
Introduction to UML:
Structural and Use Case Modeling

Cris Kobryn
Co-Chair UML Revision Task Force

cris.kobryn@telelogic.com

Object Modeling with OMG UML Tutorial Series

© 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten,
Rational Software, Telelogic, Unisys

Introduction to UML 2

Overview
! Tutorial series
! Quick tour
! Structural modeling
! Use case modeling

Introduction to UML 3

Tutorial Series

! Lecture 1: Introduction to UML:
Structural and Use Case Modeling

! Lecture 2: Behavioral Modeling with
UML

! Lecture 3: Advanced Modeling with UML

[Note: This version of the tutorial series is based on OMG UML
Specification v. 1.4, OMG doc# ad/01-02-13, adopted in May 2001.]

Introduction to UML 4

Tutorial Goals
! What you will learn:

! what the UML is and what is it not
! UML’s basic constructs, rules and diagram

techniques
! how the UML can model large, complex systems
! how the UML can specify systems in an

implementation-independent manner
! What you will not learn:

! object methods or processes
! metamodeling techniques

Introduction to UML 5

Quick Tour
! Why do we model?
! What is the UML?
! Foundation elements
! Unifying concepts
! Language architecture
! Relation to other OMG

technologies

Introduction to UML 6

! Provide structure for problem solving
! Experiment to explore multiple solutions
! Furnish abstractions to manage complexity
! Reduce time-to-market for business

problem solutions
! Decrease development costs
! Manage the risk of mistakes

Why do we model?

Introduction to UML 7

Tijuana “shantytown”:
http://www.macalester.edu/~jschatz/residential.html

The Challenge

Introduction to UML 8

Fallingwater:
http://www.adelaide.net.au/~jpolias/FLW/Images/FallingWater.jpeg

The Vision

Introduction to UML 9

Why do we model graphically?

! Graphics reveal data.
! Edward Tufte

The Visual Display of Quantitative Information,
1983

! 1 bitmap = 1 megaword.
! Anonymous visual modeler

Introduction to UML 10

! The UML is a graphical language for
! specifying
! visualizing
! constructing
! documenting

the artifacts of software systems
! Added to the list of OMG adopted technologies in

November 1997 as UML 1.1
! Most recent minor revision is UML 1.4, adopted in

May 2001.
! Next major revision will be UML 2.0, planned to be

completed in 2002

Quick Tour

Introduction to UML 11

! Define an easy-to-learn but semantically rich
visual modeling language

! Unify the Booch, OMT, and Objectory modeling
languages

! Include ideas from other modeling languages
! Incorporate industry best practices
! Address contemporary software development

issues
! scale, distribution, concurrency, executability, etc.

! Provide flexibility for applying different
processes

! Enable model interchange and define
repository interfaces

UML Goals

Introduction to UML 12

OMG UML Evolution

Updated from
[Kobryn 01a].

1997
(adopted by OMG)

1998

1999

Q2 2001
Editorial revision
without significant
technical changes.

2002
(planned)

<<document>>
UML 1.1

<<document>>
UML 1.2

<<document>>
UML 1.3

<<document>>
UML 1.4

<<document>>
UML 2.0

Infrastructure

<<document>>
UML 2.0

<<document>>
UML 2.0

Superstructure
<<document>>
UML 2.0 OCL

<<document>>
UML 2.0
Diagram

Interchange

Introduction to UML 13

OMG UML Contributors

Aonix
Colorado State University
Computer Associates
Concept Five
Data Access
EDS
Enea Data
Hewlett-Packard
IBM
I-Logix
InLine Software
Intellicorp
Kabira Technologies
Klasse Objecten
Lockheed Martin

Microsoft
ObjecTime
Oracle
Ptech
OAO Technology Solutions
Rational Software
Reich
SAP
Softeam
Sterling Software
Sun
Taskon
Telelogic
Unisys
…

Introduction to UML 14

OMG UML 1.4 Specification

! UML Summary
! UML Semantics
! UML Notation Guide
! UML Example Profiles

! Software Development Processes
! Business Modeling

! Model Interchange
! Model Interchange Using XMI
! Model Interchange Using CORBA IDL

! Object Constraint Language

Introduction to UML 15

Tutorial Focus: the Language

! language = syntax + semantics
! syntax = rules by which language elements

(e.g., words) are assembled into
expressions (e.g., phrases, clauses)

! semantics = rules by which syntactic
expressions are assigned meanings

! UML Notation Guide – defines UML’s
graphic syntax

! UML Semantics – defines UML’s
semantics

Introduction to UML 16

! Building blocks
! Well-formedness rules

Foundation Concepts

Introduction to UML 17

! The basic building blocks of UML are:
! model elements (classes, interfaces, components,

use cases, etc.)
! relationships (associations, generalization,

dependencies, etc.)
! diagrams (class diagrams, use case diagrams,

interaction diagrams, etc.)
! Simple building blocks are used to create large,

complex structures
! cf. elements, bonds and molecules in chemistry
! cf. components, connectors and circuit boards in

hardware

Building Blocks

Introduction to UML 18

Diagram: Classifier View

Element

Carbon Hydrogen

<<covalent>>

<<covalent>>C

C

C H

Introduction to UML 19

Diagram: Instance View

:Carbon :Carbon

:Hydrogen

:Hydrogen

:Hydrogen

:Hydrogen

:Hydrogen:Hydrogen

Introduction to UML 20

Well-Formedness Rules
! Well-formed: indicates that a model or model

fragment adheres to all semantic and
syntactic rules that apply to it.

! UML specifies rules for:
! naming
! scoping
! visibility
! integrity
! execution (limited)

! However, during iterative, incremental
development it is expected that models will
be incomplete and inconsistent.

Introduction to UML 21

Well-Formedness Rules (cont’d)

! Example of semantic rule: Class [1]
! English: If a Class is concrete, all the

Operations of the Class should have a realizing
Method in the full descriptor.

! OCL: not self.isAbstract implies
self.allOperations->
forAll (op | self.allMethods->
exists (m | m.specification-> includes(op)))

Introduction to UML 22

Well-Formedness Rules (cont’d)

! Example of syntactic rules: Class
! Basic Notation: A class is drawn as a solid-

outline rectangle with three compartments
separated by horizontal lines.

! Presentation Option: Either or both of the
attribute and operation compartments may be
suppressed.

! Example of syntactic guideline: Class
! Style Guideline: Begin class names with an

uppercase letter.

Introduction to UML 23

Unifying Concepts
! classifier-instance dichotomy

! e.g., an object is an instance of a class OR
a class is the classifier of an object

! specification-realization dichotomy
! e.g., an interface is a specification of a

class OR
a class is a realization of an interface

! analysis-time vs. design-time vs. run-
time
! modeling phases (“process creep”)
! usage guidelines suggested, not enforced

Introduction to UML 24

Language Architecture

! Metamodel architecture
! Package structure

Introduction to UML 25

Metamodel Architecture

«metaclass»
Attribute

«metaclass»
Class

«metaclass»
Operation

«instanceOf»

<<metamodel>>
UML Metamodel

Analysis Model
The attribute fare of
the PassengerTicket
class is an instance of
the metaclass
Attribute.

The operation
issue of the
PassengerTicket
class is an
instance of the
metaclass
Operation.

«instanceOf»«instanceOf»

«instanceOf»

<<use>>

<<use>>

Represents the
User Object layer
of the 4-layer
metamodel
architecture
pattern.

«metaclass»
Class

<<metamodel>>
MOF Meta-Metamodel

«metaclass»
Operation

«metaclass»
Attribute

PassengerTicket

+total()
+issue()
+surrender()
+refund()

-issuedBy : Airline
-issuingAgent : TravelAgent
-fare : Currency
-tax : Currency

45723990550: PassengerTicket

-issuedBy : Airline = AcmeAirlines
-issuingAgent : TravelAgent = TerrificTravel
-fare : Currency = 1050.00
-tax : Currency = 57.56

«instanceOf»

From [Kobryn 01b].

Introduction to UML 26

UML Metamodel Layer

Foundation

Core Extension Mechanisms

Data Types

Behavioral Elements

Collaborations Use Cases State Machines

Common Behavior

Activity Graphs

Model Management

package

dependency

From [Kobryn 01b].

Introduction to UML 27

Relationships to Other Modeling Technologies

XMI
Facility

UML Profile
for CORBA

UML Profile
for Telecom

Meta Object
Facility

Metadata layer

Specification
layer

Customization
layer

Platform
technology
profiles

Domain
technology
profiles

Unified
Modeling
Language

<<document>>
UML XMI DTD

<<document>>
UML CORBA IDL

From [Kobryn 01b].

Introduction to UML 28

Structural Modeling

! What is structural modeling?
! Core concepts
! Diagram tour
! When to model structure
! Modeling tips
! Example: Interface-based design

Introduction to UML 29

What is structural modeling?

! Structural model: a view of an system
that emphasizes the structure of the
objects, including their classifiers,
relationships, attributes and operations.

Introduction to UML 30

Construct Description Syntax
class a description of a set of objects

that share the same attributes,
operations, methods, relationships
and semantics.

interface a named set of operations that
characterize the behavior of an
element.

component a modular, replaceable and
significant part of a system that
packages implementation and
exposes a set of interfaces.

node a run-time physical object that
represents a computational
resource.

«interface»

Structural Modeling: Core Elements

Introduction to UML 31

Structural Modeling: Core Elements (cont’d)

Construct Description Syntax
constraint¹ a semantic condition or restriction.

{constraint}

¹ An extension mechanism useful for specifying structural elements.

Introduction to UML 32

Construct Description Syntax
association a relationship between two or more

classifiers that involves connections
among their instances.

aggregation A special form of association that
specifies a whole-part relationship
between the aggregate (whole) and
the component part.

generalization a taxonomic relationship between a
more general and a more specific
element.

dependency a relationship between two modeling
elements, in which a change to one
modeling element (the independent
element) will affect the other modeling
element (the dependent element).

Structural Modeling: Core Relationships

Introduction to UML 33

Construct Description Syntax
realization a relationship between a specification

and its implementation.

Structural Modeling: Core Relationships (cont’d)

Introduction to UML 34

! Show the static structure of the model
! the entities that exist (e.g., classes, interfaces,

components, nodes)
! internal structure
! relationship to other entities

! Do not show
! temporal information

! Kinds
! static structural diagrams

! class diagram
! object diagram

! implementation diagrams
! component diagram
! deployment diagram

Structural Diagram Tour

Introduction to UML 35

Static Structural Diagrams

! Shows a graph of classifier
elements connected by static
relationships.

! kinds
! class diagram: classifier view
! object diagram: instance view

Introduction to UML 36

Classes

Fig. 3-20, UML Notation Guide

Window

display ()

size: Area
visibility: Boolean

hide ()

Window
Window

+default-size: Rectangle
#maximum-size: Rectangle

+create ()

+display ()

+size: Area = (100,100)
#visibility: Boolean = true

+hide ()

-xptr: XWindow*

-attachXWindow(xwin:Xwindow*)

{abstract,
author=Joe,
status=tested}

Introduction to UML 37

Classes: compartments with names

Fig. 3-23, UML Notation Guide

bill no-shows

Reservation

operations
guarantee()
cancel ()
change (newDate: Date)

responsibilities

match to available rooms

exceptions

invalid credit card

Introduction to UML 38

Classes: method body

Fig. 3-24, UML Notation Guide

report ()

BurglarAlarm

isTripped: Boolean = false

PoliceStation

1 station

*

{ if isTripped
then station.alert(self)}

alert (Alarm)

Introduction to UML 39

Types and Implementation Classes

Fig. 3-27, UML Notation Guide

Set
«type»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

* elements

Object
«type»

HashTableSet
«implementationClass»

addElement(Object)
removeElement(Object)
testElement(Object):Boolean

1 body

HashTable
«implementationClass»

setTableSize(Integer)

Introduction to UML 40

Interfaces: Shorthand Notation

Fig. 3-29, UML Notation Guide

+create()
+login(UserName, Passwd)
+find(StoreId)
+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

-storeId: Integer
-POSlist: List

Store

POSterminal

POSterminalHome

<<use>>

StoreHome

Store

POSterminal

Introduction to UML 41

Interfaces: Longhand Notation

Fig. 3-29, UML Notation Guide

+create()
+login(UserName, Passwd)
+find(StoreId)
+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

-storeId: Integer
-POSlist: List

Store

POSterminal

POSterminalHome

<<use>>

StoreHome

POSterminal

+getPOStotals(POSid)
+updateStoreTotals(Id,Sales)
+get(Item)

<<interface>>
Store

Introduction to UML 42

Associations

Fig. 3-40, UML Notation Guide

Person

Manages

Job
Company

boss

worker

employeeemployer
1..∗

∗

∗

0..1

Job

Account

Person

Corporation

{Xor}

salary

Introduction to UML 43

Association Ends

Fig. 3-41, UML Notation Guide

Polygon Point
Contains

{ordered}

3..∗1

GraphicsBundle

color
texture
density

1

1

-bundle

+vertex

Introduction to UML 44

Fig. 3-44, UML Notation Guide

PlayerTeam

Year

Record
goals for
goals against
wins
losses

goalkeeper
∗

∗

∗

season

team

ties

Ternary Associations

Introduction to UML 45

Composition

Fig. 3-45, UML Notation Guide

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

Header Panel

2 1 1

Slider

1
11

Introduction to UML 46

Composition (cont’d)

Fig. 3-45, UML Notation Guide

scrollbar:Slider

Window

2

title:Header
1

body:Panel
1

Introduction to UML 47

Generalization

Fig. 3-47, UML Notation Guide

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .

Introduction to UML 48

Generalization

Fig. 3-48, UML Notation Guide

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue
venuepower

power

SailboatTruck

{overlapping} {overlapping}

Introduction to UML 49

Dependencies

Fig. 3-50, UML Notation Guide

«friend»ClassA ClassB

ClassC

«instantiate»

«call»

ClassD

operationZ()«friend»

ClassD ClassE

«refine» ClassC combines
two logical classes

Introduction to UML 50

Dependencies

Fig. 3-51, UML Notation Guide

Controller

Diagram
Elements

Domain
Elements

Graphics
Core

«access»

«access»

«access»
«access»

«access»

Introduction to UML 51

Derived Attributes and Associations

Fig. 3-52, UML Notation Guide

Person

birthdate
/age{age = currentDate - birthdate}

Company

Person

Department

WorksForDepartment

/WorksForCompany

{ Person.employer=Person.department.employer }

∗

∗
∗

1

1

1employer
employer

department

Introduction to UML 52

Objects

Fig. 3-38, UML Notation Guide

trian g le : P olyg on

c en te r = (0 ,0)
ve rtic e s = ((0 ,0),(4 ,0) ,(4,3))
bo rd e rC olo r = bla c k
fillCo lo r = wh ite

tria ng le : P o lyg o n

tria ng le

:P olyg on

s ch ed u le r

Introduction to UML 53

Composite objects

Fig. 3-39, UML Notation Guide

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves

Introduction to UML 54

Links

Fig. 3-46, UML Notation Guide

downhillSkiClub:Club Joe:Person

Jill:Person

Chris:Person

member

member

member

treasurer

officer

president

officer

Introduction to UML 55

Constraints and Comments

Fig. 3-17, UML Notation Guide

Me m b e r-of

C h a ir-o f

{s ub s e t}P e rs o n Co m m itte e

P e rs o n C o m pa ny

b os s

{P e rs o n. e m p loye r =
P e rs o n. bo s s .e m p lo ye r}

e m p loye re m p lo ye e

0 .. 1

∗ ∗

∗

∗

∗ 0 .. 1

1

R e p re s e n ts
a n in c o rpo ra te d e n tity.

Introduction to UML 56

Class Diagram Example

+getOrderStatus
+setOrderStatus
+getLineItems
+setLineItems
+getCreditApproved
+setCreditApproved
...

OrderBean
{abstract}

LineItem
{abstract}

Product

1

*

1

*

<<interface>>
EntityBean

CreditCard
{abstract}

Customer

PMOrder

PMLineItem

PMCreditCard

*

1

*

buyer

order

order

item

item

commodity

Adapted from Fig. 23 [EJB 2.0].

Introduction to UML 57

Implementation Diagrams

! Show aspects of model
implementation, including source
code structure and run-time
implementation structure

! Kinds
! component diagram
! deployment diagram

Introduction to UML 58

! Shows the organizations and
dependencies among software
components

! Components may be
! specified by classifiers (e.g.,

implementation classes)
! implemented by artifacts (e.g., binary,

executable, or script files)

Component Diagram

Introduction to UML 59

Fig. 3-99, UML Notation Guide (corrected)

Components

<<Entity>>
030303zak:Order

OrderHome

Order

OrderPK

<<Session>>
ShoppingSession

ShoppingSessionHome

ShoppingSession

OrderInfo

<<focus>>
:Order

<<auxiliary>>
:OrderPK

<<auxiliary>>
:OrderInfo

OrderHome

Order

Introduction to UML 60

Fig. 3-95, UML Notation Guide

Component Diagram

<<EJBEntity>>
Catalog

CatalogHome

Catalog

CatalogPK

<<EJBSession>>
ShoppingSession

ShoppingSessionHome

ShoppingSession

CatalogInfo

<<file>>
CatalogJAR

<<focus>>
Catalog

<<auxiliary>>
CatalogPK

<<auxiliary>>
CatalogInfo

CatalogHome

Catalog

<<EJBEntity>>
ShoppingCart

ShoppingCartHome

ShoppingCart

Introduction to UML 61

Fig. 3-96, UML Notation Guide

Component Diagram with Relationships

<<ejbEntity>>
Catalog

<<auxiliary>>
CatalogInfo

<<focus>>
Catalog

<<reside>> <<reside>>

<<auxiliary>>
CatalogPK

<<reside>>

<<file>>
CatalogJAR

<<implement>>

Introduction to UML 62

Deployment Diagram

! Shows the configuration of run-time
processing elements and the software
components, processes and objects
that live on them

! Deployment diagrams may be used to
show which components may run on
which nodes

Introduction to UML 63

Deployment Diagram (1/2)

Fig. 3-97, UML Notation Guide

:DBServer

videoStoreServer:AppServer
<<Container>>

 VideoStoreApplication

:Client

<<browser>>
:OpenSourceBrowser

<<Session>>
ShoppingSession

<<Focus>>
ShoppingSession

<<Entity>>
Catalog

<<Focus>>
Catalog

<<Entity>>
ShoppingCart

<<Focus>>
ShoppingCart

<<database>>
:VideoStoreDB

Introduction to UML 64

Deployment Diagram (2/2)

Fig. 3-98, UML Notation Guide

backupServer:AppServer

backupBroker
:BondBroker

:QuoteService <<database>>
:AccountsDB

primaryServer:AppServer

primaryBroker
:BondBroker

:QuoteService

<<database>>
:AccountsDB

<<become>>

Introduction to UML 65

When to model structure
! Adopt an opportunistic top-down+bottom-up approach

to modeling structure
! Specify the top-level structure using “architecturally significant”

classifiers and model management constructs (packages,
models, subsystems; see Tutorial 3)

! Specify lower-level structure as you discover detail re classifiers
and relationships

! If you understand your domain well you can frequently
start with structural modeling; otherwise
! If you start with use case modeling (as with a use-case driven

method) make sure that your structural model is consistent
with your use cases

! If you start with role modeling (as with a collaboration-driven
method) make sure that your structural model is consistent
with your collaborations

Introduction to UML 66

Structural Modeling Tips

! Define a “skeleton” (or “backbone”) that can be
extended and refined as you learn more about your
domain.

! Focus on using basic constructs well; add advanced
constructs and/or notation only as required.

! Defer implementation concerns until late in the
modeling process.

! Structural diagrams should
! emphasize a particular aspect of the structural model
! contain classifiers at the same level of abstraction

! Large numbers of classifiers should be organized into
packages (see Lecture 3)

Introduction to UML 67

Example: Point-of-Sale

! The following example shows how UML can
model the interfaces for a Point of Sale
application originally specified in CORBA IDL.
From [Kobryn 01b].

Introduction to UML 68

Point-of-Sale Example

module POS

{

typedef long POSId;

typedef string Barcode;

interface InputMedia

{

typedef string OperatorCmd;

void BarcodeInput(in Barcode Item);

void KeypadInput(in OperatorCmd Cmd);

};

interface OutputMedia

{...};

interface POSTerminal

{...};
};

...Ch. 26, CORBA Fundamentals and Programming (2nd ed.), [Siegel 00]

Introduction to UML 69

From [Kobryn 2001b]

Point_Of_Sale

POSterminal

+outputText()

«CORBAInterface»
IOutputMedia

InputMedia +initialization()
+barcodeInput()
+keypadInput()

-POSref : POSterminal

«CORBAInterface»
IInputMedia

OutputMedia

Store

+initialization()
+findPrice()

-depotRef :
-taxRef : Tax
-storeMarkup : float
-storeId : Integer

«CORBAInterface»
IStoreAccess

+initialization()
+calculateTax()
+findTaxablePrice()

-rate : float

«CORBAInterface»
ITax

+initialization()
+login()
+printPOSsalesSummary()
+printStoreSalesSummary()
+setItemQuantity()
+sendBarcode()
+endSale()

-storeRef : Store
-storeAccessRef : StoreAccess
-outputMediaRef : OutputMedia
-taxRef : Tax
-POSid : Integer
-itemBarcode : Integer
-itemQuantity : Integer
-itemInfo : ItemInfo
-itemPrice : Currency
-itemTaxPrice : Currency
-itemExtension : Currency
-saleSubtotal : Currency
-taxableSubtotal : Currency
-saleTotal : Currency
-saleTax : Currency
-POSlist : List

«CORBAInterface»
IPOSterminal

+initialization()
+login()
+getPOStotals()
+updateStoreTotals()
+getTotals()
+getStoreId()

-totals : Totals
-POSlist : List

«CORBAInterface»
IStore

StoreAccess

Tax

longhand notation
for interface

class

+intialization()
+findItemInfo()

«CORBAInterface»
IDepot

Depot

POS Class Diagram

Introduction to UML 70

POS Deployment Diagram

:POSterminal
IPOSterminal

:OutputMedia
IOutputMedia

:Store
IStore

:Tax
ITax

:StoreAccess
IStoreAccess

:InputMedia
IInputMedia

:StoreServerstation3:POSStation

:POSstation

<<network>>
:LocalAreaNetwork

<<ethernet>> <<ethernet>>

:DBServer :POSstation

<<ethernet>> <<ethernet>><<ethernet>>

node component.
shorthand
("lollipop")
notation for
interface.

:Depot
IDepot

From [Kobryn 2001b]

Introduction to UML 71

Model Fragment from POS Example

From [Kobryn 2001b]

+initialization()
+calculateTax()
+findTaxablePrice()

-rate : float

«CORBAInterface»
ITax

Tax

Introduction to UML 72

XML Generated by XMI Facility

From [Kobryn 2001b]

<XMI xmi.version = '1.1' xmlns:UML='//org.omg/UML/1.3' ...>

<XMI.header>

<XMI.metamodel xmi.name = 'UML' xmi.version = '1.3'/>

</XMI.header>

<XMI.content>

<!-- POS_Example_R2 [Model] -->

<UML:Model xmi.id = 'G.0'

name = 'POS_Example_R2' visibility = 'public' isSpecification =
'false'

isRoot = 'false' isLeaf = 'false' isAbstract = 'false' >

<UML:Namespace.ownedElement>

<!-- POS_Example_R2::Tax [Class] -->

<UML:Class xmi.id = 'S.1'

name = 'Tax' visibility = 'public' isSpecification = 'false'

isRoot = 'true' isLeaf = 'true' isAbstract = 'false'

isActive = 'false'

namespace = 'G.0' clientDependency = 'G.1' />

...

Introduction to UML 73

Use Case Modeling

! What is use case modeling?
! Core concepts
! Diagram tour
! When to model use cases
! Modeling tips
! Example: Online HR System

Introduction to UML 74

What is use case modeling?

! use case model: a view of a
system that emphasizes the
behavior as it appears to outside
users. A use case model partitions
system functionality into
transactions (‘use cases’) that are
meaningful to users (‘actors’).

Introduction to UML 75

Use Cases: Core Elements

Construct Description Syntax
use case A sequence of actions, including

variants, that a system (or other
entity) can perform, interacting with
actors of the system.

actor A coherent set of roles that users
of use cases play when interacting
with these use cases.

system
boundary

Represents the boundary between
the physical system and the actors
who interact with the physical
system.

UseCaseName

ActorName

Introduction to UML 76

Construct Description Syntax
association The participation of an actor in a use

case. i.e., instance of an actor and
instances of a use case communicate
with each other.

generalization A taxonomic relationship between a
more general use case and a more
specific use case.

include a relationship from a base use case to
an inclusion use case, specifying how
the behavior for the base use case
contains the behavior defined for the
inclusion use case. The base use
case depends on the inclusion use
case. Compare: extend.

Use Cases: Core Relationships

<<include>>

Introduction to UML 77

Construct Description Syntax
extend A relationship from an extension use

case to a base use case, specifying
how the behavior for the extension
use case augments (subject to
conditions in the extension) the
behavior defined for the base use
case. The base use case does not
depend on the extension use case.
Compare: include.

Use Cases: Core Relationships (cont’d)

<<extend>>

Introduction to UML 78

! Shows use cases, actors and their
relationships

! Use case internals can be specified by
text and/or interaction diagrams (see
Lecture 2)

! Kinds
! use case diagram
! use case description

Use Case Diagram Tour

Introduction to UML 79

Fig. 3-53, UML Notation Guide

Cus tomer

Supe rviso r

Sales pe rso nPlace

Establis h
c re dit

Che c k

Telephone Catalog

Fill orders

Shipping Cle rk

s tatus

orde r

Use Case Diagram

Introduction to UML 80

Fig. 3-54, UML Notation Guide

Use Case Relationships

additional requests :

Order
Product

Supply Arrange

«include»«include»«include»

Request
Catalog

«extend»Extension points

PaymentCustomer Data

after creation of the order

Place Order

1 * the salesperson asks for
the catalog

Introduction to UML 81

Fig. 3-55, UML Notation Guide

Actor Relationships

Establish
Credit

Place
Order

Salesperson

Supervisor

1 *

1 *

Introduction to UML 82

Use Case Description: Change Flight

■Actors: traveler, client account db, airline reservation system
■Preconditions:

• Traveler has logged on to the system and selected ‘change flight
itinerary’ option

■Basic course
• System retrieves traveler’s account and flight itinerary from client
account database
• System asks traveler to select itinerary segment she wants to
change; traveler selects itinerary segment.
• System asks traveler for new departure and destination
information; traveler provides information.
• If flights are available then
• …
• System displays transaction summary.

■Alternative courses
• If no flights are available then …

Introduction to UML 83

When to model use cases
! Model user requirements with use cases.
! Model test scenarios with use cases.
! If you are using a use-case driven

method
! start with use cases and derive your

structural and behavioral models from it.
! If you are not using a use-case driven

method
! make sure that your use cases are consistent

with your structural and behavioral models.

Introduction to UML 84

Use Case Modeling Tips

! Make sure that each use case describes a significant chunk of
system usage that is understandable by both domain experts
and programmers

! When defining use cases in text, use nouns and verbs
accurately and consistently to help derive objects and messages
for interaction diagrams (see Lecture 2)

! Factor out common usages that are required by multiple use
cases
! If the usage is required use «include»
! If the base use case is complete and the usage may be optional,

consider use «extend»
! A use case diagram should

! contain only use cases at the same level of abstraction
! include only actors who are required

! Large numbers of use cases should be organized into packages
(see Lecture 3)

Introduction to UML 85

Example: Online HR System

Online HR System

Locate
Employees

Update
Employee

Profile

Update Benefits

Access Travel
System

Access Pay
Records

Employee

Manager

Healthcare Plan System

{if currentMonth = Oct.}

{readOnly}

Insurance Plan System

Introduction to UML 86

Online HR System: Use Case Relationships

Update Medical
Plan

Update Dental
Plan

Update Benefits

Extension points
benefit options:

after required enrollments

Update
Insurance Plan

Employee

<<include>> <<include>> <<include>>

Elect
Reimbursement
for Healthcare

Elect Stock
Purchase

<<extend>>
employee requests
stock purchase option

<<extend>>
employee requests
reimbursement option

extension
condition

extension point
name and
location

Introduction to UML 87

Online HR System: Update Benefits Use Case

■Actors: employee, employee account db, healthcare plan system,
insurance plan system
■Preconditions:

• Employee has logged on to the system and selected ‘update benefits’
option

■Basic course
• System retrieves employee account from employee account db
• System asks employee to select medical plan type; include Update
Medical Plan.
• System asks employee to select dental plan type; include Update
Dental Plan.
• …

■Alternative courses
• If health plan is not available in the employee’s area the employee is
informed and asked to select another plan...

Introduction to UML 88

Wrap Up
! Ideas to take away
! Preview of next tutorial
! References
! Further info

Introduction to UML 89

! UML is effective for modeling large, complex software
systems

! It is simple to learn for most developers, but provides
advanced features for expert analysts, designers and
architects

! It can specify systems in an implementation-
independent manner

! 10-20% of the constructs are used 80-90% of the
time

! Structural modeling specifies a skeleton that can be
refined and extended with additional structure and
behavior

! Use case modeling specifies the functional
requirements of system in an object-oriented manner

Ideas to Take Away

Introduction to UML 90

Preview - Next Tutorial

! Behavioral Modeling with UML
! Behavioral modeling overview
! Interactions
! Collaborations
! Statecharts
! Activity graphs

Introduction to UML 91

References

! [UML 1.4] OMG UML Specification v. 1.4, UML Revision Task Force,
OMG doc# ad/01-02-13.

! [Kobryn 01a] C. Kobryn, “UML 2.0 Roadmap: Fast Track or Detours?,”
Software Development, April 2001.

! [Kobryn 01b] C. Kobryn, “Modeling Distributed Applications with UML,”
Part IV: Chapter 1 in [Siegel 01] Quick CORBA 3, Wiley, 2001.

! [Kobryn 00] “Modeling CORBA Applications with UML,” chapter 21 in
[Siegel 00] CORBA 3 Fundamentals and Programming (2nd ed.), Wiley,
2000.

! [Kobryn 99] UML 2001: A Standardization Odyssey, Communications of
the ACM, Oct. 1999.

! [EJB 2.0] Enterprise JavaBeans Specification v. 2.0, Sun Microsystems,
March 31, 2000.

Introduction to UML 92

! Web:
! UML 1.4 RTF: www.celigent.com/omg/umlrtf
! OMG UML Tutorials:

www.celigent.com/omg/umlrtf/tutorials.htm
! UML 2.0 Working Group:

www.celigent.com/omg/adptf/wgs/uml2wg.htm
! OMG UML Resources: www.omg.org/uml/

! Email
! uml-rtf@omg.org
! Cris.Kobryn@telelogic.com

! Conferences & workshops
! UML World 2001, New York, June 11-14, 2001
! UML 2001, Toronto, Canada, Oct. 1-5, 2001
! OMG UML Workshop 2001, San Francisco, Dec. 3-6, 2001
! UML Forum/Tokyo 2002, Tokyo, Japan, April 2002.

Further Info

