperature,¬normal) & Headache,¬no),

(Headache,¬no),
(Temperature,¬normal) & (Weakness,¬no),

(Headache,¬no) & (Weakness,¬no)}.

The above set, after using the absorption law, is already a star G(1|F)

{(Temperature, very high),
(Headache,¬no),

(Temperature,¬normal) & (Weakness,¬no)}.

The first complex describes only one positive case 1, while the second
complex describes three positive cases: 1, 2, and 4. The third complex
describes two positive cases: 1 and 5. Therefore, the complex

(Headache,¬no)

should be selected to be a member of the star of C. The corresponding
rule is

(Headache,¬no) → (Flu, yes).

If rules without negation are preferred, the preceding rule may be
replaced by the following rule

(Headache, yes) → (Flu, yes).

The next seed is case 5, and the partial star G(5|3) is the following
set

{(Temperature,¬normal), (Weakness,¬no)}.

The partial star G(5|3) covers cases 6 and 7. Therefore, we compute
G(5|6), equal to

{(Weakness,¬no)}

A conjunct of G(5|3) and G(5|6) is the following set

Rule Induction 15

{(Temperature,¬normal) & (Weakness,¬no), (Weakness,¬no)}

After simplification, the set G(5|{3, 6}) equals

{Weakness,¬no)}.

The above set covers case 7. The set G(5|7) is equal to

{(Temperature,¬normal)}

Finally, the partial star G(5|{3, 6, 7}) is equal to

{(Temperature,¬normal) & (Weakness,¬no)},

so the second rule describing concept {1, 2, 4, 5} is

(Temperature,¬normal) & (Weakness,¬no) → (Flu, yes).

It is not difficult to see that the following rules describe the second
concept from Table 1.1:

Temperature,¬high) & (Headache,¬yes) → (Flu, no),

(Headache,¬yes) & (Weakness,¬yes) → (Flu, no).

Note that the AQ algorithm demands computing conjuncts of partial
stars. In the worst case, time complexity of this computation is O(nm),
where n is the number of attributes and m is the number of cases. The
authors of AQ suggest using the parameter MAXSTAR as a method of
reducing the computational complexity. According to this suggestion,
any set, computed by conjunction of partial stars, is reduced in size if
the number of its members is greater than MAXSTAR. Obviously, the
quality of the output of the algorithm is reduced as well.

4. Classification Systems
Rule sets, induced from data sets, are used mostly to classify new,

unseen cases. Such rule sets may be used in rule-based expert systems.
There is a few existing classification systems, e.g., associated with rule

induction systems LERS or AQ. A classification system used in LERS
is a modification of the well-known bucket brigade algorithm [Booker
et al., 1990], [Holland et al., 1986], [Stefanowski, 2001]. In the rule
induction system AQ, the classification system is based on a rule estimate
of probability [Michalski et al., 1986A], [Michalski et al., 1986B]. Some

16

classification systems use a decision list, in which rules are ordered, the
first rule that matches the case classifies it [Rivest, 1987]. In this section
we will concentrate on a classification system associated with LERS.

The decision to which concept a case belongs is made on the basis of
three factors: strength, specificity, and support. These factors are defined
as follows: strength is the total number of cases correctly classified by
the rule during training. Specificity is the total number of attribute-
value pairs on the left-hand side of the rule. The matching rules with
a larger number of attribute-value pairs are considered more specific.
The third factor, support, is defined as the sum of products of strength
and specificity for all matching rules indicating the same concept. The
concept C for which the support, i.e., the following expression

∑

matching rules r describing C

Strength(r) ∗ Specificity(r)

is the largest is the winner and the case is classified as being a member
of C.

In the classification system of LERS, if complete matching is impos-
sible, all partially matching rules are identified. These are rules with
at least one attribute-value pair matching the corresponding attribute-
value pair of a case. For any partially matching rule r, the additional
factor, called Matching factor (r), is computed. Matching factor (r) is
defined as the ratio of the number of matched attribute-value pairs of r
with a case to the total number of attribute-value pairs of r. In partial
matching, the concept C for which the following expression is the largest

∑
partially matching
rules r describing C

Matching factor(r) ∗ Strength(r)

∗ Specificity(r)

is the winner and the case is classified as being a member of C.

5. Validation
The most important performance criterion of rule induction methods
is the error rate. A complete discussion on how to evaluate the error

rate from a data set is contained in [Weiss and Kulikowski, 1991]. If the
number of cases is less than 100, the leaving-one-out method is used to
estimate the error rate of the rule set. In leaving-one-out, the number
of learn-and-test experiments is equal to the number of cases in the
data set. During the i-th experiment, the i-th case is removed from
the data set, a rule set is induced by the rule induction system from
the remaining cases, and the classification of the omitted case by rules
produced is recorded. The error rate is computed as

Rule Induction 17

total number of misclassifications

number of cases
.

On the other hand, if the number of cases in the data set is greater
than or equal to 100, the ten-fold cross-validation will be used. This
technique is similar to leaving-one-out in that it follows the learn-and-
test paradigm. In this case, however, all cases are randomly re-ordered,
and then a set of all cases is divided into ten mutually disjoint subsets
of approximately equal size. For each subset, all remaining cases

are used for training, i.e., for rule induction, while the subset is used
for testing. This method is used primarily to save time at the negligible
expense of accuracy.

Ten-fold cross validation is commonly accepted as a standard way
of validating rule sets. However, using this method twice, with differ-
ent preliminary random re-ordering of all cases yields—in general—two
different estimates for the error rate [Grzymala-Busse, 1997].

For large data sets (at least 1000 cases) a single application of the
train-and-test paradigm may be used. This technique is also known as
holdout [Weiss and Kulikowski, 1991]. Two thirds of cases should be
used for training, one third for testing.

6. Advanced Methodology
Some more advanced methods of machine learning in general and

rule induction in particular were discussed in [Dietterich, 1997]. Such
methods include combining a few rule sets with associated classification
systems, created independently, using different algorithms, to classify
a new case by taking into account all individual decisions and using
some mechanisms to resolve conflicts, e.g., voting. Another important
problem is scaling up rule induction algorithms. Yet another important
problem is learning from imbalanced data sets [Japkowicz, 2000], where
some concepts are extremely small.

References

[Booker et al., 1990] Booker L.B., Goldberg D.E., and Holland J.F.
Classifier systems and genetic algorithms. In Machine Learning.
Paradigms and Methods, Carbonell, J. G. (ed.), The MIT Press,
Boston, MA, 1990, 235–282.

[Chan and Grzymala-Busse, 1991] Chan C.C. and Grzymala-Busse
J.W. On the attribute redundancy and the learning programs ID3,
PRISM, and LEM2. Department of Computer Science, University of
Kansas, TR-91-14, December 1991, 20 pp.

18

[Dietterich, 1997] Dietterich T.G. Machine-learning research. AI Maga-
zine 1997: 97–136.

[Grzymala-Busse, 1988] Grzymala-Busse J.W. Knowledge acquisition
under uncertainty—A rough set approach. Journal of Intelligent &
Robotic Systems 1988; 1: 3–16.

[Grzymala-Busse, 1992] Grzymala-Busse J.W. LERS—A system for
learning from examples based on rough sets. In Intelligent Decision
Support. Handbook of Applications and Advances of the Rough Sets
Theory, ed. by R. Slowinski, Kluwer Academic Publishers, Dordrecht,
Boston, London, 1992, 3–18.

[Grzymala-Busse, 1997] Grzymala-Busse J.W. A new version of the rule
induction system LERS, Fundamenta Informaticae 1997; 31: 27–39.

[Holland et al., 1986] Holland J.H., Holyoak K.J., and Nisbett R.E. In-
duction. Processes of Inference, Learning, and Discovery, MIT Press,
Boston, MA, 1986.

[Japkowicz, 2000] Japkowicz N. Learning from imbalanced data sets: a
comparison of various strategies. Learning from Imbalanced Data
Sets, AAAI Workshop at the 17th Conference on AI, AAAI-2000,
Austin, TX, July 30–31, 2000, 10–17.

[Michalski, 1983] Michalski R.S. A Theory and Methodology of Induc-
tive Learning. In Machine Learning. An Artificial Intelligence Ap-
proach, Michalski, R. S., J. G. Carbonell and T. M. Mitchell (eds.),
Morgan Kauffman, San Mateo, CA, 1983, 83–134.

[Michalski et al., 1986A] Michalski R.S., Mozetic I., Hong J., Lavrac N.
The AQ15 inductive learning system: An overview and experiments,
Report 1260, Department of Computer Science, University of Illinois
at Urbana-Champaign, 1986A.

[Michalski et al., 1986B] Michalski R.S., Mozetic I., Hong J., Lavrac N.
The multi-purpose incremental learning system AQ 15 and its testing
application to three medical domains. Proc. of the 5th Nat. Conf. on
AI, 1986B, 1041–1045.

[Pawlak, 1982] Pawlak Z.: Rough Sets. International Journal of Com-
puter and Information Sciences 1982; 11: 341–356.

[Pawlak, 1991] Pawlak Z. Rough Sets. Theoretical Aspects of Reasoning
about Data. Kluwer Academic Publishers, Dordrecht, Boston, Lon-
don, 1991.

[Pawlak et al., 1995] Pawlak Z., Grzymala-Busse J.W., Slowinski R. and
Ziarko, W. Rough sets. Communications of the ACM 1995; 38: 88–
95.

Rule Induction 19

[Rivest, 1987] Rivest R.L. Learning decision lists. Machine Learning
1987; 2: 229–246.

[Stefanowski, 2001] Stefanowski J. Algorithms of Decision Rule Induc-
tion in Data Mining. Poznan University of Technology Press, Poznan,
Poland, 2001.

[Weiss and Kulikowski, 1991] Weiss S. and Kulikowski C.A. Computer
Systems That Learn: Classification and Prediction Methods from
Statistics, Neural Nets, Machine Learning, and Expert Systems,
chapter How to Estimate the True Performance of a Learning Sys-
tem, pp. 17–49, San Mateo, CA: Morgan Kaufmann Publishers, Inc.,
1991.

