Project Cost Management

Chapter 7 – Information Technology Project Management
EECS 811 – Spring 2014
University of Kansas
Alex Oyler
Roadmap

• Introduction and case study overview
• Principles of cost management
• Estimating costs
• Determining the budget
• Controlling costs
• Software and tools
Roadmap

- **Introduction and case study overview**
 - Principles of cost management
 - Estimating costs
 - Determining the budget
 - Controlling costs
 - Software and tools
Case Study

• Modernization of the Fiat 500e
 • Support TCU upgrade
 • Telematics infrastructure

• Cost factors
 • Non-recurring engineering (NRE)
 • Development
 • Integration and testing
 • Post-launch support

• The product
The Problem

• Most projects encounter **overrun**
 • Additional percentage or dollar amount by which actual costs exceed estimates
 • **27%** average overrun for IT projects (Harvard Business Review, 2011)

• Measuring overrun isn’t always scientific
 • and neither is management of a project’s costs
What Went Wrong

• United States Internal Revenue Service (IRS) is a prime example of how **not** to manage costs

• A series of failures in the 90’s cost taxpayers >$50 billion

• GAO (2008) reports more than 400 gov’t projects suffer from poor planning and underperformance
 • Total cost of those projects: $25 billion

• United Kingdom National Health Service electronic payments system
 • $26 billion overrun over 10 years
Cost

• **Cost** is defined as a “resource sacrificed or foregone to achieve a specific objective” (*Cost Accounting*)
 - Money
 - Time -> Money

• Project managers must understand project cost management in order to effectively control these tangibles
Project Cost Management

• Recall the triple-constraint (right)

• **Project cost management** includes the processes required to ensure that a project team completes a project within an approved budget

• Endgame: satisfy stakeholders
Processes of Cost Management

• **Estimating costs** – developing an approximation/estimate of the costs of the resources needed to complete a project

• **Determining the budget** – allocating the overall cost estimate to individual work items to establish a *baseline* for measuring performance

• **Controlling costs** – controlling changes to the project budget
Figure 7-1: Project Cost Management Summary

Planning
- Process: Plan cost management
- Outputs: Cost management plan
- Process: Estimate costs
- Outputs: Activity cost estimates, basis of estimates, project documents updates
- Process: Determine budget
- Outputs: Cost baseline, project funding requirements, project documents updates

Monitoring and Controlling
- Process: Control costs
- Outputs: Work performance information, cost forecasts, change requests, project management plan updates, project documents updates, organizational process assets updates

Project Start ———— Project Finish
Case Study - Processes

• Cost estimation based on empirical data

• Budget determination based on cost of service, hardware, and labor rate

• Cost controlling based on regular level of effort reporting against baseline
Roadmap

• Introduction and case study overview
• **Principles of cost management**
 • Estimating costs
 • Determining the budget
 • Controlling costs
 • Software and tools
Profits

- **Profits** are revenues minus expenditures

- **Profit margin** is the ratio of revenues to profits
 - Example: $100 revenue generates $2 profit
 - 2% profit margin
 - Deduction: $98 invested

- Executives primarily concerned with profits
Life Cycle Costing

- **Life cycle costing** allows you to see a big-picture view of the cost of a project throughout its life cycle

 - Considerations:
 - Total cost of ownership
 - Development plus support costs

- Project managers must make estimates of the costs and benefits of a project throughout its life cycle

- Life cycle cost should emphasize spending **up front** to reduce defect repair costs after implementation
Cost of Downtime for IT Applications

<table>
<thead>
<tr>
<th>Type of IT Application</th>
<th>Cost/Minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Securities trading</td>
<td>$73,000</td>
</tr>
<tr>
<td>Enterprise Requirements Planning (ERP)</td>
<td>$14,800</td>
</tr>
<tr>
<td>Order processing</td>
<td>$13,300</td>
</tr>
<tr>
<td>Electronic commerce</td>
<td>$12,600</td>
</tr>
<tr>
<td>Supply chain</td>
<td>$11,500</td>
</tr>
<tr>
<td>Point of sale (POS)</td>
<td>$4,700</td>
</tr>
<tr>
<td>Automatic teller machine (ATM)</td>
<td>$3,600</td>
</tr>
<tr>
<td>E-mail</td>
<td>$1,900</td>
</tr>
</tbody>
</table>

Cash Flow Analysis

• **Cash flow analysis** is a method for determining the estimated annual costs and benefits for a project and the resulting annual cash flow.
 • Used to determine NPV (net present value)

• Cannot have too many concurrent projects with high cash flow needs
 • Example: Network Vision
 • Capital expenses
Tangibles vs Intangibles

• **Tangible costs/benefits** are those costs or benefits that an organization can easily measure in dollars
 • Example: it costs $100,000 to perform internal labor on a project versus $75,000 to outsource

• **Intangible costs/benefits** are costs or benefits that are difficult to measure in monetary terms
 • Examples: goodwill, political capital, prestige
Costs

• **Direct costs** are costs that can be directly related to producing the products and services of a project.

• **Indirect costs** are costs that are not directly related to the products or services of the project.

• **Sunk cost** is money that has been spent in the past.
Learning Curve Theory

• **Learning curve theory** states that when many items are produced repetitively, the unit cost of those items decreases in a regular pattern as more units are produces.

• **Factors:**
 • Domain knowledge
 • Relationships
 • Lessons learned
Case Study – Costs and Curve

- **Direct costs:** NRE for modem manufacturing, interface adapter development
- **Indirect costs:** travel to Detroit for testing
- **Sunk costs:** interface for previous generation, T-Mobile integration
- **Learning curve:** already tested and integrated once before
Reserves

- **Reserves** are dollars included in a cost estimate to mitigate cost risk by allowing for future situations that are difficult to predict.

- **Contingency reserves** allow for future situations that may be partially planned for:
 - AKA “known unknowns”
 - Examples: employee vacations, employee turnover

- **Management reserves** allow for future situations that are unpredictable:
 - AKA “unknown unknowns”
 - Examples: illness, natural disasters, weather
Roadmap

• Introduction and case study overview
• Principles of cost management
• **Estimating costs**
• Determining the budget
• Controlling costs
• Software and tools
Planning Cost Management

• Developing a cost management plan requires the following inputs:
 • Expert judgment
 • Analytical techniques
 • Meetings

• These will drive a **cost estimation** – a variety of techniques for predicting how many resources will be required to complete an activity or collection of activities (project)
Types of Cost Estimates

• **Rough order of magnitude (ROM)** is an estimate of what a project will cost
 • AKA swag, ballpark estimate, or guesstimate
 • Accuracy is typically -50% to +100%, though may be much wider
 • Some IT professionals automatically **double** estimates for software development
Types of Cost Estimates (cont)

• A **budgetary estimate** is used to allocate money into an organization’s budget
 • Many organizations develop budgets at least two years into the future
 • More accurate than ROM -10% to +25%

• A **definitive estimate** provides an “accurate” estimate of project costs
 • Made closer to project completion
 • Accuracy -5% to +10%
 • Based on hard facts, such as cost of hardware
<table>
<thead>
<tr>
<th>Type of Estimate</th>
<th>When Done</th>
<th>Why Done</th>
<th>How Accurate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough Order of Magnitude (ROM)</td>
<td>Very early in the project life cycle, often 3–5 years before project completion</td>
<td>Provides estimate of cost for selection decisions</td>
<td>−50% to +100%</td>
</tr>
<tr>
<td>Budgetary</td>
<td>Early, 1–2 years out</td>
<td>Puts dollars in the budget plans</td>
<td>−10% to +25%</td>
</tr>
<tr>
<td>Definitive</td>
<td>Later in the project, less than 1 year out</td>
<td>Provides details for purchases, estimates actual costs</td>
<td>−5% to +10%</td>
</tr>
</tbody>
</table>

Table 7-2: Types of Cost Estimates
Case Study – Cost Estimates

• At project inception, provided a ROM estimate for project costs for all impacted systems
 • Level of effort

• Later, provided definitive cost based on level of effort plus
 • Tools
 • Travel
Cost Management Plan

• A cost management plan is a document that describes how the organization will manage cost variances on the project
 • Based on estimation, but acted on through monitoring and controlling

• Labor costs are a large percentage of total project cost (time = money)
 • Note that labor cost per resource (run rate) is often much higher for contractors than full time employees
 • Example: $45/hr FTE, $75/hr contract
Sample Headcount (Table 7-3)

<table>
<thead>
<tr>
<th>Department</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information systems</td>
<td>24</td>
<td>31</td>
<td>35</td>
<td>13</td>
<td>13</td>
<td>116</td>
</tr>
<tr>
<td>Marketing systems</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Reservations</td>
<td>12</td>
<td>29</td>
<td>33</td>
<td>9</td>
<td>7</td>
<td>90</td>
</tr>
<tr>
<td>Contractors</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Totals</td>
<td>41</td>
<td>66</td>
<td>72</td>
<td>25</td>
<td>23</td>
<td>227</td>
</tr>
</tbody>
</table>

Maximum departmental headcounts by year for ResNet (Northwest Airlines)
Cost Estimation Tools & Techniques

• Developing a cost estimate is difficult, but can be made easier with tools and processes

• Will discuss:
 • Analogous cost estimating
 • Bottom-up estimating
 • Parametric modeling
 • Cost of quality
 • Software
 • Vendor bid analysis
 • Reserve analysis
Estimation Techniques

• Analogous estimates use the actual cost of a previous, similar project as the basis for estimating the cost of the current project
 • AKA top-down estimate
 • Less costly than other techniques, but may be less accurate

• Bottom-up estimates involve estimating individual work items (activities) and summing to the project total
 • Preferred if there is a detailed WBS available
Estimation Techniques (cont)

• **Parametric modeling** uses project characteristics (parameters) in a mathematical model to estimate project costs
 • Example: cost per line of code based on difficulty, talent, and size
 • Most reliable when model has empirical input for parameters
 • Downside: can be more inaccurate than other models if executed incorrectly (lack of experience)

• **COCOMO II** is a well-known example of a parametric model for development costs
 • http://csse.usc.edu/tools/COCOMOII.php
Case Study – Estimation Techniques

• **Question:** what type of modeling would be most effective for the 500e project? What was actually used?

• **Answer:** bottom-up estimation was used, and was probably the best choice
Estimation Challenges

• Estimates are often done too quickly

• Many people asked to do estimation lack experience

• Human beings are biased towards underestimation -> overrun

• Most challenging to balance, management wants accuracy
Sample Cost Estimate

• Task: create a cost estimate to upgrade the telematics unit in the next generation of Fiat 500e electric vehicles

• Overview:
 • Upgrade modem from 2G T-Mobile to 4G LTE Sprint
 • Change interface from legacy NGTP to lightweight messaging
 • All changes must be fully qualified before VP-A build date
Sample Cost Estimate Assumptions

• Work breakdown structure (WBS) exists
• Testing is 10% of development costs
• Risk and overhead is 10% of development costs
 • Reserves, project management, architecture
• An inventory of required tools will be generated and quoted
• Three weeks of on-site work in Detroit will be required
Sample Cost Estimate (cont)

• Development costs
 • WBS contains four development activities:
 • TCU client re-write
 • 3 contract resources for 3 weeks
 • Adapt provisioning portal to support new embedded SIM provider
 • 1 full time resource for 1 week
 • Write service adapter for current production units (sunsetting existing dispatcher)
 • 5 contract resources for 8 weeks
 • Add components to rights management for new model support
 • 1 contract resource for 1 week
 • Contract run rate is $75/hr
 • Full time run rate is $45/hr
Sample Cost Estimate (cont)

• Tool support:
 • Develop new simulations for new vehicle (testing)
 • Outsourced for $15,000
 • Vehicle diagnostic tool for logging vehicle messages
 • Licensing cost of $10,000
 • Benchtop fabrication (for testing TCU client prior to vehicle integration)
 • Outsourced for $7,000

• Travel costs:
 • 3 round trips flights to Detroit and 15 hotel nights
 • $5,000
<table>
<thead>
<tr>
<th>WBS Items</th>
<th>#Units/hrs</th>
<th>Cost per</th>
<th>Subtotals</th>
<th>Level 2 Totals</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCU Client</td>
<td>360</td>
<td>$75</td>
<td>$27,000</td>
<td>$151,800</td>
<td>61%</td>
</tr>
<tr>
<td>Provisioning</td>
<td>40</td>
<td>$45</td>
<td>$1,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legacy adapter</td>
<td>1600</td>
<td>$75</td>
<td>$120,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rights management</td>
<td>40</td>
<td>$75</td>
<td>$3,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>1</td>
<td>$15,000</td>
<td>$15,000</td>
<td>$32,000</td>
<td>13%</td>
</tr>
<tr>
<td>Diagnostic tool</td>
<td>1</td>
<td>$10,000</td>
<td>$10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchtop</td>
<td>1</td>
<td>$7,000</td>
<td>$7,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flights (roundtrip)</td>
<td>3</td>
<td>$800</td>
<td>$2,400</td>
<td>$5,475</td>
<td>2%</td>
</tr>
<tr>
<td>Hotel nights</td>
<td>15</td>
<td>$130</td>
<td>$1,950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per diem</td>
<td>15</td>
<td>$75</td>
<td>$1,125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td>$18,928</td>
<td>8%</td>
</tr>
<tr>
<td>10% of development</td>
<td>N/A</td>
<td>N/A</td>
<td>$18,928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project management</td>
<td></td>
<td></td>
<td></td>
<td>$18,928</td>
<td>8%</td>
</tr>
<tr>
<td>10% of development</td>
<td>N/A</td>
<td>N/A</td>
<td>$18,928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserves</td>
<td></td>
<td></td>
<td></td>
<td>$22,713</td>
<td>9%</td>
</tr>
<tr>
<td>10% of other estimates</td>
<td>N/A</td>
<td>N/A</td>
<td>$22,713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COST ESTIMATE</td>
<td></td>
<td></td>
<td></td>
<td>$249,843</td>
<td></td>
</tr>
</tbody>
</table>
What could be improved?

• Estimation assumed 40 hours work weeks for contract labor

• Break out design and architecture from project management

• No hard datapoints based on previous experience
 • Dependent on learning curve
Roadmap

• Introduction and case study overview
• Principles of cost management
• Estimating costs
• Determining the budget
• Controlling costs
• Software and tools
Project Budget Overview

• Determining the project budget involves allocating the project cost estimate to individual work items over time (WBS)

• Budgeting generally includes:
 • Headcount (FTE + Contract)
 • Supplier costs
 • Travel
 • Depreciation
 • Rent/leases
Cost Baseline

• A cost baseline is a time-phased budget that project managers use to measure and monitor cost performance

• Use cost estimates for major activities to create

• Cost budgeting may result in updates to the cost management plan (monitor and controlling)
<table>
<thead>
<tr>
<th>WBS Items</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development</td>
<td></td>
<td>$151,800</td>
</tr>
<tr>
<td>TCU Client</td>
<td>$3,462.50</td>
<td>$6,925</td>
<td>$3,462.50</td>
<td>$3,463</td>
<td>$3,463</td>
<td>$3,463</td>
<td>$3,463</td>
<td>$3,463</td>
<td>$3,463</td>
<td>$3,463</td>
<td>$3,463</td>
<td>$3,463</td>
<td>$27,700</td>
</tr>
<tr>
<td>Provisioning</td>
<td>$1,800</td>
<td></td>
<td>$1,800</td>
</tr>
<tr>
<td>Legacy adapter</td>
<td>$15,000</td>
<td>$30,000</td>
<td>$15,000</td>
<td>$120,000</td>
</tr>
<tr>
<td>Rights management</td>
<td></td>
<td>$3,000</td>
<td></td>
<td>$3,000</td>
</tr>
<tr>
<td>Tools</td>
<td></td>
<td>$32,000</td>
</tr>
<tr>
<td>Simulation</td>
<td>$15,000</td>
<td></td>
<td>$15,000</td>
</tr>
<tr>
<td>Diagnostic tool</td>
<td>$10,000</td>
<td></td>
<td>$10,000</td>
</tr>
<tr>
<td>Benchtop</td>
<td>$7,000</td>
<td></td>
<td>$7,000</td>
</tr>
<tr>
<td>Travel</td>
<td></td>
<td>$5,475</td>
</tr>
<tr>
<td>Flights (roundtrip)</td>
<td></td>
<td>$2,400</td>
</tr>
<tr>
<td>Hotel nights</td>
<td></td>
<td>$1,950</td>
</tr>
<tr>
<td>Per diem</td>
<td></td>
<td>$1,125</td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td>$18,928</td>
</tr>
<tr>
<td>10% of development</td>
<td></td>
<td>$18,928</td>
</tr>
<tr>
<td>Project management</td>
<td></td>
<td>$18,928</td>
</tr>
<tr>
<td>10% of development</td>
<td></td>
<td>$18,928</td>
</tr>
<tr>
<td>Reserves</td>
<td></td>
<td>$22,713</td>
</tr>
<tr>
<td>10% of other</td>
<td></td>
<td>$22,713</td>
</tr>
<tr>
<td>estimates</td>
<td></td>
<td>$249,844</td>
</tr>
</tbody>
</table>
Sample Baseline

Surveyor Pro Project Cost Baseline Created October 10*

<table>
<thead>
<tr>
<th>WBS Items</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Project Management</td>
<td></td>
</tr>
<tr>
<td>1.1 Project manager</td>
<td>8,000</td>
<td>96,000</td>
</tr>
<tr>
<td>1.2 Project team members</td>
<td>12,000</td>
<td>144,000</td>
</tr>
<tr>
<td>1.3 Contractors</td>
<td>6,027</td>
<td>66,300</td>
</tr>
<tr>
<td>2. Hardware</td>
<td></td>
</tr>
<tr>
<td>2.1 Handheld devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30,000</td>
<td>30,000</td>
<td></td>
<td></td>
<td>60,000</td>
</tr>
<tr>
<td>2.2 Servers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,000</td>
<td>8,000</td>
<td></td>
<td></td>
<td>16,000</td>
</tr>
<tr>
<td>3. Software</td>
<td></td>
</tr>
<tr>
<td>3.1 Licensed software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,000</td>
<td>10,000</td>
<td></td>
<td></td>
<td>20,000</td>
</tr>
<tr>
<td>3.2 Software development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60,000</td>
<td>60,000</td>
<td>80,000</td>
<td>127,000</td>
<td>127,000</td>
</tr>
<tr>
<td>4. Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,000</td>
<td>8,000</td>
<td>12,000</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td>5. Training and Support</td>
<td></td>
</tr>
<tr>
<td>5.1 Trainee cost</td>
<td></td>
<td>50,000</td>
<td></td>
</tr>
<tr>
<td>5.2 Travel cost</td>
<td></td>
<td>8,400</td>
<td></td>
</tr>
<tr>
<td>5.3 Project team members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
</tr>
<tr>
<td>6. Reserves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,000</td>
<td>10,000</td>
<td>30,000</td>
<td>30,000</td>
<td>60,000</td>
</tr>
<tr>
<td>Totals</td>
<td>20,000</td>
<td>86,027</td>
<td>92,027</td>
<td>172,027</td>
<td>223,027</td>
<td>198,027</td>
<td>185,027</td>
<td>173,027</td>
<td>148,427</td>
<td>90,027</td>
<td>80,027</td>
<td>53,567</td>
<td>1,521,240</td>
</tr>
</tbody>
</table>

See the lecture slides for this chapter on the companion Web site for a larger view of this and other figures in this chapter. Numbers are rounded, so some totals appear to be off.
Roadmap

- Introduction and case study overview
- Principles of cost management
- Estimating costs
- Determining the budget
- **Controlling costs**
- Software and tools
Project Cost Controlling

• Controlling project costs includes monitoring cost performance, cost impact of changes, and stakeholder communication.

• Outputs include:
 • Work performance measurements
 • Budget forecasts
 • Organizational process asset updates
 • Change requests
 • Project management plan updates
 • Product document updates
Earned Value Management

- **Earned value management (EVM)** is a project performance measurement technique that integrates scope, time, and cost data
 - In short: actuals vs forecast
 - Uses baselines as input

- **A baseline** is the original project plan plus approved changes
Key EVM Components

• **Planned value (PV)** is the portion of approved total cost estimate planned to be spent on an activity during a given period
 • AKA budget

• **Actual cost (AC)** is the total direct and indirect costs incurred in accomplishing work on an activity during a given period
 • AKA actuals

• **Earned value (EV)** is an estimate of the value of the physical work actually completed
 • Essentially a monetary representation of all work complete to date
 • **Ratio of performance (RP)** is the ratio of actual work completed to the percentage of work planned
EVM Components (cont)

- **Cost variance (CV)** is the earned value minus the actual cost
- **Schedule variance (SV)** is the earned value minus the planned value
- **Cost performance index (CPI)** is the ratio of earned value to actual cost
 - Used to estimate the projected cost of completing the project
- **Schedule performance index (SPI)** is the ratio of earned value to planned value
 - Used to estimate the projected time to complete the project
- **Estimate at completion (EAC)** is an estimate of what it will cost to complete the project based on performance to date
 - Can be done for schedule as well
Table 7-5: Earned Value Formulas

<table>
<thead>
<tr>
<th>Term</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earned value (EV)</td>
<td>$EV = PV$ to date * RP</td>
</tr>
<tr>
<td>Cost variance (CV)</td>
<td>$CV = EV - AC$</td>
</tr>
<tr>
<td>Schedule variance (SV)</td>
<td>$SV = EV - PV$</td>
</tr>
<tr>
<td>Cost performance index (CPI)</td>
<td>$CPI = EV/AC$</td>
</tr>
<tr>
<td>Schedule performance index (SPI)</td>
<td>$SPI = EV/PV$</td>
</tr>
<tr>
<td>Estimate at completion (EAC)</td>
<td>$EAC = BAC/CPI$</td>
</tr>
<tr>
<td>Estimated time to complete</td>
<td>Original time estimate/SPI</td>
</tr>
</tbody>
</table>
Table 7-4: Earned Value Calculations

<table>
<thead>
<tr>
<th>Activity</th>
<th>Week 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earned Value (EV)</td>
<td>5,000</td>
</tr>
<tr>
<td>Planned Value (PV)</td>
<td>10,000</td>
</tr>
<tr>
<td>Actual Cost (AC)</td>
<td>15,000</td>
</tr>
<tr>
<td>Cost Variance (CV)</td>
<td>-10,000</td>
</tr>
<tr>
<td>Schedule Variance (SV)</td>
<td>-5,000</td>
</tr>
<tr>
<td>Cost Performance Index (CPI)</td>
<td>33%</td>
</tr>
<tr>
<td>Schedule Performance Index (SPI)</td>
<td>50%</td>
</tr>
</tbody>
</table>
Figure 7-5: Earned Value Chart (Five Months)

- Actual cost (AC)
- Planned value (PV)
- Earned value (EV)

An EAC point above and to the right of the BAC point means the project is projected to cost more and take longer than planned.
Global Issues

- EVM is used worldwide, and it is particularly popular in the Middle East, South Asia, Canada, and Europe.
- Most countries require EVM for large defense or government projects.
- EVM is also used in such private-industry sectors as IT, construction, energy, and manufacturing.
- However, most private companies have not yet applied EVM to their projects because management does not require it, feeling it is too complex and not cost effective.
Project Portfolio Management

• Utilizing a portfolio for related projects enhances cost management by providing historical data

• The five levels of portfolio management:
 • Put all your projects in one database
 • Prioritize the projects in the database
 • Divide projects into two or three budgets based on type of investment
 • Automate the repository
 • Apply modern portfolio theory including risk-return tools that map project risk on a curve
Case Study – Portfolio Management

• The Fiat 500e upgrade project is actually a relatively small project in connected vehicle portfolio

• Other major projects:
 • Infotainment variant support
 • Remote diagnostics
 • Model support (Chrysler, Dodge, Jeep, RAM, SRT, Fiat)
 • Platform modernization

• Draw from all to enhance cost estimation accuracy
Roadmap

• Introduction and case study overview
• Principles of cost management
• Estimating costs
• Determining the budget
• Controlling costs

• Software and tools
Cost Controlling Software

• Microsoft Project 2007
 • Assign cost to resources
 • Track actuals to forecast (EVM)

• Spreadsheets

• Using software empirically has benefits (2008 Gantry Group study)
 • Improved project timeliness by 45.2%
 • Reduced time spent on status reporting by 43%
 • Reduced time spent on labor capitalization reporting by 55% (3.6 hrs/report)
 • Decreased time to sign-off for new projects by 20.4% (8 days)
<table>
<thead>
<tr>
<th>ID</th>
<th>Code</th>
<th>Description</th>
<th>Impact</th>
<th>Done</th>
<th>SOX</th>
<th>Chargeable LOE (Hr)</th>
<th>Hardware($)</th>
<th>Software($)</th>
<th>Other/Vendor($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>657831</td>
<td>0LB</td>
<td>CVP CARE AGENT TOOL (CAT)</td>
<td>S - Support</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>658506</td>
<td>1OT</td>
<td>CVP-MDP - Master Database</td>
<td>S - Support</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>657062</td>
<td>21L</td>
<td>RISE - Reporting Integrated Subscriber Engine</td>
<td>C - Code</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>654392</td>
<td>4KV</td>
<td>CVP Master Transaction Server</td>
<td>C - Code</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>1,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>731729</td>
<td>4UC</td>
<td>CVP Connected Vehicle Head Unit Apps</td>
<td>S - Support</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>657817</td>
<td>5RL</td>
<td>SAIL - Integrated Service Level Activity Engine</td>
<td>N - None</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>657064</td>
<td>76S</td>
<td>Datapower Enterprise Service Bus</td>
<td>S - Support</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>657065</td>
<td>81N</td>
<td>Integrated Wireless Billed Revenue Reporting</td>
<td>C - Code</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>657059</td>
<td>9AN</td>
<td>Tax Reporting</td>
<td>C - Code</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>657061</td>
<td>9MN</td>
<td>Traffic Management System (TMS)</td>
<td>C - Code</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>657820</td>
<td>E5P</td>
<td>MAP (Multi-dimensional Analysis of Performance)</td>
<td>T - Test</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>657795</td>
<td>H6P</td>
<td>PeopleSoft Billing</td>
<td>T - Test</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>657063</td>
<td>IDS</td>
<td>IMPACT - Interactive Map Pricing Activation and Coverage Tool</td>
<td>S - Support</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>654393</td>
<td>LNE</td>
<td>CVP DW REPORTING</td>
<td>C - Code</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>657818</td>
<td>LPS</td>
<td>Customer Churn Management Data Warehouse</td>
<td>N - None</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter Summary

• Project cost management is a traditionally weak area of IT projects, and project managers must work to improve their ability to deliver projects within approved budgets

• Main processes include
 • Plan cost management
 • Estimate costs
 • Determine the budget
 • Control costs