
Estimating Effort by Use Case Points: Method, Tool and Case Study

Shinji Kusumoto, Fumikazu Matukawa, Katsuro Inoue
Graduate School of Information Science and Technology, Osaka University

Toyonaka, Osaka, 560-8531 Japan
{kusumoto,matukawa,inoue}@ist.osaka-u.ac.jp

Shigeo Hanabusa, Yuusuke Maegawa
Production Technology Department, Hitachi Systems & Services, Ltd.

Ota-ku, Tokyo, 143-8545 Japan
{s-hanabusa, y-maegawa}@hitachi-system.co.jp

Abstract

Use case point (UCP) method has been proposed to esti-
mate software development effort in early phase of software
project and used in a lot of software organizations. Intu-
itively, UCP is measured by counting the number of actors
and transactions included in use case models. Several tools
to support calculating UCP have been developed. How-
ever, they only extract actors and use cases and the com-
plexity classification of them are conducted manually. We
have been introducing UCP method to software projects in
Hitachi Systems & Services, Ltd. To effective introduction
of UCP method, we have developed an automatic use case
measurement tool, called U-EST. This paper describes the
idea to automatically classify the complexity of actors and
use cases from use case model. We have also applied the
U-EST to actual use case models and examined the differ-
ence between the value by the tool and one by the special-
ist. As the results, UCPs measured by the U-EST are similar
to ones by the specialist.

1. Introduction

As the role of software in the society becomes larger
and more important, it becomes necessary to develop high-
quality software cost-effectively within a short period. In
order to achieve this goal, the entire software development
processes need to be managed based on an effective project
plan.

It is essential to estimate various undesirable phenom-
ena which happened during the project and take measures to
prevent them in advance to construct distinct plan. Issues of
estimation in the area of software development are size, ef-
fort invested, development time, technology used and qual-

ity. Particularly, development effort is the most important is-
sue. So far, several effort models [4][5][13] have been pro-
posed and most of them include software “size” as an im-
portant parameter.

Function point is a measure of software size that uses
logical functional terms that business owners and users
more readily understand [1]. Since it measures the func-
tional requirements, the measured size stays constant de-
spite the programming language, design technology, or de-
velopment skills involved. Up to the present, various FPA
versions based on the Albrecht’s version have been pro-
posed (e.g. IFPUG method[8], MarkII[12], COSMIC-FFP
[6]) and they have been accepted as ISO/IEC standards.

However, in order to precisely measure function point, it
is necessary to use the detailed information about the target
software. Such information is defined in the detailed soft-
ware design specification. On the other hand, software de-
velopment period for recent software (e.g. Web application
and embedded software) becomes too short to spare time
to count function point from the detailed design specifica-
tion. So, it is difficult to apply function point to such soft-
ware.

To estimate the effort in earlier phase, use case point
method has been proposed[10]. Use case point (UCP) is
measured from a use case model that defines the functional
scope of the software system to be developed. It is influ-
enced by the function point methods and is based on anal-
ogous use case point. There are several experience reports
that show the usefulness of use case point for early estima-
tion of software size (see Section 2.3 in the followings).

We have been involved in the activity to introduce ef-
fort estimation method to Hitachi Systems & Services, Ltd.
In the company, the period of software development project
is becoming shorter and also a method to estimate the effort
in the early phase is expected. This paper describes the ac-

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04) 
1530-1435/04 $ 20.00 IEEE 



tual experience of introducing use case point method to soft-
ware projects in the company. To effective introduction of
use case point method, at first, we develop a use case mea-
surement tool. Since the main activity of calculating UCP is
to classify the complexity of actors and use cases and is con-
ducted manually, we address the automatic classification of
them. Then, we apply the tool to actual use case models de-
veloped in the company and compare the UCP values cal-
culated by the tool to ones by the specialist. As the results,
UCPs measured by the U-EST are similar to ones by the
specialist.

Section 2 briefly explains use case point method. Next,
Section 3 proposes the use case point measurement tool and
Section 4 describes the case study. Finally, Section 5 con-
cludes the paper.

2. Use Case Point Method

This section briefly explains the measurement steps in
the use case point method described in [10].

2.1. Use case model

Use case point (UCP) is calculated from use case
model[10]. The use case model mainly consists of two doc-
uments, system or subsystem documents and use case doc-
uments that include the following items: system name, risk
factors, system-level use case diagram, architecture dia-
gram, subsystem descriptions, use case name, brief de-
scription, context diagram, preconditions, flow of events,
post conditions, subordinate use case diagrams, subor-
dinate use cases, activity diagram, view of participat-
ing classes, sequence diagrams, user interface, business
rules, special requirements and other artifacts.

Here, we explain the main items used to calculate UCP.
They are system-level use case diagram and flow of events.
System-level use case diagram includes one or more use
case diagrams showing all the use cases and actors in the
system. Flow of events includes a section for the normal
path and each alternative path in each use case. Figure 1
shows an example of system-level use case diagram of “Or-
der Processing System”. Figure 2 shows a part of flow of
events of the use case “Place order” in Figure 1.

2.2. Counting use case point

Intuitively, UCP is measured by counting the number of
actors and transactions included in the flow of events with
some weight. A transaction is an event that occurs between
an actor and the target system, the event being performed
entirely or not at all.

Effort estimation based on UCP method is conducted
through the following Steps 1 - 6:

Order Processing System

Customer

Place order

Return product

Figure 1. Use case diagram

1 � The customer presses a button to select “Place Order”.
2 � The system supplies an input screen.
3 � The customer enters product codes for products to be ordered.
4 � The system supplies the products description and price.
.
.
.

Figure 2. Flow of events

Step1 (Counting actors weight): The actors in the use case
model are categorized as simple, average or complex.
A simple actor represents another system with a de-
fined API. An average actor is either another system
that interacts through a protocol such as TCP/IP or it
is a person interacting through a text-based interface
(such as an old ASCII terminal). A complex actor is a
person interacting through a GUI interface.

Then, the number of each actor type that the tar-
get software includes is calculated and then each num-
ber is multiplied by a weighting factor shown in Table
1. Finally, actors weight is calculated by adding these
values together.

Step2 (Counting use cases weight) Each use case is cat-
egorized as simple, average or complex. The basis of
this decision is the number of transaction in a use case,
including alternative paths. For this purpose, a transac-
tion is defined to be an atomic set of activities, which
is either performed entirely or not at all. But, included
or extending use cases are not considered. A simple
use case has 3 or fewer transactions, an average use
case has 4 to 7 transactions, and a complex use case ha
more than 7 transactions.

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04) 
1530-1435/04 $ 20.00 IEEE 



Then, the number of each use case type is counted
in the target software and then each number is multi-
plied by a weighting factor shown in Table 2. Finally,
use case weight is calculated by adding these values to-
gether.

Step3 (Calculating UUCP) Un adjusted use case points
(UUCP) is calculated by adding the total weight for
actors to the total for use cases.

Step4 (Weighting Technical factors and Environmental
factors) The UUCP are adjusted based on the values
assigned to a number of technical and environmental
factors shown in Tables 3 and 4. Each factor is assigned
a value between 0 and 5 depending on its assumed in-
fluence on the project. A rating of 0 means the factor
is irrelevant for this project and 5 means it is essen-
tial.

The technical factor (TCF) is calculated by multi-
plying the value of each factor (T1-T13) in Table 3 by
its weight and then adding all these numbers to get the
sum called the TFactor. Finally, the following formula
is applied: TCF=0.6+(0.01*TFactor).

The environmental factor (EF) is calculated accord-
ingly by multiplying the value of each factor (F1-F8)
in Table 4 by its weight and adding all the products to
get sum called the Efactor. Finally, the following for-
mula is applied: EF=1.4+(-0.03*EFactor)

Step5 (Calculating UCP) The adjusted use case
points (UCP) are calculated as follows.
UCP=UUCP*TCF*EF.

Step6 (Estimating Effort) By multiplying the spe-
cific value (man-hours) by the UCP, estimated ef-
fort can be obtained. In [10], a factor of 20 man-hours
per UCP for a project is suggested.

Type Description Factor

Simple Program interface 1
Average Interactive, or protocol-driven, interface 2
Complex Graphical Interface 3

Table 1. Actor Weighting Factors

2.3. Related works

Until now, several researches and case studies have been
reported about the use case point method and effort esti-
mation based on use case model. Smith proposed a frame-
work to estimate LOC from use case diagram[11]. The
framework takes account of the idea of use case level, size
and complexity, for different categories of system and does
not resort to fine-grain functional decomposition. Arnold

Type Description Factor

Simple 3 or fewer transactions 5
Average 4 to 7 transactions 10
Complex More than 7 transactions 15

Table 2. Transaction-Based Weighting Fac-
tors

Factor Description Weight

T1 Distributed system 2
T2 Response or throughput performance objectives 1
T3 End-user effi ciency (online) 1
T4 Complex internal processing 1
T5 Code must be reusable 1
T6 Easy to install 0.5
T7 Easy to use 0.5
T8 Portable 2
T9 Easy to change 1
T10 Concurrent 1
T11 Includes special security features 1
T12 Provides direct access for third parties 1
T13 Special user training facilities are required 1

Table 3. Technical Factors for System and
Weight

and Pedross reported that the use of the use case point
method is accepted to estimate the size[3]. They also de-
scribed that since the language concepts for documenta-
tion are not well understood, it would be important to de-
fine the language concepts more precisely in advance. Anda
et al. applied use case point method to three kinds of soft-
ware project[2]. The results showed that the estimated ef-
fort for each project was quite similar between use case
point method and the specialist. They suggested that use
case point method should use with other estimation method
(e.g. function point, COCOMO). Also, for the novice man-
ager, use case point method is easy to use in the estimation.

Factor Description Weight

F1 Familiar with the Rational Unifi ed Process 1.5
F2 Application experience 0.5
F3 Object-Oriented Experience 1
F4 Lead analyst capability 0.5
F5 Motivation 1
F6 Stable requirements 2
F7 Part-time workers -1
F8 Diffi cult programming language -1

Table 4. Environmental Factors for Team and
Weight

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04) 
1530-1435/04 $ 20.00 IEEE 



There are several tools to support use case point count-
ing (e.g. Enterprise Architect[17], Estimate Easy Use
Case[18]). The tools extract actors and use cases from
use case diagrams. By inputting the complexity of the ac-
tors and use cases, technical factors, environmental factors,
the use case point and the estimated efforts are calcu-
lated.

3. Use Case Point Measurement Tool

3.1. Overview

In order to effectively introduce use case point method
to the actual software development, we decided to develop
a use case point measurement tool. As described in Section
2.3, there exist several tools. But, it is necessary to judge the
complexity of actors and use cases by manually. The judg-
ment is the most important activity to count use case point
and should be automated. To effective introduction of use
case point, at first, we develop an automatic use case point
measurement tool as possible. Especially, it is necessary to
develop a way of decide the weight for each actor and use
case in the use case model of the target software system. To
attain it, we propose several rules to classify the weight for
actor and use case in Section 3.2 and 3.3

Also, it is necessary to write the use case model in
machine-readable format. So, we assume that the use case
model is written in XMI(XML Metadata Interchange)[9].
Because most CASE tools for writing UML diagrams sup-
port to export the them as XMI files. Fortunately, Hi-
tachi Systems & Services is going to use UML design tool
Describe[16] that exports the use case model as XMI files.

3.2. Rules for weighting actors

As described in Section 2.2, weight for each actor is de-
termined by the interface between the actor and the target
system. But, the description of actor described in use case
model does not include information of the interface. That is,
we can get only the name of actor. So, we propose the fol-
lowing three steps to classify the complexity of actor.

Step1: Classification based on actor’s name:
Generally, actor is a person or an external system.

According to Table 1, in case that the actor is a per-
son, the weight can be average or complex. Also, in
case that the actor is a external system, the weight can
be simple or average. So, at first, based on the name
of the actor, we judge whether the actor is a person or
an external system. That is, beforehand, we prepare the
list of keywords which can be included in the name of
software system. For example, the keywords “system”
and “server” are used in the system’s name.

In our tool, we set the following keywords for an
external system through the discussions with the engi-
neers in Hitachi Systems & Services.

Keywords for Step1 (KLa): system, server, appli-
cation, tool.

Step2: Classification based on keywords included in use
case:

Here, we focus on the flow of events included in
use case to which the actor is relevant. At first, we pre-
pare three kinds of keywords list for each complexity
of actor. For example, keyword list for complex actor
includes “GUI”, “button”, and so on. Then, we extract
all words included in the flow of events and then match
them with each keyword in the lists. Finally, the ac-
tor’s weight is assigned as the complexity for the key-
word list that is most fitted to the words in the flow of
events.

In our tool, we set the following keywords for each
complexity through the discussions with the engineers
in Hitachi Systems & Services.

Keywords for Simple actor (KLsa): request, send, in-
form

Keywords for Average actor(system) (KLaas): mes-
sage, mail, send

Keywords for Average actor(person) (KLaap): com-
mand, text, input, CUI

Keywords for Complex actor (KLca): enter, button,
press, push, select, show, GUI, window

Step3: Classification based on experience data:
In case that we cannot determine the actor’s weight

at Step2, we determine it based on the experience data.
The experience data includes the information about the
use case model and the use case point developed in
the past software projects. If there exits several actors
whose names are the same as the target actor, then we
decide the weight whose value commands an absolute
majority.

By using Figures 1 and 2, we show a simple example of
classification of actor. In Figure 1, there is one actor named
“Customer”. In Step 1, since no keywords in KLa is in-
cluded in the name of the actor, the actor “Customer” is
classified as a person. In Step2, events 1 and 3 are extracted
because “Customer” is related to them. Then, as the result
of matching the keywords of KLaap and KLca with the
words in the events, the keywords (“press”, “button”, “en-
ter”) in KLca are more included in the events. So, the com-
plexity of the actor “Customer” is judged as “Complex”.

3.3. Rules for weighting use cases

As described in Section 2.2, the complexity of use case
is determined by the number of transaction. So, we focus on

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04) 
1530-1435/04 $ 20.00 IEEE 



the flow of events in the use case model. Intuitively speak-
ing, the simplest way to count the transaction is to count the
number of event. But, since there are no standard to write
the flow of events, the developer can write the description
freely using natural language. It is quite possible that sev-
eral transactions are described in one event.

On the other hand, several guidelines to write events in
use case model have been proposed [7]. There are ten guide-
lines to write a successful scenario(flow of events). Among
them, we focus on the following two guidelines.

(G1) Use simple grammar: The sentence structure should
be absurdly simple. That is, it is easily understand
what is the subject, verb, direct object and preposi-
tional phrase.

(G2) Include a reasonable set of actions: Jacobson has de-
scribed a step in a use case as representing a transac-
tion. He suggests the following four pieces of a com-
pound interactions should be described. (1)The
primary actor sends request and data to the sys-
tem, (2)The system validates the request and the data,
(3)The system alters its internal state and (4) The sys-
tem responds to the actor with the result.

So, based on the above guidelines, we propose the way
to analyze the events using the morphological analysis and
syntactic analysis. Through these analyses, we can get the
information of morpheme from the statement and depen-
dency relation between words in the statement.

We conduct the morphological analysis for all
events(statements) and get the information of the sub-
ject word and predicate word from each event (state-
ment).

Then, we apply the following rules:

• Rule U-1: We regard each set of the subject and predi-
cate word as a candidate of a transaction.

• Rule U-2: Among the candidates, we identify the one
that related to actor’s operation and system response as
a transaction.

For each use case, we conduct the above processing and
then get the number of transactions. Then, based on the
number of transaction, we judge the complexity of each use
case.

In case that there is no flow of events in a use case, we
determine the complexity based on the experience data. The
experience data includes the information about the use case
model and the use case point developed in the past software
projects. If there exits several use cases whose name are
the same as the target use case, then we decide the weight
whose value commands an absolute majority.

3.4. Implementation

Based on the proposed method, we have implemented
a prototype tool called U-EST(Use case based Estimation
Supporting Tool). The input is a XMI file. The U-EST is
implemented in Java and Xerces2 Java Parser[14] is used to
analyze the model file. Since the U-EST is mainly used by
Japanese engineers, it has to deal with the Japanese descrip-
tion. In order to conduct morphological analysis and syntac-
tic analysis for event written in Japanese in the use case, we
adopt a tool called CaboCha[15]. CaboCha is the most fa-
mous and precise syntactic analyzer for Japanese.

Figure 3 shows an architecture of U-EST.
Here, we explain the processing of UCP counting based

on the U-EST. At first, the user (designer) writes use case
models and saves it as XMI files. Then, XMI analyzer au-
tomatically extracts actors and use cases from the input
file(use case model). Then, Complexity analyzer judges the
complexity of them and calculates UUCP. Here, the U-EST
shows the list of actors and use cases with their complex-
ity by the request of the user. With respect to the use case,
the U-EST shows the list of events, sets of the subject and
the predicate word (candidates of transaction) in the use
case and the sets that are identified as transactions. If nec-
essary, the user can modify the classification results and re-
calculate UUCP. Then, by setting the technical and envi-
ronmental factors, UCP calculator outputs the results and
the results are stored in the Experience database.

The effort is calculated by multiplying the specific value
(man-hours) by the UCP. Currently, the value is set as 20
man-hours per UCP shown in [10]. But, the value can be
modified through the GUI.

4. Case study

4.1. Outline

In order to evaluate the usefulness of the U-EST, we ap-
plied it to actual use case models developed in Hitachi Sys-
tems & Services. We collected use case models from five
software projects where middle-size Web application pro-
grams were developed. As they are for Japanese use, the
name of actors, use case and the descriptions of flow of
events are written in Japanese. Later, when we refer the
actual names of actors or event descriptions in the evalua-
tion, we translate the Japanese descriptions into English and
use them. All use case models were developed on a UML-
design tool “Describe”[16]. Table 5 shows the characteris-
tic of each project.

In the evaluation, we focused on the results of the au-
tomatic complexity classification of actors and use cases.
So, we compared the measurement results calculated by our

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04) 
1530-1435/04 $ 20.00 IEEE 



Experience
Database

Describe
Modeling

Model File�
XMI �

G
U

I

XMI analyzer
Use case information

(actor, use case, flow of events, etc)

Complexity
analyzer

Un adjusted use case points

UCP Calculator

Technical factors

Environmental
factors

Past project
information

Data

Calculation
Result

Data flow

Control flow

Result

User

Factor
Calculator

Figure 3. Architecture of U-EST

tool and ones calculated by a specialist of use case point
counting.

Project Language No. of actor No. of use case

P1 Java 5 15
P2 Java 5 14
P3 Java, VB.NET 2 20
P4 Java 5 28
P5 Java 8 13

Table 5. Project Data

4.2. Classification of actors

Tables 6 shows the measurement results of actors. In Ta-
bles 6, “S”, “A” and “C” indicate “Simple”, “Average” and
“Complex”, respectively. Also, “Precision” means the ratio
that the classification results by the U-EST and the special-
ist are the same. As a whole, the values measured by the
tool are similar to the ones by the specialist. But, there are
some differences between them and, especially, for project

Project Tool Specialist Precision
S A C S A C

P1 0 1 4 1 0 4 0.80
P2 0 3 2 3 0 2 0.40
P3 0 0 2 0 0 2 1.0
P4 0 1 4 1 0 4 0.80
P5 0 0 8 0 0 8 1.0

Table 6. Classification result(actor)

P2, the precision is low (0.40). So, we examined the differ-
ences for project P1, P2, and P4. As the result, the actors
that caused the inconsistency are external-systems.

Figure 4 shows the example. In Figure 4, the external
system Y appears only in the event where the system S is
the subject. In other words, there are no events that the ex-
ternal system Y is the subject. We asked the specialist why
he judged the actor as simple and found that he judged it
based on his own experience since there were no informa-
tion about the interface between the external system Y and
the system S.

In order to effectively operate our proposed rule, the sec-

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04) 
1530-1435/04 $ 20.00 IEEE 



ond event should be rewritten such as “The system S sends
inquire to the External system Y about the product corre-
sponding to the number. The External system retrieves the
information of the product and sends it to the system S. The
system S gets the information and supplies it to the Person
X .

So, in order to improve the classification of actor’s com-
plexity, it is necessary to get the information about inter-
face between the external system and the target system from
other documents(e.g. other UML diagrams) or to ask the de-
velopers to write the event description to get the processing
of the external system.

System S

Person X

Use case Z

External system Y

1. The Person X enters a number.
2. The system S sends inquire to the External system Y

about the product corresponding to the number, gets the
information and supplies it.

3. The Person X checks the information and…

Figure 4. Example of inconsistency of actor
classification

4.3. Classification of use cases

According to Table 7, the values measured by the tool are
similar to the ones by the specialist. Especially, for Projects
P1 and P5, the consistency is 1.0. But, there are also some
differences between them and for project P2 the consistency
is relatively low (0.64). That is, the complexity measured by
the tool is bigger than one by the specialist. So, we exam-
ined the differences for P2, P3 and P4. As the result, all dif-
ferences were caused by the fact that the specialist did not
count the events that the system supplies something to the
actor as a transaction.

For example, one of the use cases includes the follow-
ing event: “The system supplies the information to the ac-
tor”. The specialist judged that since the system just shows
the retrieved information to the actor, this processing is too
simple to identify a transaction. Surely, this kind of judg-
ment (practice) would be happened in actual software devel-
opment. In order to cope with such problem, U-EST shows
the list of the events that include information whether each

event is identified as a transaction and the user can exclude
some transactions based on the practices of the organiza-
tion, if necessary. Actually, using this function, we can get
the same complexity of the use cases as one that the spe-
cialist counted. So, we consider that the differences are in-
significant for practical use.

Project Tool Specialist Precision
S A C S A C

P1 13 2 0 13 2 0 1.0
P2 6 7 1 10 4 0 0.64
P3 11 9 0 14 6 0 0.85
P4 23 4 1 27 1 0 0.82
P5 2 8 3 2 8 3 1.0

Table 7. Classification Results(use case)

5. Discussions

Here, we discuss the followings points: validity and lim-
itation of our results.

(1) Description of events
The use case models used in the case study were

constructed by the engineers who have some experi-
ence of writing use case models. So, actually, events
descriptions of use case were mostly satisfied with the
guidelines described in [7]. Thus, the U-EST might get
the precise complexity classification of use case. So,
in order to confirm the applicability of the U-EST, we
have to apply it to more use case models developed by
the many engineers who have various experience in the
actual projects. Also, it would be necessary to prepare
formal guidelines how to write use case models to ef-
fectively use the U-EST in the company.

(2) Language
The input use case models to the U-EST must be

written in Japanese. Thus, if the description of events
is written in English, the complexity classification can-
not operate correctly. But, as you know, in the research
area of natural language analysis, there are many re-
search studies of morphological analysis and syntactic
analysis for English. So, if there are some morpholog-
ical analysis and syntactic analysis tools for English,
we can use it in the Complexity analyzer of the U-EST
and automatically classify the complexity of use cases.

6. Conclusions

This paper proposed an automatic use case point tool,
the U-EST. The U-EST calculates use case point from use

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04) 
1530-1435/04 $ 20.00 IEEE 



case models written in XMI files. We have also applied the
U-EST to five use case models developed in the actual soft-
ware projects. As the results, the UCP calculated by the U-
EST are considerably adequate.

We are going to introduce the effort estimation based on
UCP method to the company. In order to show the useful-
ness of the U-EST, we will apply it to many software de-
velopment projects. Also, we are going to analyze the re-
lationship among UCP, function point and actual software
development effort and evaluate the usefulness and applica-
bility of the estimation by UCP method.

Acknowledgements

We would like to thank Mr. Michio Tsuda and Ms.
Mayumi Takahashi of Hitachi Systems & Services, Ltd.
for their discussions and advises in this paper. This work
is partly supported by the Comprehensive Development of
e-Society Foundation Software program of the Ministry of
Education, Culture, Sports, Science and Technology.

References

[1] A.J. Albrecht: “Function Point Analysis”, Encyclopedia of
Software Engineering, Vol.1, pp. 518-524 (1994).

[2] B. Anda, H. Dreiem, D.I.K. Sjoberg, M. Jorgensen: “Esti-
mating Software Development Effort based on Use Cases
- Experiences from Industry”, Proc. of Fourth International
Conference on the UML, pp. 487-504(2001).

[3] M. Arnold, P. Pedross: “Software Size Measurement and
Productivity Rating in a Large-Scale Software Development
Department”, Proc. of the 20th ICSE, pp. 490-493(1998).

[4] V. R. Basili and K. Freburger: “Programming measurement
and estimation in the Software Engineering Laboratory”,
Journal of Systems & Software, 2, pp. 47-57 (1981).

[5] B. W. Boehm: Software Engineering Economics, Prentice-
Hall(1981).

[6] Common Software Measurement International
Consortium, COSMIC-FFP Version 2.0 (2000).
http://www.cosmicon.com/.

[7] Alistair Cockburn: Writing Effective Use Cases (Agile Soft-
ware Development Series), Addison-Wesley (2000).

[8] International Function Point Users Group (IFPUG), “Func-
tion Point Counting Practices Manual, Release 4.1.1”,
(2002).

[9] Object Management Group (OMG), “XML Metadata Inter-
change (XMI) Specifi cation Version 2.0”, (2003).

[10] G. Schneider and J. P. Winters: “Applying Use Cases, Sec-
ond Edition”, Addison Wesley (2001).

[11] J. Smith: “The Estimation of Effort Based on Use Cases”,
Rational Software white paper, (1999).

[12] C. Symons: Software Sizing and Estimating. John Wiley &
Sons (1991).

[13] C. E. Walston and C. P. Felix: “A method of program mea-
surement and estimation”, IBM Systems Journal, 16(1), 54-
73(1977).

[14] Apache, http://xml.apache.org/.
[15] CaboCha : Yet Another Japanese Dependency Structure An-

alyzer, http://cl.aist-nara.ac.jp/ taku-ku/software/cabocha/.
[16] http://www.embarcadero.com/products/describe/ index.html
[17] http://www.devdirect.com/
[18] http://www.duvessa.com/

Proceedings of the 10th International Symposium on Software Metrics (METRICS’04) 
1530-1435/04 $ 20.00 IEEE 


	footer1: 


