Proof of Correctness:
A Simple Example

- Problem: Store in s the sum of array $b[0..10]$

- Program

 $i := 1$;
 $s := b[0]$;
 while ($i < 11$)
 $s := s + b[i]$;
 $i := i + 1$;
 end-while
Establish Pre- and Post-Conditions

pre: true

\[i := 1; \]

\[s := b[0]; \]

while (\(i < 11 \))
\[s := s + b[i]; \]
\[i := i + 1; \]

dend-while

post: \(s = \sum_{k=0}^{10} b[k] \)
Loop Invariant

- A constant (unchanging) predicate (constraint or fact)
- Unaffected by the group of mathematical operations under consideration
- In the programming context, an operation is an iteration of the loop
Establishing a Loop Invariant

- Define a predicate I that shows the logical relationship between i, s, and b:

$$I: 1 \leq i \leq 11 \land s = \sum_{k=0}^{i-1} b[k]$$

- Show that I is true before the loop and after each iteration of the loop (so that it is true upon completion)

- If I is true in all these places, with the falsity of the guard, we can show that the program post-condition holds
Another way of saying this ...

pre: true
i := 1;
s := b[0];
I
while (i < 11)
 s := s + b[i];
 i := i + 1;
 I
end-while
I
i ≥ 11 ∧ I ⇒ post: s = \sum_{k=0}^{10} b[k]
Reasoning Steps

1. Show that I is true before the loop

2. Show that each iteration of the loop leaves I true
 - I is true before and after each iteration of the loop and upon termination

3. Show that the truth of I and the falsity of the guard (i.e., $i \geq 11$) imply the post-condition
Show I is True Before the Loop

- Before the loop, we have:
 \[
 i := 1; \ s := b[0];
 \]
- Do these affect the loop invariant I?

\[
1 \leq i \leq 11 \land s = \sum_{k=0}^{i-1} b[k]
\]

\[
\equiv
\]

\[
1 \leq 1 \leq 11 \land b[0] = \sum_{k=0}^{1-1} b[k]
\]

\[
\equiv
\]

\[
true \land b[0] = \sum_{k=0}^{0} b[k]
\]

\[
\equiv
\]

\[
true \land b[0] = b[0] \equiv true
\]
Show I is True After Each Loop

Iteration

• Inside loop we have

 $s = s + b[i]$
 $i := i + 1$

• Do these affect the loop invariant I?

 $1 \leq i \leq 11 \land s = \sum_{k=0}^{i-1} b[k]$

 Substitute new values for i and s
Show I is True After Each Loop Iteration (continued)

$$1 \leq i + 1 \leq 11 \land s + b[i] = \sum_{k=0}^{(i+1)-1} b[k]$$

≡

$$0 \leq i < 11 \land s + b[i] = \sum_{k=0}^{i} b[k]$$

≡

$$0 \leq i < 11 \land s + b[i] = (\sum_{k=0}^{i-1} b[k] + b[i])$$

≡ $$0 \leq i < 11 \land s = \sum_{k=0}^{i-1} b[k]$$
Upon Loop Termination

• $I \land i \geq 11 \Rightarrow \text{post-condition}$?

• We know $i = 11$, thus

$$1 \leq 11 \leq 11 \land s = \sum_{k=0}^{11-1} b[k]$$

$$\equiv$$

$$\text{true} \land s = \sum_{k=0}^{10} b[k]$$