ANSI/IEEE Std 1002-1987

AMERICAN NATIONAL ANSI/IEEE Std 1002-1987

STANDARD

IEEE Standard Taxonomy for
Software Engineering Standards

Published by The Institute of Electrical and Electronics Engineers, Inc 345 East 47th Street, New York, NY 10017, USA

July 20, 1987 SH11023

ANSI/IEEE
Std 1002-1987

An American National Standard

IEEE Standard Taxonomy for
Software Engineering Standards

Sponsor

Software Engineering Subcommittee
of the
Technical Committee on Software Engineering
of the
IEEE Computer Society

Approved December 11, 1986
IEEE Standards Board

Approved June 4, 1987
American National Standards Institute

© Copyright 1987 by

The Institute of Electrical and Electronics Engineers, Inc
345 East 47th Street, New York, NY 10017, USA

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

IEEE Standards documents are developed within the Technical Com-
mittees of the IEEE Societies and the Standards Coordinating Committees
of the IEEE Standards Board. Members of the committees serve volun-
tarily and without compensation. They are not necessarily members of the
Institute. The standards developed within IEEE represent a consensus of
the broad expertise on the subject within the Institute as well as those
activities outside of IEEE which have expressed an interest in participating
in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE
Standard does not imply that there are no other ways to produce, test,
measure, purchase, market, or provide other goods and services related
to the scope of the IEEE Standard. Furthermore, the viewpoint expressed
at the time a standard is approved and issued is subject to change brought
about through developments in the state of the art and comments received
from users of the standard. Every IEEE Standard is subjected to review
at least once every five years for revision or reaffirmation. When a doc-
ument is more than five years old, and has not been reaffirmed, it is
reasonable to conclude that its contents, although still of some value, do
not wholly reflect the present state of the art. Users are cautioned to
check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any in-
terested party, regardless of membership affiliation with IEEE. Sugges-
tions for changes in documents should be in the form of a proposed change
of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the mean-
ing of portions of standards as they relate to specific applications. When
the need for interpretations is brought to the attention of IEEE, the
Institute will initiate action to prepare appropriate responses. Since IEEE
Standards represent a consensus of all concerned interests, it is important
to ensure that any interpretation has also received the concurrence of a
balance of interests. For this reason IEEE and the members of its technical
committees are not able to provide an instant response to interpretation
requests except in those cases where the matter has previously received
formal consideration.

Comments on standards and requests for interpretations should be ad-
dressed to:

Secretary, IEEE Standards Board
345 East 47th Street

New York, NY 10017

USA

Foreword

(This Foreword is not a part of ANSI/IEEE Std 1002-1987, IEEE Standard Taxonomy for Software Engineering Standards.)

Software Engineering is an emerging field. As part of that process a set of software engineering
standards is being developed. They are used to:

(1) Improve communications between and among software engineers and others.

(2) Achieve economy of cost, human effort, and essential materials.

(3) Institutionalize practical solutions to recurring problems.

(4) Achieve predictability of cost and quality.

(5) Establish norms of acceptable professional practice.

To support the development, integration, and use of software engineering standards, a need for a
taxonomy is recognized. A project was approved in June 1983 to define a taxonomy as part of a
voluntary consensus process. This document is the result of that process.

This is one of an evolving set of integrated IEEE Software Engineering standards, recommended
practices, and guides. The set currently includes:

ANSI/IEEE Std 729-1983, IEEE Standard Glossary of Software Engineering Terminology

ANSI/IEEE Std 730-1984, IEEE Standard for Software Quality Assurance Plans

ANSI/IEEE Std 828-1983, IEEE Standard for Software Configuration Management Plans

ANSI/IEEE Std 829-1983, IEEE Standard for Software Test Documentation

ANSI/IEEE Std 830-1984, IEEE Guide to Software Requirements Specifications

ANSI/IEEE Std 983-1986, IEEE Guide for Software Quality Assurance Planning

ANSI/IEEE Std 1008-1987, IEEE Standard for Software Unit Testing

This standard may be used in conjunction with this set of standards or separately.

The taxonomy can be applied, but is not limited to, project, program, organization, industrial,
national, and international standards. As a document, this standard should be useful to those who
develop, use, manage, and evaluate software engineering standards. The taxonomy provides a:

(1) Comprehensive scheme for classifying software engineering standards, recommended practices,
and guides.

(2) Framework for identifying the need for new software engineering standards, recommended
practices, and guides.

(3) Comprehensive scheme for analyzing a set of software engineering standards, recommended
practices, and guides appropriate for a given industry, company, program, project, or particular work
assignment.

(4) Framework for comparing sets of software engineering standards, recommended practices, and
guides to support the selection of the most useful set for a particular software product.

The application of the taxonomy to achieve the above purposes is described in the appendix.

Keywords applicable to this standard are: nomenclature standard, notation standard, software
engineering.

The sponsor for this standard was the Software Engineering Standards Subcommittee of the
Software Engineering Technical Committee of the IEEE Computer Society, John W. Horch, Chairman.

Special representatives to the Software Engineering Standards Subcommittee were:

P.W. Abrahams
H.R. Berlack
A. Ferlan

S.R. Jarocki
R.R. Jones
J.ANN. Lee
J. Milandin

W.F. Mitchell
W.E. Perry
T.L. Regulinski
P.E. Schilling

The working group that developed this standard had the following membership:

Leonard L. Tripp, Chairperson

A. Frank Ackerman
Eleanor Antreasian
Joan P. Bateman

H. Ronald Berlack
Richard L. Chilausky
Francois Coallier
Stewart Crawford
James Darling

John W. Fendrich
Mehmet Ficici
Craig D. Fuget
David Gelperin

Jeff van Gilder

Paul Howley

John Horch

Harry Kalmbach
Louis B. Kiersky
Thomas M. Kurihara
John B. Lane

F. C. Lim

Phillip C. Marriott
Virginia Marting
Dan G. McNicholl
Mordechai Ben-Menachim
Fred Mervine
Manijeh Moghis
Dennis E. Nickle

Perry R. Nuhn, Co-Chairperson
Ralph G. Wachter, Co-Chairperson

Robert C. Olsen
Sharon R. Cobb-Pierson
Robert B. Poston

Max J. Schindler
David Schultz
Leonard W. Seagren
John Selman

David M. Siefert
Dave Simkins

R. van Tilburg
William S. Turner, III
Clyde E. Willis

Paul A. Willis

When the IEEE Standards Board approved this standard on December 11, 1986, it had the following

membership:

John E. May, Chairman

James H. Beall
Fletcher J. Buckley
Paul G. Cummings
Donald C. Fleckenstein
Jay Forster

Daniel L. Goldberg
Kenneth D. Hendrix
Irvin N. Howell

*Member emeritus

Jack Kinn

Joseph L. Koepfinger*
Edward Lohse
Lawrence V. McCall
Donald T. Michael*
Marco W. Migliaro
Stanley Owens

John P. Riganati
Frank L. Rose

Irving Kolodny, Vice Chairman
Sava 1. Sherr, Secretary

Robert E. Rountree
Martha Sloan

Oley Wanaselja

J. Richard Weger
William B. Wilkens
Helen M. Wood
Charles J. Wylie
Donald W. Zipse

The following persons were on the balloting committee that approved this document for submission
to the IEEE Standards Board:

A. Frank Ackerman
Jagdish C. Agrawal
Richard L. Aurbach
K. Ramesh Babu
James Baldo, Jr

H. Jack Barnard
Roy W. Bass

Leo Beltracchi
Yechiel Ben-Naftali
Victor G. Berecz
H.R. Berlack

J. Emmett Black
Michael A. Blackledge
Ron Blair

Kevin W. Bowyer
Kathleen L. Briggs
Fletcher J. Buckley
Margaret Butler
Homer C. Carney
Ronald R. Carter
Robert N. Charette
Tsun S. Chow
Jung K. Chung
Peter Coad, Jr
Francois Coallier
Christopher M. Cooke
AJ. Cote, Jr
Stewart Crawford
George D. Darling
Taz Daughtrey
P.O. Denny

Harpal S. Dhama
Mike Dotson
William P. Dupros
Michael Dutton
Robert E. Dwyer
Mary Eads

John D. Earls
Michael Edward
L.G. Egan

Steven R. Eisen
Caroline L. Evans
David W. Favor
John W. Fendrich
Robert G. Ferreol
Glenn S. Fields
Gordon Force

J. Forster

Deborah L. Franke
C.R. Frederick
Carl Friedlander

Ismael Fuentes-Crespo
Micheel Galinier
Leonard B. Gardner
David Gelperin
James L. Gildersleeve
Shirley Gloss-Soler
Ole Golubjatnikov

J. Kaye Grau

Andrej Grebenc
Thomas Griest

Victor M. Guarnera
Lawrence M. Gunther
David A. Gustafson
Russell Gustin
Howard Hamer
Hans-Ludwig Hansen
George B. Hawthorne
Clark M. Hay

Terry L. Hengl
Charles P. Hollocker
John W. Horch
Cheng Hu
Shang-Sheng Jeng
David Johnson, III
Laurel V. Kaleda
Constantine Kaniklidis
Myron S. Karasik
Adi N. Kasad

Ron Kenett

R.A. Kessler

Joseph A. Krupinski
Hirayr M. Kudyan
Joan Kundig

T.M. Kurihara

Robin B. Lake
Lak-Ming Lam

John B. Lane

Robert A.C. Lane
William P. LaPlant, Jr
Greg Larsen

Jack A. Latimer

Jay Levenson

Leon S. Levy

Paul Lieberaz

F.C. Lim

Bertil Lindberg
David Linsson
William M. Lively
John M. Long

John Lowell

L.J. Mablack

Bill Macre

Andy Mahindru
Henry Malec

Paulo Cesar Marcondes
Stuart Marcotte
Philip C. Marriott
Nicholas L. Marselos
Roger J. Martin
Robert F. Martini
Ivano Mazza

J.A. McCall

John McKissick, Jr
Glen A. Meidrum
Belden Menkus
Ben W. Miller
Manijeh Moghis
Charles S. Mooney
Joyce E. Mortison
Gene T. Morun
Dale N. Murray
Myron L. Nack
Hironobu Nagano
Saied Najafi

Gerry Neidhart
Brian Nejmeh
Dennis E. Nickle
LH. Obbink

Wilma Osborne

D.J. Ostrom

David G. Owens
Thomas D. Parrish
M.T. Perkins
Donald J. Pfeiffer
R.M. Poston

Peter Ron Prinzivalli
Thomas S. Radi
Meir Razy

John Reddan

Larry K. Reed
Matthias F. Reese, III
T.D. Regulinski
Donald J. Reifer
Steven M. Rowan
R. Waldo Roth
Hom Sack

Julio Gonzalez Sanz
Stephen R. Schach
Franz P. Schauer
Max Schindler
Norman Schneidewind
Nolf A. Schnoege

Robert G. Schueppert
David J. Schultz
Gregory D. Schumacher
Leonard W. Seagren
Devdoot Sen

Gerard P. Share
Robert W. Shillato
David M. Siefert
David J. Simkins
Jacob Slonim
Marion P. Smith
Harry M. Sneed
J.G. Snodgrass

Al R. Sorkowitz
Hugh B. Spillane
Lee Sprague

G. Wayne Staley
Alan N. Sukert
William G. Sutcliffe
Richard H. Thayer
Booker T. Thomas
Paul U. Thompson
E.O. Tilford
Terrence L. Tillmanns
Lawrence F. Tracey
Glendon R. Trebble
Robert Troy

C.L. Troyanowski
Dana L. Ulery

R.L. Van Tilburg
P.M. Vater

Osmo Vikman

R. Wachter

Dolores R. Wallace
Andrew H. Weigel
R.W. Werlwas
Walter L. Whipple
Paul A. Willis
Patrick J. Wilson
Paul Wolfgang

W. Martin Wong
Dennis L. Wood
Paul R. Work

Tom Worthington
Charles Wortz
Stephen D. Yaste
Natalie C. Yopconka
Michael E. York
Marvin Zelkowitz
Peter F. Zoll

Contents

SECTION

IR 17 50 o (P e o Te) « R PP S PR
3 T 1« V=T L R TP PRI
BB =3 e 0140 0T) Lo = 28 EREEED
1.8 RO I OIICES. . ot v ottt ee et ettt et ettt te et te e e et e e
DTS 5o uin Ts) ¢ 1 PRI TR
Taxonomy of Software Engineering Standards..................oooiiiiiiiii
3.1 Standards Partitioncoooiuoiiiiieiiieiee i i it e
3.2 Software Engineering Partitionc..oooiiiiiiiii
3.3 Taxonomy Framework...........ooooviiiiiiiiiiiiiiaii i

FIGURES

Fig 1 Partition of Standards BY TYDE ...c..eeuurenuiiiiiiiiiie i

Fig 2 Partition of Software Engineering by Function and Life Cycle..........................

Fig 3 Basic Taxonomy Framework (Version A)...........oooiiiiiiiiiiiiiiiiininn

Fig 4 Basic Taxomony Framework (Version B).........ooooiiiiiiiiiicn,

Fig 5 Comprehensive Taxonomy Framework.................oooiiiiiiiii .

APPENDIXES

Taxonomy Usage EXamPlesovuiiiiiiiiiiiiiii i

APPENDIX FIGURES

Fig Al Example of General Standards Classification (Phase Independent)

Fig A2 Example of General Standards Classification (Design Phase).........................

Fig A3 Classification of IEEE Software Engineering Standards (Gross Level)...............

Fig A4 Classification of IEEE Software Engineering Standards (Refined Level-Part I).....

Fig A5 Classification of IEEE Software Engineering Standards (Refined Level-Part II)....
Fig A6 Job Function—-Software Life Cycle Correlation................cooooiiiviiiiiiin i,

An American National Standard

IEEE Standard Taxonomy for
Software Engineering Standards

1. Introduction

1.1 Scope. This document describes the form
and content of a software engineering standards
taxonomy. Applicability is not restricted by soft-
ware application, size, complexity, criticality, or
hardware environment. This taxonomy applies
to standards (from the related disciplines of en-
gineering management, systems engineering,
computer hardware engineering, computer sci-
ence, and information science) with which a soft-
ware engineer would be reasonably acquainted.
This taxonomy is application independent. For
example, an accounting test standard would be
placed under test standards, but the qualifier,
accounting, has no significance. The document
explains the various types of software engineer-
ing standards, their functional and external re-
lationships, and the role of various functions
participating in the software life cycle. The tax-
onomy may be used as a method for planning
the development or evaluation of standards for
an organization. It could also serve as a basis
for classifying a set of standards or for organ-
izing a standards manual.

1.2 Terminology. The word shall identifies the
mandatory material within this standard. The
words should and may identify optional mate-
rial.

1.3 References. This standard shall be used in
conjunction with the following reference:

[1] ANSI/IEEE Std 729-1983, IEEE Standard
Glossary of Software Engineering Terminology.!

1 ANSI/IEEE publications can be obtained from the Sales
Department, American National Standards Institute, 1430
Broadway, New York, NY 10018, or from the Service Center,
The Institute of Electrical and Electronics Engineers, 445
Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

2. Definitions

The definitions listed below establish meaning
in the context of this standard. Other definitions
can be found in ANSI/IEEE Std 729-1983 [1).2
See specifically: audit, certification, config-
uration management, conversion, debug-
ging, design, design phase, implementation
phase, installation and checkout phase, in-
tegration, maintenance, operation and
maintenance phase, quality assurance, re-
quirements analysis, requirements phase,
retirement phase, review, software engi-
neering, software maintenance, test phase,
and testing. For the purpose of this standard,
the term “software” includes the computer pro-
grams, data, and documentation portions of both
software and firmware.

code of ethics standard. A standard that de-
scribes the characteristics of a set of moral prin-
ciples dealing with accepted standards of
conduct by, within, and among professions.

coding. The transforming of logic and data from
design specifications into a programming lan-
guage.

component standard. A standard that de-
scribes the characteristics of data or program
components.

concept phase. The period of time in the soft-
ware life cycle during which the user needs are
described and evaluated through documentation
(for example, statement of needs, advance plan-
ning report, project initiation memo, feasibility
studies, system definition documentation, reg-
ulations, procedures or policies relevant to the
project).

2 The numbers in square brackets refer to those of the
references listed in 1.3.

ANSI/IEEE
Std 1002-1987

curriculum standard. A standard that de-
scribes the characteristics of a course of study
on a body of knowledge that is offered by an
educational institution.

description standard. A standard that de-
scribes the characteristics of product informa-
tion or procedures provided to help understand,
test, install, operate, or maintain the product.

design standard. A standard that describes the
characteristics of a design or a design description
of data or program components.

job function. A group of engineering processes
that is identified as a unit for the purposes of
work organization, assignment, or evaluation.
Examples are design, testing, or configuration
management.

language standard. A standard that describes
the characteristics of a language used to describe
a requirements specification, a design, or test
data.

licensing standard. A standard that describes
the characteristics of an authorization given by
an official or a legal authority to an individual
or organization to do or own a specified thing.

manufacturing phase. The period of time in
the software life cycle during which the basic
version of a software product is adapted to a
specified set of operational environments and is
distributed to a customer base.

measurement standard. A standard that de-
scribes the characteristics of evaluating a proc-
ess or product.

method standard. A standard that describes
the characteristics of the orderly process or pro-
cedure used in the engineering of a product or
performing a service.

nomenclature standard. A standard that de-
scribes the characteristics of a system or set of
names, or designations, or symbols.

notation standard. A standard that describes
the characteristics of formal interchanges
within a profession.

occupational title standard. A standard that
describes the characteristics of the general area
of work or profession.

plan standard. A standard that describes the
characteristics of a scheme for accomplishing

10

IEEE STANDARD TAXONOMY FOR

defined objectives or work within specified re-
sources.

process management. The direction, control,
and coordination of work performed to develop
a product or perform a service. Example is qual-
ity assurance.

process standard. A standard that deals with
the series of actions or operations used in mak-
ing or achieving a product.

product analysis. The process of evaluating a
product by manual or automated means to de-
termine if the product has certain characteris-
tics.

product engineering. The technical processes
to define, design, and construct or assemble a
product.

product management. The definition, coordi-
nation, and control of the characteristics of a
product during its development cycle. Example
is configuration management.

product standard. A standard that defines
what constitutes completeness and acceptability
of items that are used or produced, formally or
informally, during the software engineering
process.

product support. The providing of information,
assistance, and training to install and make soft-
ware operational in its intended environment
and to distribute improved capabilities to users.

professional standard. A standard that iden-
tifies a profession as a discipline and distin-
guishes it from other professions.

report standard. A standard that describes the
characteristics of describing results of engineer-
ing and management activities.

representation standard. A standard that de-
scribes the characteristics of portraying aspects
of an engineering or management product.

requirement standard. A standard that de-
scribes the characteristics of a requirements
specification.

resource management. The identification, es-
timation, allocation, and monitoring of the
means used to develop a product or perform a
service. Example is estimating.

software life cycle. The period of time that
starts when a software product is conceived and

SOFTWARE ENGINEERING STANDARDS

ends when the product is no longer available for
use. The software life cycle typically includes a
concept phase, requirements phase, design
phase, implementation phase, test phase, man-
ufacturing phase, installation and checkout
phase, operation and maintenance phase, and
sometimes, retirement phase.

taxonomy. A scheme that partitions a body of
knowledge and defines the relationships among
the pieces. It is used for classifying and under-
standing the body of knowledge.

technical management. The application of
technical and administrative resources to plan,
organize, and control engineering functions.

technique standard. A standard that describes
the characteristics of applying accumulated
technical or management skills and methods in
the creation of a product or performing a service.

verification and validation. The process of de-
termining whether the requirements for a sys-
tem or component are complete and correct, the
products of each development phase fulfill the
requirements or conditions imposed by the pre-
vious phase, and the final system or component
complies with specified requirements.

3. Taxonomy of Software Engineering
Standards

The taxonomy shall consist of a standards par-
tition, software engineering partition, and a
framework that relates the two partitions. Each
partition results in the definition of a set of cat-
egories wherein each category has a name and
a membership rule. The standards partition
characterizes the roles of standards. The soft-
ware engineering partition characterizes the as-
pects of software engineering with which a
standard can be associated. The framework com-
bines the two partitions into a two-dimensional
scheme, which describes the set of possible soft-
ware engineering standards. The taxonomy
framework also describes how the categories are
organized for classification purposes. Section 3.1
describes the standards partition, Section 3.2 de-
scribes the software engineering partition, and
Section 3.3 describes the taxonomy framework
and its relationships.

3.1 Standards Partition. The standards parti-
tion shall be organized by type of standard. The

11

ANSI/IEEE
Std 1002-1987

Standards Partition
— Process Standards

— Method
— Technique
—— Measurement

[~ Product Standards

— Requirement
— Design

— Component
— Description
- Plan

-—— Report

[— Professional Standards

l— Occupational Title
t— Code of Ethics

— Certification

}— Licensing

L— Curriculum

Notation Standards

- Nomenclature
— Representation
— Language

Fig 1
Partition of Standards by Type

four types are process, product, professional, and
notation standards. See Fig 1 for the complete
partition.

Process standards deal with the series of ac-
tions or operations used in engineering a product
or delivering a service. The actions or operations
make use of methods, tools, and techniques.
They give the “whos,” “whats,” “hows,”
“wheres,” “whens,” and levels of the work done
in software engineering. Product standards are
concerned with the format and content of things.
The products are the documented results of the
software development and maintenance activi-
ties and provide a baseline for future activities.
Professional standards deal with all aspects of
software engineering that identify it as a profes-
sion. An example is a curriculum for a Master
of Software Engineering degree. Notation stan-
dards deal with the communication of common
items among the software engineering profes-
sionals in a uniform manner. An example is a
glossary. The output of a process is a product;
the process is performed by people using tools
and techniques within the profession.

3.2 Software Engineering Partition. The soft-
ware engineering partition shall consist of two
parts: job functions and software life cycle. These
two parts or perspectives are used in order to
‘compare, judge, evaluate, and determine the
scope and content of software engineering stan-
dards. See Fig 2 for the software engineering

ANSI/IEEE
Std 1002-1987

Software Engineering Partition
L Job Function
|— Product Engineering Functions

Requirements Analysis
Design

Coding

Integration
Conversion
——Debugging

Product Support
Software Maintenance

| Verification and Validation

Reviews and Audits
Product Analysis
Testing

|__ Technical Management Functions

Process Management
:Product Management
Resource Management

L Life Cycle

Concept Phase

Requirements Phase

l——Design Phase
|———implementation Phase

—— Test Phase

Qualification Phase

Manufacturing Phase

Instaltation and Checkout Phase
Operations and Maintenance Phase
L—— Retirement Phase

Fig 2
Partition of Software Engineering by
Function and Life Cycle

partition. Job functions are the identifiable proc-
esses of software engineering. Job functions
often occur in parallel. For example, designs are
updated as software elements are developed. No
strict temporal sequence exists among the job
functions since planning, execution, or follow-
up within a function will certainly overlap other
job functions.

Job functions are divided into three parts:
product engineering functions, verification and
validation functions, and technical management
functions. The three parts contain the major on-
going, parallel activities of producing, checking,
and controlling that are not concentrated in a
single life cycle phase. The product engineering
functions includes those processes that are nec-
essary to define, produce, and support the final
software product. Verification and validation
functions are the technical activities that check
the quality of the product. Technical manage-
ment functions are those processes that struc-
ture and control the engineering functions.
Project management is viewed as being related

12

IEEE STANDARD TAXONOMY FOR

to technical management in the following way:
Typically, project management is the use, by one
or more organizations, of the technical manage-
ment functions of process management, product
management, and resource management to de-
velop a product within specified resources.

3.3 Taxonomy Framework. The taxonomy
framework shall consist of:

(1) Names of the categories in the standards
partition and the relationships among the
names

(2) Names of the categories in the software
engineering partition and the relationships
among the names

(3) Rules for composing the framework

(4) Presentation format for the framework

The taxonomy may be presented in different
ways, depending on how it can be used most
effectively. The rows and columns may be re-
versed, higher or lower levels of classification
can be shown, or only part of the table may be
used.

This standard presents three versions of the
taxonomy framework for use. The three versions
are titled:

(a) Basic Taxonomy Framework (Version A)

(b) Basic Taxonomy Framework (Version B)

(c) Comprehensive Taxonomy Framework

The two Basic Taxonomy Frameworks have
the same column labels with the row labels being
somewhat different. The row labels for Version
A are a selection from the job function portion
of the software engineering partition that gen-
erally are present in all software life phases and
the software life cycle phases. The column labels
are the major categories of the standards par-
tition. The row labels for Version B are the com-
plete job function portion of the software
engineering partition.

The two Basic Taxonomy Frameworks are il-
lustrated in Figs 3 and 4. The frameworks are
presented in the form of a two-dimensional table.
An entry in one of the tables is defined by the
names from the respective row label and column
label of the entry. For example, in Fig 4, the
most upper left table entry would be process
standards for requirements analysis.

The Comprehensive Taxonomy Framework
(see Fig 5) uses the full depth of both the stan-
dards partition and the software engineering
partition. For presentation purposes, the frame-
work is organized into two parts with the row
labels from the standards partition and the col-

SOFTWARE ENGINEERING STANDARDS

umn labels from the software engineering par-
tition. For this framework, the entry name is
defined by the names of the respective column
label and row label of the entry.

The framework composition rules define the
layout for the framework and how the entries
in the table are composed. The rules are:

(1) The framework is displayed as a two-di-
mensional table with a set of labels for the rows
and a set of labels for the columns.

(2) The names from either the standards par-
tition or the software engineering partition are
assigned as the source for the row labels. The

ANSI/IEEE
Std 1002-1987

remaining partition is the source for the column
labels.

(3) A suitable set of names for the row and
column labels is selected from the lists shown
in Figs 1 and 2, starting at the left and pro-
ceeding to the desired level of detail.

(4) The scope of the framework is defined by
eliminating those row-column pairs that are not
feasible.

(5) An entry in the table is defined by names
from the respective row and column of the entry.

Examples of how to classify standards using
this taxonomy are contained in Appendix A.

Type of Standard

Process
Standard

Notation
Standard

Professional
Standard

Product
Standard

Reviews & Audits

Product Analysis

-~ 0 ~o<

Testing

Process Management

Product Management

30 ~+A3CN TO

30 Fro-

Resource Management

Concept

Requirement

Design

implementation

Test

Manufacturing

Opesation and Mai

‘ g

B =A< Ba=r E-~n

Retiremeant

Fig 3

Basic Taxonomy Framework (Version A)

13

IEEE STANDARD TAXONOMY FOR

ANSI/IEEE
Std 1002-1987

(g UOISIdA) JIoMourely AUIOUOXE], diseq

¥ 8

judwabeuep arinosay

juawabeuepy PNpoId

dwabeuepy ssadxoid

rove SOE«

Bunsay

sisAjeuy PNpoid

SHPNY pue SMIIAJY

>0~ & >ao—

2IUBUIIUIBIN 1EMYOS

yoddng Pnpoid

buibbngqaq

UOISIIAUD)

uoneibaju)

Buipod

ubisag

sisAjeuy syudwainbay

WEDP-COYP=-=-CO

6 =0TVIVe

=00 WIICVvw=0C

piepuers
uoneIoN

piepueis
|euoissajoid

piepueis
Pnpoid

piepuers
$53501d

piepuess jo adfy

14

ANSI/IEEE

Std 1002-1987

SOFTWARE ENGINEERING STANDARDS

(1 3d)

WIomowel Awouoxe], aalsusyaaduro)

g 3

abenbueq

uonejudsaiday

ainjepudWoN

20w 0w=-0C

wnnoLInd

Buisuad

uonedII)

$31433 JO 3p0d

3| jeuonedn»Q

G =Owywnn=-0C

yoday

ueyd

uondunsaq

wauodwo)

ubisag

sjuawannbay

A -0T3IVe

JuaWaINSeIW

anbiuya)

POy

a-ovaeownan

w+ ©CoT O =T

QO+

- >0

anosay

PNpoid

]
$59014

sishjeuy

bunss) onpoly

supny

pue smaindy

aueue
asem1jos

Jjoddng
»opoid

Hub6nqaqg uorsiaauo) | uonesbaiu)

Buipoy

ubisaq

sishjeuy
sjuawainbay

jJuawabeuepy [ed1uydaL

uoNEPIIEA B UORBIHIBA

Buraauibug 32npoid

uondung qof

15

(€ ¥ed)
WIomowelqy Awouoxs], dAsusyardwo)

(Pauo)) ¢ 314

IEEE STANDARD TAXONOMY FOR

Std 1002-1987

ANSI/IEEE

abenbue u
uoneudsAday m
)
2imepPudwIoN u
wnynuIn)
Sugsuady u
[
voneyad | 3 P
P
©pa400p0) | §
3 e
a1 jeuonednno | ¢ | P
- (V]
' uoday ®
— 1
‘“ ‘ ued m
_) ‘ vondusag | 3
— - n|#
. euodwor | 81 O
1
: ubiseg| 4| @
- e - TR ¥ , d
o sjuswasnday £
= y - h
wowasnseony | ¢
s
anbjuysay | 3
Mk °
powiaw | 4
w.z.:.v!.u u:..:.t-,t.:ns. u-:‘) uonBusddw) rmiue s:..:o.__:v-.- i.w&o,u,., - o
apAD 311 dsemyos Y B

16

SOFTWARE ENGINEERING STANDARDS

ANSI/IEEE
Std 1002-1987

Appendix
Taxonomy Usage Examples

(This Appendix is not a part of ANSI/IEEE Std 1002-1987, IEEE Standard Taxonomy for Software Engineering Standards,

but is included for information only.)

This Appendix illustrates how the taxonomy
can be used to:

(1) Classify a set of software engineering stan-
dards

(2) Annotate software engineering standards
with keywords

(3) Characterize a software engineering stan-
dards program

(4) Correlate functions and software life cycle
viewpoints

Al. Classification of Selected
Standards

This section presents a selection of references
on software engineering standards. The key for

selection was that the reference is publicly avail-
able through a trade association, government
agency, or national society other than IEEE. The
references are listed below with their identifier.
The identifiers are placed in the two tables (Figs
A1l and A2). The selected standards were class-
ified using the job function table of the Com-
prehensive Taxonomy Framework organized by
software life cycle phase. In a complete example,
there would be a job function table for each soft-
ware life cycle phase. The example presented
contains two tables. The first table (see Fig Al)
depicts those standards that essentially have
equal applicability over most software life cycle
phases. The second table (see Fig A2) depicts
those standards that are of special importance
for the design phase of the software life cycle.

Identifier Title

ICAM Air Force Materials Laboratory, ICAM Documentation Standards, IDS
150120000A, December 28, 1981.

480 Department of Defense, Configuration Control-Engineering Changes, Deviations,
and Waivers, DOD-STD-480A, 1978.3

483 Department of Defense, Configuration Management Practices for Systems, Equip-
ment, Munitions, and Computer Programs, MIL-STD-483A, June 4, 1985.4

499 Department of Defense, Engineering Management, MIL-STD-499, May 1, 1974.

52779 Department of Defense, Software Quality Assurance Program Requirements,

MIL-S-52779A, August 1, 1979.
490 Department of Defense, Specification Practices, MIL-STD-490, June 4, 1985.

RADC Rome Air Development Center, RADC Computer Software Development Speci-
fication, CP 0787796100E, May 1979.

TADSTAD9 Department of Defense, Tactical Digital System Standard, Software Quality As-
surance Testing Criteria, TADSTAD 9, 1978.°

1521 Department of Defense, Technical Reviews and Audits for Systems, Equipment,
and Computer Software, MIL-STD-1521B, June 4, 1985.

2167 Department of Defense, Defense System Software Department, DOD-STD-2167,
June 4, 1985.

3 DOD and MIL publications are available from the Director, US Navy Publications and Printing Service, Eastern Division,
700 Robbins Avenue, Philadelphia, PA 19111.

4 See footnote 3.

5 Information on this publication can be obtained by writing to TAD, Chief of Materiel Command Headquarters, Washington,
DC 20360.

17

ANSI/IEEE
Std 1002-1987

Identifier

2167.1
2167.2
2167.3
21674
2167.5
2167.6
2167.7
2167.8

FIPS 38

FIPS 64

FIPS 99

FIPS 101

FIPS 105

FIPS 106

NSAC-39

178

178.1
178.2
178.3

9650

IEEE STANDARD TAXONOMY FOR

Title

Section 5.1 Requirements Analysis
Sections 5.2, 5.3 Design

Section 5.4 Coding

Sections 5.5, 5.6 Integration and Testing
Section 5.7 Configuration Management
Section 5.8 Quality Evaluation

Section 5.8.1.5 Installation and Checkout

Sections 4.1, 4.2, 5.9 Project Management

National Bureau of Standards, Guidelines for Documentation of Computer Pro-
grams and Automated Data Systems, Federal Information Processing Standards
(FIPS) Publication (PUB) 38, February 15, 1976.6

National Bureau of Standards, Guidelines for Documentation of Computer Pro-
grams and Automated Data Systems for the Initiation Phase, FIPS PUB 64,
August 1, 1979.

National Bureau of Standards, Guideline: A Framework for the Evaluation and
Comparison of Software Development Tools, FIPS PUB 99, March 1983.

National Bureau of Standards, Guideline for Lifecycle Validation, Verification,
and Testing of Computer Software, FIPS PUB 101, June 1983.

National Bureau of Standards, Guideline for Software Documentation Manage-
ment, FIPS PUB 105, June 1984.

National Bureau of Standards, Guideline on Software Maintenance, FIPS PUB
106, July 1984.

Nuclear Safety Analysis Center, Verification and Validation for Safety Parameter
Display Systems, NSAC-39, December 1981.

Radio Technical Commission for Aeronautics, Software Considerations in Air-
borne Systems and Equipment Certification, RTCA /DO-178A, March 22, 1985."

Section 6 Development Verification and Validation
Sections 7.1, 7.2 Configuration Management
Sections 7.1, 7.3 Software Quality Assurance

MITRE, Software Reporting Metrics, ESD-TR-85-145, MTR 9650, Revision 2,
November 1985.

6 FIPS publications are available from the Standards Processing Coordinator, Institute for Computer Sciences and Technology,
National Bureau of Standards, Gaithersburg, MD 20899.

TRTCA publications are available from the Radio Technical Commission for Aeronautics (RTCA), 1425 K Street, NW, Suite
500, Washington, DC 20005.

18

ANSI/IEEE
Std 1002-1987

SOFTWARE ENGINEERING STANDARDS

(yuapuadopuy 9seyq) UO}eOYISSB]) pPIepus)s [e1dus)) jo sjdurexy

1V 3
awabeuew
0596 ‘84912 a)nosay
awabeuew
L912°€8Y S £912°78LLESY08Y PNpoid + y
w >
. . 6 a| S
£841'8°4912°0Qvy 'S0L uawoabevew | W 1 u
Sdi4°1ZS1 9491764428 $52201d
0
6€-DVSN
‘101 Sdi4' 1’841 ‘6 AVLSAVL Bunsay)
siskjeuy 19npoid A }
6E-DVSN LOL Sdid"L'8LL : ”)
6E-IVSN LOL Sdld"1'821 1ggt | SHPMY PUESMIINY u
2>ucuuien n
66 Sdid 21emyos 4
6
66 Sdld voddnspnpoid |
v [9
66 SdI BuiBbngea| 1 | o
2 r
66 Sdid UOISIaAUD) ...
6
66 Sdld uoneiBaju) .m.
66 Sdi4 Buipad }
ubis n
66 Sdld 1520 P
sisAjeuy 1
66 Sdid Juawasnbay d
ﬁ%“_ﬁ.ﬁ ﬁﬂ.ﬁwﬂh—ﬂm& piepuels PNpoid piepuels $sa201d

piepuess jo adA}

19

(esByg uBIsa(]) UOIIBIYISSBL) pIepuw)§ [elousy jo ajdurexy

IEEE STANDARD TAXONOMY FOR

gv 31
sasodind Buiuue|d Joj autwex3y, puaba
juawabeuey
0596 ‘84912 221n083Y
Juawabeueyy
L917°E8Y SL917°'78LL 'E8Y 08y PNpoId T U
w
6 a| S
€841'8'£912'DAVY 'SOL wowabevew | W 1| |,
£912 Sdid'1ZS1 9 LILT '6LL2S $523014
(o]
6€-DVSN
"LOLSdId"L'BLL '6 QVLSAVL Gunsay 1
siskjeuy pnpoad | D }
6E-DVSN LOL Sdid "L'8LL : N u
6E-DVSN
"LOLSdI4 1821 LzgL| SHPMVPUESMANY u
dueudutenw n
+901 Sdid 3iem3jos 4
yoddng 1onposd .n.
1 9
6uibh! 1
1bbnqaq s o
: (
uoISIdAUO) | U
1
. (]
v'2912 2912 uonesba .u.
SWVDI"4E7£91Z AVY LEL91T Buipod 3
ufiis n
06% ‘WVDI '8€ Sdid 'T°£91LZ oawy ‘'TL9ie 120 “
sishjeuy F]
SNV 49 Sdid "« 1 °£91Z 172917 4667 uawainnbay d

piepuels
uoneIoN

piepuels
jeuoissajoid

piepuels PNPoid

plepueys ss3>044d

piepuejs jo adAL

ANSI/IEEE
Std 1002-1987

20

SOFTWARE ENGINEERING STANDARDS

A2. An Approach to Annotating
Software Engineering Standards with
Keywords

The process of analysis, selection, and com-
paring of standards will benefit from a system-
atic means of keyword identification, which may
then be incorporated into an organization’s clas-
gification and retrieval procedures. An example
set of keyword formation rules follows:

(1) Software engineering standards shall be
classified with keywords. This shall be accom-
plished as part of a standard’s development.

(2) Keywords shall be included in a standard’s
introduction. Keyword inclusion shall use the
following format: “Keywords applicable to this
standard are: Keyword 1, Keyword 2, . . ., Key-
word n.”

(3) Keywords shall be limited to words or
phrases as contained in IEEE Std 1002-1987.

(4) Multiple keywords may be used in classi-
fying a standard.

(5) Commas shall be used to separate key-
words. The keyword shall will be terminated
with a period.

(6) A standard shall be assigned at least one
keyword from both the standards partition and
software engineering partition. Within the cat-
egories of function and life cycle, multiple pri-
mary keywords may be selected.

The application of the keyword rules to some
of the IEEE software engineering standards is
illustrated in the following list:

Example # 1. ANSI/IEEE Std 729-1983, IEEE
Standard Glossary of Software Engineering Ter-
minology. Keywords applicable to this standard
are: nomenclature standard, notation standard,
software engineering.

Example #2. ANSI/IEEE Std 730-1984, IEEE
Standard for Software Quality Assurance Plans.
Keywords applicable to this standard are: proc-
ess management, product standard, software en-
gineering, technical management.

Example #3. ANSI/IEEE Std 828-1983, IEEE
Standard for Software Configuration Manage-
ment Plans. Keywords applicable to this stan-
dard are: product management, product
standard, technical management, software en-
gineering.

Example #4. ANSI/IEEE Std 829-1983, IEEE
Standard for Software Test Documentation.
Keywords applicable to this standard are: prod-
uct standard, software engineering, testing, ver-
ification and validation.

21

ANSI/IEEE
Std 1002-1987

Example #5. ANSI/IEEE Std 830-1984, IEEE
Guide to Software Requirements Specifications.
Keywords applicable to this standard are: prod-
uct engineering, product standard, require-
ments analysis, software engineering.

Example #6. ANSI/IEEE Std 983-1986, IEEE
Guide to Software Quality Assurance Planning.
Keywords applicable to this standard are: proc-
ess standard, process management, technical
management, software engineering.

Example #7. ANSI/IEEE Std 1008-1987,
IEEE Standard for Software Unit Testing. Key-
words applicable to this standard are: process
standard, testing, verification and validation,
software engineering.

A3. Application of Taxonomy to IEEE
Software Engineering Standards (SES)
Program

The IEEE Technical Committee on Software
Engineering has an active program for software
engineering standards. Listed below are the
standards that are complete and those that are
still in progress. The list of standards has been
categorized by the taxonomy. To do that, three
tables were created. The first table (see Fig A3)
consists of the job function portion of the soft-
ware engineering partition down the side and
standards partition across the top. This orien-
tation was chosen for presentation purposes.

Each entry on the standards list below was
placed in the appropriate table entry. The S, R,
and G refer to standard, recommended practice,
and guide, respectively. The empty entries in-
dicate possible areas for future standards.

The second and third tables use the standards
partition down the side and functions across the
top. The next lower level of detail was added for
the standards partition. See Figs A4 and A5.

Approved Software Engineering Standards

Ref Description

729 IEEE Standard Glossary or Soft-
ware Engineering Terminology

730 IEEE Standard for Software Qual-
ity Assurance Plans

828 IEEE Standard for Software Con-

figuration' Management Plans

ANSI/IEEE

Std 1002-1987

Ref Description

829 IEEE Standard for Software Test
Documentation

830 IEEE Guide to Software Require-
ments Specifications

983 IEEE Guide for Software Quality
Assurance Planning

990 IEEE Guide for the Use of Ada*
As a PDL

1002 IEEE Standard Taxonomy for
Software Engineering Standards

1008 IEEE Standard for Software Unit
Testing

1012 IEEE Standard for Software Ver-
ification and Validation Plans

1016 IEEE Recommended Practice for

Software Design Descriptions

Approved Software Engineering
Standards Projects

Ref Description

P982 Standard for Software Reliability
Measurement

P1028 Standard for Software Reviews
and Audits

P1042 Guide for Software Configuration
Management

P1044 Standard Classification of Soft-
ware Errors, Faults, and Failures

P1045 Standard for Software Productiv-
ity Metrics

P1058 Standard for the Software Project
Management Plan

P1059 Guide for Software Verification

and Validation

IEEE STANDARD TAXONOMY FOR

Ref Description

P1060 Standard for Software Mainte-
nance

P1061 Standard for Software Quality
Metrics

P1062 Guide for Third Party Software
Acquisition

P1063 Standard for User Documentation

P1074 Standard for the Software Life

Cycle Processes

A4. Job Function to Software Life
Cycle Correlation

In some sense, job functions and phases can
be correlated to each other. The purpose of this
section is to illustrate that relationship. See Fig
A6.

Note that in the product engineering and ver-
ification and validation categories each row is
filled in to indicate where

(1) the planning or monitoring activity takes
place (empty square)

(2) the focus of the phase and job function
partially coincide (shaded square)

(3) the focus of the phase and job function
directly coincide (dark square)

For product engineering and verification and
validation activities, this indicates the respec-
tive phases for which these activities build,
reach and stay at peak effort, and then taper
off. The maintenance phase is typically a repeat
of the basic software life cycle, and this is de-
noted in the respective column by an asterisk.

Note that for the technical management func-
tions, activities generally happen across all
phases. This is indicated by dark squares for all
phases for these job functions.

* Ada is a registered trademark of the U.S. Government, AJPO.

22

ANSI/IEEE
Std 1002-1987

SOFTWARE ENGINEERING STANDARDS

([9A97] s804x)) spaepuels Surraurduy aremiyos FHAI JO UOHBOYISSE[)

gv 314
Juawabeuew
(s)z00L ‘(S)62L (S)SYOL avinosay
(S)r£L0L “(Srr0L wuawabeuew
(S)Z001L '(S)62L (s)e90L '(s)8z8 (9)Zv0L '(5)8Z0L '(S)Z86 »npoid 'y
w >
, awabevew | 6 a| S
. L (S)1901 '(9)€86 sso0id | W L]
(s)zooL ‘(s)62L (5)8501 "(S)OEL "(S)rL0t ‘(S)Z90L '(S)8Z0L
. o
(9)6S0L “(S)vL0L
(s)2001 ()62 (s)Z101 (5)628 ($)z101 (58001 ()678 Bunsay I
A
($)200t '(S)62L (9)6501 sisjeuy 1NPoid w w
(S)zooL ‘(s)6zsL (s)z10t (S)pL0L (S)gz0L| SUPMV PUE MaIARY u
n
Aueuduiew
(5)2001 “($)62L (S)rLOL ‘(5)0901 a1emyos 4
6
(S)2001 "(S)62L (5)€901 (2ot yoddng 1npoid ° q
'
(5)2001 ‘()62 (201 6uibbngag m o
M r
(s)zool ‘(s)6zL (S)zot UOISIPAUO) .h.
6
(s)zool ‘(s)6z. (S)p201 uonesbaju| .m.
(S)Z001 ‘(S)62L (S)r201 buipod w
(9101 n
($)2001 “(4)066 '(S)62L (9101 (S)201 ubisag p
sisjeuy]
($)z001 ‘624 (9)o€8 (S)wLoL judwannbay | d
wvm_wwuwah _nwﬁwhﬁu.wn piepueis PNposd piepue}s $sa3X0id
piepueis jo adAL

23

(I }red—[PA9] PoUYRY) SpIepue)g SureduIduy aI8Mos AL JO UONIBOYISSE)

IEEE STANDARD TAXONOMY FOR

vV 314
066 abenbueq
3
9101 uonejudsarday m
)
2001624 2001'62L Z001°62L zZ001'62L 2001’62, 2001°6ZL 2001°6ZL 200167, 1MEPUIWON | N p
wnmn) | u 1
o
Buisuadry | 1+ | B
sl P
uonesyniad [3 u
sipajoapod | & | e
1
ajuLjevonedng [4 | 3
Joday S
}
ueld| d
al?
€901 uondunsag P o
(o]
jusuodwo) 1 3
9104 ubiseaq| d | d
0€8 uawanbay A
wawainseaw | § 1
3
anbiuyyay w
vL0L vL01°0901 rL01 0L vL0L 0L vi0L ZA POYIN “_
woddng ddueuduienw siskjeuy
PNpoId 21eM1OS buibbngqaqg UOISIdAUOD uoneibaju| B6uipod ubisaq sjuswainbay
Bursaauibugz 1onpoid
uonung qor

ANSI/IEEE
Std 1002-1987

24

ANSI/IEEE
Std 1002-1987

(II Hed—[9A9] pauyay) sprepuels Jursoursuy oIemjos FAAI JO UOHBIYISSEL)

gV 30

abenbueq

uonejuasaidoy

2001’62

200L'62¢

2001'62¢

2001'6ZL

Z00L'624

2001'62L

INIEPUIWON

Z0+ ®+

wnnand

Buisuai

uonesya)

$21Y33 40 9p0d

jeuonednQ

A0 0unun-0Cc

628

Hoday

7101 '628

ziot

Ziot

878

8501 '0€L

ueyd

678

€901

uondinsag

jyuduodwo)

ubisaqg

wawannbay

A-~0T IV

Svol

vv0L ‘286

1901

uAWAINSEIW

anbiuyday

¥£01 ‘8001 628

vLi0l

vL01 '8Z01

vL01

v£01°Zv01'8201L

#£01°2901'8201°€86

poyIaW

[N XST. XYY

N ©CCT O =T

Q N=

- >™a o

bunsay

sisAjeuy
PNpoId

supny
pue Mainay

judwabeuepy
3unosay

judwabeuepw
Pnpoid

juawabeuep
$$2304d

25

uonepPI|BA '3 UOIIRIIIIIAA suoidun4 Juawabeuep |e21uYd3}

uondun4 qor

SOFTWARE ENGINEERING STANDARDS

UOT)B[II0)) I[OL) 9JIT] daeM)JOS-UOIOUN] qOf

IEEE STANDARD TAXONOMY FOR

9V 314
apAyaynjoieaday *
901 Bupioyuow/Butuueld [|
a0y woddns N
ajoy Krewid I
:puabal
O mm | BN | BE | BN | BN | BN | BN | B U
T | mm | Em | BN | Em | Em | mm | mm | oo |
=EE_ BE_EBE_EBE B R IR B B0k
* NN [[NN NN 1 - Bunsay
. SNEENEENEE N N . “won | 3
S - | mm | mm | mm | mm | EE | B | Y | e |
N BEESSE\T sT I m I Rcvics - B N
H e O m Y| N N N N | O Mo 1 1
C | N | DN | EE | EE | &S | OO | O3 | sl 2| "
| | N | Y | Y | NS | OO | vesee| § |
O e | Y | N | S | O | sosesew| 3]0
D | NN | N | Y | OO O bupos | >
* 1 NN 1 NW] N\ NN ubisaa | b
NSRRI B BE
— 3pA) N oazéo_m - —

ANSI/IEEE
Std 1002-1987

26

ANSI/IEEE
SOFTWARE ENGINEERING STANDARDS Std 1002-1987

Acknowledgements

The following organizations provided support for the development of this standard:

AccuRay Corporation

Applied Physics Laboratory

AT&T Bell

Canada Bell

Northern Research

The Boeing Company

Bradley University

Computer Sciences Corporation
E-Systems

Edinboro University of Pennsylvania
Hewlett-Packard

Hughes

IBM

INCO, Inc.

ITT Corporation

McDonnell Douglas

Mervine and Pallesen

MIV-MEDA Litd.

NCR Corporation

Northern Telecom

Pratt & Whitney Aircraft
Programming

Environments, Inc.

Sanders Associates Software
Engineering Associates Software
Quality Engineering

Teledyne Brown Engineering
Tennessee Valley Authority

The Algoma Steel Corporation, Ltd.
U.S. Department of Housing and Urban Development
U.S. Department of Transportation

This support does not constitute or imply approval or endorsement of this standard.

27

