
1

Software Project Survival
Guide
How to be sure your First Important Project isn’t
your Last
by Steve McConnell
(author of Rapid Development and Code Complete)

© 2011 Dan Broyles

Dan Broyles

Department of Electrical Engineering &
Computer Science

EECS 811 Class Presentation

Daniel.s.broyles@sprint.com

2

• Introduction
• The Survival Mindset
• Survival Preparations
• Succeeding by Stages
• Mission Accomplished
• References

Software Project Survival
Guide
Outline

http://www.amazon.com/gp/reader/1572316217/ref=sib_dp_pt

3

• Introduction
• The Survival Mindset
• Survival Preparations
• Succeeding by Stages
• Mission Accomplished
• References

Software Project Survival
Guide
Introduction

4

• Steve McConnell’s Publications
– 1993: Code Complete
– 1996: Rapid Development
– 1998: Software Project Survival Guide
– 1999: After the Gold Rush
– 2004: Professional Software Development
– 2006: Software Estimation – Demystifying the Black Art

• IEEE Software Magazine
– 1996 – 1998: Editor of “Best Practices” Column
– 1998 – 2002: Editor and Chief

• Created Construx Software 14 years ago to
advance the art and science of commercial
software engineering

Introduction
About the Author

http://www.stevemcconnell.com/

5

Here is Edward Bear, coming downstairs
now, bump, bump, bump on the back of

his head, behind Christopher Robin.
It is, as far as he knows, the only way of

coming downstairs, but sometimes he
feels there really is another way, if only

he could stop bumping for a moment and
think of it.

And then he feels that perhaps there isn’t.

Introduction
Bump, bump, bump…

6

• Why do software projects fail?
• Book addresses most common

weaknesses
• Draws from three sources

– Key Practices of the Capability Maturity Model
– NASA’s Software Engineering Laboratory (SEL)

Recommended Approach to Software
Development

– His own experiences

Introduction

7

• Introduction
• The Survival Mindset
• Survival Preparations
• Succeeding by Stages
• Mission Accomplished
• References

Software Project Survival
Guide
The Survival Mindset

8

• Ch 1: Welcome to Software Project
Survival Training

• Ch 2: Software Project Survival Test
• Ch 3: Survival Concepts
• Ch 4: Survival Skills
• Ch 5: The Successful Project at a Glance

The Survival Mindset
Outline

9

• Just like basic human needs
– Food, air, water, security, social contact, …

• Project team needs
 Professional
 Development

 Productive and important

 Healthy team dynamics

 Meets promised schedule and functionality

 Not cancelled or fired, adequate physical environment

The Survival Mindset
Basic Survival Needs

10

• Customer’s Bill of Rights
• Project Team’s Bill of Rights
• Balance - One person’s rights become

another person’s responsibilities
• Keys to success

– Get all parties to respect the rights
– Satisfy each party’s needs so none feel

threatened

The Survival Mindset
Rules of Civilization

11

• “Process” is often seen as a four-letter
word
– Seen as time taken away from productive

work
– Assumed to have no benefit, delay real work

Survival Concepts
Incorrect View of Process

ThrashingThrashing

ProcessProcess

? Productive Work ?

End of
Project

Beginning
of Project

P
er

ce
nt

 o
f

E
ff

or
t

Time

12

• Ignoring processes
– Revisions overwhelm the project
– Many defects and bugs, some forgotten
– Components don’t integrate well
– Behind schedule and over budget

Survival Concepts
Incorrect View of Process

Productive Work

End of
Project

Beginning
of Project

Process

Thrashing

P
er

ce
nt

 o
f

E
ff

or
t

Time

13

• Introduce processes early in the project
– Reduces initial productivity
– Reduces thrashing a lot by mid-project
– More efficiency and less process as project continues
– Reduce costs and cut time-to-market

Survival Concepts
Process to the Rescue

Productive Work

End of
Project

Beginning
of Project

P
er

ce
nt

 o
f

E
ff

or
t Thrashing

Process

Time

14

• Programmers need to be creative
• Management needs predictability, visibility,

on schedule and within budget
• Is there a conflict?
• Effective processes support creativity/morale
• Programmers appreciate good leadership

– Emphasize predictability
– Give visibility to good work
– Maintain control

Survival Concepts
Process vs. Creativity and Morale

15

• Upstream
– Early project parts: requirements and

architecture
– Good upstream work contributes to success
– Poor upstream work can severely impair project

• Downstream
– Later project parts like Construction and Testing
– Upstream mistakes cost 50 to 200 times more

to correct downstream than if corrected early

• Process = opportunity to fix mistakes early

Survival Concepts
Upstream and Downstream

16

• Software development = refinement
process
– Large decisions lead to smaller decisions

• Ex: Operating System -> error handling ->
algorithms

– Each decision affects the next set of
decisions

Survival Concepts
Cone of Uncertainty

Product
Complete

Initial
Definition

S
ou

rc
e

 C
od

e
E

st
im

at
e

100%

75%

50%

25%

0%

-25%

-50%

-75%

-100%
Approved
Definition

Requirements
Development

Architecture Detailed
Design

17

• Impossible to estimate project in early stages
• Scope determined by myriad of decisions
• Smart to control the way those decisions are

made to meet schedule or budget targets
• Set clear, non-conflicting goals at start
• Keep product concept flexible
• Tradeoff between schedule, budget, and

feature set.
– Cannot set all three at beginning of project

Survival Concepts
Cone of Uncertainty

18

• Planning
– Often overlooked by management and staff
– Downstream benefit: 1 hour planning = 3 to 10

hours saved

• Features of a plan
– Software development plan
– Project estimates - Revised estimates
– Quality assurance plan - Staged delivery plan
– Requirements, architecture, detailed design docs

Survival Skills
Systematic Approach: Planning

19

• Planning checkpoint review
• At 10% to 20% through the project, have

– User interface prototype
– Detailed requirements
– Detailed project plan with cost and schedule

estimates
– Software development and quality assurance

plans

Survival Skills
Systematic Approach: Planning
Checkpoint

20

• Two-phase funding approach
– Request funding for first 10 to 20% of the

project
– Hold a planning checkpoint review
– Sr. management or customer makes a

“Go/No-Go” decision
– Request funding for the remainder of the

project

Survival Skills
Systematic Approach: Planning
Checkpoint

21

• Software development is a high-risk activity
• Serious project risks are related to planning

– Failure to plan
– Failure to follow the plan
– Failure to revise the plan as circumstances change

• Minimize risks with active risk management
• Practices described in book involve less risk
• Risk manager identifies top 10 project risks

Survival Skills
Systematic Approach: Risk
Management

22

• Projects can easily get out of control
• Control project to meet schedule, budget, ...
• Does not mean controlling the project team

– Choose software life cycle model (staged
delivery)

– Manage changes in requirements
– Set consistent design and coding standards
– Create detailed project plan

• Good control must be planned

Survival Skills
Systematic Approach: Project Control

23

• Ability to determine project’s true status
– Use vision statement to set broad objectives
– Hold planning checkpoint review at 10 to 20% point
– Compare actual vs. planned performance and modify

plan
– Use binary milestones (100% “done” / “not done”)
– Compile to a releasable state regularly
– Revise estimates at end of each phase

• Must plan visibility into project from the start
– Does not happen automatically

Survival Skills
Systematic Approach: Project
Visibility

24

• Development requires
– Creativity, intelligence, initiative, persistence
– Lots of internal motivation

• Align developer’s interests with assigned
work
– Motivated by jobs they find stimulating

• Developers need appreciation from
sponsors
– Not motivated by impossible goals

Survival Skills
Systematic Approach: Peopleware

25

• Provide thinking-oriented office space
– Need relaxed and contemplative space

• Avoid open work bays
– Need private space to concentrate

uninterrupted

Survival Skills
Systematic Approach: Peopleware

26

• No real mystery to software that users love
– Ask users what they want
– Show users what the project team intends to build
– Ask users how they like it

• Bring users in early while software is flexible
• Build user-oriented checkpoints into project

– Small mid-course corrections cheaper than large
corrections

– Staged Delivery leverages this concept

Survival Skills
Early User Involvement

27

• Keep project simple as possible
– Less is more
– Avoid unnecessary complexity
– Simplest methods are least prone to error

• Use 2-hour, 2-day, 2-week, 2-month
approach

• Remove elements to make software simpler
• Adding elements make it more complex

Survival Skills
Product Minimalism

28

• Reward developers to see product to release
“Microsoft doesn’t make money by developing software;

it makes money by shipping software”

• Technical decisions should contribute to
satisfying the minimum required functions

• Development is a functional activity that
serves practical objectives

• Developers must focus on the bottom line

Survival Skills
Focus on Shipping Software

29

• Project progresses from problem
definition to software delivery
– Discovery
– Invention
– Implementation

Successful Project at a
Glance
Intellectual Phases

Discovery Invention ImplementationDevelopment
Focus

Schedule

30

• Status reports of “90% complete” not
useful
– If first 90% took 90% of the time,
– The last 10% will take another 90% of the

time!

Successful Project at a
Glance
Project Flow

31

• Deliver in successive stages, not all at
once
– Most important functionality delivered first
– Easier to track project status
– Emphasizes project planning and risk

reduction

Successful Project at a
Glance
Staged Delivery

Software
Concept

Requirements
Development

Architectural
Design

Software
Release

Plan

Design

Construct

Test

Release

32

• Critical functionality available earlier
• Risks reduced early
• Less overhead in status reporting
• Reduces possibility of estimation error

– Software is frequently in a releasable state

• Balances flexibility and efficiency
– Team only considers changes between stages
– Guarantees changes will be considered

periodically

Successful Project at a
Glance
Benefits of Staged Delivery

33

• Overhead
– Retesting features
– Version control complexity
– Releasing multiple times

• But this additional overhead yields
– Improved status visibility
– Quality visibility
– Estimation accuracy
– Risk reduction

Successful Project at a
Glance
Disadvantages of Staged Delivery

34

• Introduction
• The Survival Mindset
• Survival Preparations
• Succeeding by Stages
• Mission Accomplished
• References

Software Project Survival
Guide
Survival Preparations

35

• Ch 6: Hitting a Moving Target
• Ch 7: Preliminary Planning
• Ch 8: Requirements Development
• Ch 9: Quality Assurance
• Ch 10: Architecture
• Ch 11: Final Preparations

Survival Preparations
Outline

36

• Track changes in requirements, source code
• Evaluate, control, approve important changes
• Keep stakeholders aware of changes
• 5 Phases

1. Initial development – No change control
2. Technical review says what work is done
3. Completed work sent to change board
4. Work placed under revision control
5. Systematically handle further changes

Hitting a Moving Target
Change Control – Formalized
Common Sense

37

• Combats “mushy milestones”
• Promotes accountability

“On successful projects, project members actively
seek accountability both for their own work and for

other work that affects them.”

• Retrieve any version of any major document
• All documents available publicly
• Those who try it tend to advocate it
• Generates Useful Statistics

Change Control
Benefits of Automated Revision
Control

38

• How to consider changes
– Change board considers the benefits and costs

• When to consider changes
– Change board meets as needed (biweekly to

start)

• How to handle small changes
– Must use common sense or be swamped

• How to handle political issues
– Let them know they can still get what they want

Change Control
Common Issues

39

• Successful projects begin planning early
– Define a project vision
– Identify executive sponsor
– Set targets for scope
– How to publicize plans and progress
– Decide how to manage risks
– Map out strategies for using personnel effectively

• Capture these in a Software Development
Plan

Preliminary Planning
Basic Idea

40

• A study of 75 teams found:
– Effective teams always have a clear objective

• Effective vision
– Aids in decision making
– Has a motivating effect
– Must be achievable (otherwise it is de-

motivating)
– Makes it easy to know what to include/exclude

Preliminary Planning
Project Vision

41

• Consider the following vision statements:
Create the world’s best word processor

Create the world’s easiest-to-use word
processor

• Is it motivating?
• Does it provide guidance to the dev team?
“Creating wording that excludes at least as much as it

includes is the hard part of writing a vision
statement, but that wording is essential to the

statement’s usefulness.”

Preliminary Planning
Project Vision Examples

42

• Can be a person or a group
• A single, clear decision making authority

– Else the project gets pulled in different
directions like silly putty

• Responsible for committing to a feature set
• Approves the user interface design
• Decides if the software is ready to release

Preliminary Planning
Executive Sponsorship

43

• Software development is process of continual
refinement

• Give-take between features, budget,
schedule

• Be aware if initial budget and schedule is
insufficient for the desired features

• Preliminary schedule is only an aid
– To identify features that cannot meet target date
– Remove those features to keep project small

Preliminary Planning
Project Scope Targets

44

• NASA’s Software Engineering Laboratory (SEL)
– Creates initial project estimate
– Refines 5 more times over course of the project
– Estimates have base, upper and lower limits

 Upper Lower Limit
After Requirements Definition x2.0 x0.5
After Requirements Analysis x1.75 x0.57
After Preliminary Design x1.4 x0.71
After Detailed Design x1.25 x0.80
After Implementation x1.10 x0.91

After System Testing x1.05 x0.95

Preliminary Planning
Project Scope Targets

45

• Characteristics of unsuccessful projects:
– Planning is conducted in secret
– Not on purpose, but effectively so

• Make basic status indicators readily available
– Good and bad news should be visible
– List of completed tasks
– Defects
– Top 10 Risks List
– Percent of schedule/resources used
– PM Status Report to upper management

Preliminary Planning
Publicizing Plans and Progress

46

• This book promotes 5% of project effort
to risk management

• Gives most projects a 50 to 75% chance
of being on time and within budget

Preliminary Planning
Risk Management

“Successful organizations
actively look for ways to
trade small amounts of
increased overhead for
large amounts of risk
reduction.”0% 5% 25% 50%

100%

Chance of
meeting
schedule
and budget

Proportion of budget devoted to Risk Management

Mission-
Critical or
Ineffective
Projects

Overly
Bureaucratic
Projects

47

• Three elements to RM commitment
– Include risk management approach in project plan
– Budget must include funds for risk resolution
– Risk impact must be incorporated in project plans

• Not doing so is like sending your calls to voice mail, but
then never checking your messages

• Identify a Risk Officer
– Should have management’s respect
– If not they become project’s designated pessimist

Preliminary Planning
Risk Management

48

• Key tool is the Top 10 Risks List
– Doesn’t have to be exactly 10
– Does have to be maintained
– Review with project manager regularly
– Visible to entire team
– Can include any complaint from anyone

• Creeping Requirements
• Released software has low quality
• Unachievable schedule
• Friction between developers and customers
• Unproductive workspace

Preliminary Planning
Risk Management – Top 10 Risks List

49

• People-aware management accountability
– Do 5 developers quit at the end of a project?
– Does everyone emerge with improved skills

and great morale?
– Manager is responsible

• Hiring developers: Available vs. good ones
“It is better to wait for a productive programmer

to become available than for the first available
programmer to become productive.”

Personnel Strategies
Personnel Strategies

50

• 1993 Research by B. Lakhanpal on 31 teams
– Which impacts performance more:

• Individual developer’s capabilities
• Or team cohesion?

• TEAM COHESION had a greater impact
– Pay attention to how team members work

together
– Do not casually disband good teams after a

project

Personnel Strategies
Productivity Study

51

• Team Roles
– Project Manager - Product Manager
– Architect - User-Interface Designer
– End-user Liaison - Developers
– QA/Testers - Tool smith
– Build Coordinator - Risk Officer
– End-user documentation specialist

Personnel Strategies
Project Team Roles

52

• Track how personnel spend their time
– Provides project visibility
– Better estimations on future projects

• Categories and Activities
– Management

Planning, track progress, report progress, manage change, …

– Architecture
Create, review, and rework, report defects

– Integration
Automate, maintain, test, and distribute the build

Personnel Strategies
Time Accounting

53

• Convert customer needs into system specs
1. Gather Requirements

• Interview potential users
• Review competing products
• Build and review prototypes

2. Specify Requirements
• Document
• Storyboards
• Interactive prototype

3. Analyze Requirements
• Break them down to their essential characteristics

Requirements Development
Three Activities

54

• In Steve’s own words
“The most difficult part of requirements gathering

is not the act of recording what the users want;
it is the exploratory, developmental activity of

helping users figure out what they want.”

Requirements Development
Help Users Define Requirements

55

• Build a simple user interface prototype
• Present prototype to key end-users
• Use feedback to revise prototype
• Revise until end-users are excited about it

– “Highly satisfying” vs. “satisfying requirements”

• Benefits
– Clarifies requirements
– Make changes early, when changes are cheap
– Increases user-involvement

Requirements Development
The Prototype

56

• Develop style guide from prototype
– Set standards for the look and feel
– Few pages long, includes screen shots, fonts, …
– Review and place it under change control

• Fully extend the prototype
– Demonstrate every functional area of the software
– Broad but shallow (show, don’t implement)
– Use as the baseline specification

• No prototype code in the final software

Requirements Development
The Prototype (2)

57

• Write detailed user document from prototype
– Near the beginning of the project
– More understandable to users than technical spec
– Describes only end-to-end functionality of software

• Create non-user-interface requirements doc
– Detailed algorithms
– Interactions with other software and hardware
– Performance requirements
– Memory usage
– Other less visible requirements
– Reviewed and placed under change control

Requirements Development
The Prototype (3)

58

• Low quality software
– Increases burden on end-user support
– Increases maintenance costs

• Microsoft solution
– Charge support costs back to business unit

that created it

• Customers remember quality, not
delivery date

Quality Assurance
Why Quality Matters

59

• Commitment to QA required for survival
• Elements of QA plan

– Defect tracking
– Unit testing
– Source code tracing
– Technical reviews
– Integration testing
– System testing

Quality Assurance
Quality Assurance Plan

60

• Defect report includes
– Description
– How to reproduce defect
– Date when defect was detected and fixed
– Who found it and who fixed it
– Effort required to fix
– Phases when defect was created and detected

• Helps project team track project status
• Provides useful info for future projects

Quality Assurance
Defect Tracking

61

• Walkthroughs, inspections, or code
reading

• Focus: detect defects upstream
• Allows jr. developers to associate with sr.

developers
• Opportunity for jr. developers to

challenge old assumptions

Quality Assurance
Technical Reviews

62

• Technical reviews improve quality upstream
• System testing improves quality downstream

– Use independent testers, not the same developers
– Tests need to cover 100% software’s functionality
– Adequate resources for testing

• Microsoft: 1 tester / 1 developer
• NASA: Life critical software, 10 testers / 1 developer
• Small, in-house business systems: 1 tester / 4 developers

• Testing alone does not assure quality

Quality Assurance
System Testing

63

• System
testing

• Custome
r require-
ments

Dilbert Diversion
Break Time

64

• Risk Management

• Productivity

Dilbert Diversion
Break Time

65

“Once you realize that the goal of architecture is
to reduce complexity, it becomes clear that the
architect must focus as much on what to leave

out of the system as on what to put in”

Architecture
Goal

66

• Make hard-to-change decisions - correctly
• Provides technical structure for project

– Good: Makes the rest of the project easy
– Bad: Makes the rest of the project impossible

• Provides blueprint for detailed design
– How will likely changes be supported
– Can components from other systems be reused
– What components will be purchased commercially
– Design approaches to functional areas
– How does the architecture address requirements

Architecture
Definition

67

• Plan maintainability, security, testability from
start
– Indicate reasons for selecting solutions
– Indicate reasons why alternatives were not chosen

• Conceptual Integrity
– Clearly defined goal
– The architecture should fit the problem
– People will say “Of course, obviously, …”
– Deep Simplicity (natural and simple solution)
– More complicated architecture is worse, not better

Architecture
Characteristics

68

• Organization
– Well defined subsystems, 5 to 9 function

clusters
– Minimize communications between

subsystems (complexity)

Architecture
Characteristics (2)

User Interface
Graphics Formatting

and Output

Data Storage
Single-Program

Helper Tools

Program-Family
Reusable Tools

Data Analysis

Foundation-Level Tools
(text string storage, memory management, etc.)

69

• Notation
– Standard notation like UML for large projects
– Understood by all project members

• Strategy for handling Change Scenarios
– Anticipate most likely changes
– Plan how they will be addressed

• Reuse Analysis and Buy vs. Build Decisions
– Decision affects costs and schedule
– Consider reusing code, data, designs, test cases, …

Architecture
Characteristics (3)

70

• Design decisions that effect implementation
– External software interfaces
– User interface
– Database organization and data storage
– Key algorithms
– Memory management
– Security
– Concurrency/Threading
– Portability
– Programming language

Architecture
Characteristics (4)

71

• Support for Staged Delivery Plan
– Identify dependencies between different parts
– Plan to deliver parts in order that supports

stages

• When is it complete?
– The architecture is never perfect
– If you strive for the best, you often end up

with nothing

Architecture
Characteristics (5)

72

• More detailed plans than in early stages
• When to start?

– After requirements are baselined
– Architecture is underway

• Tasks that are part of final preparations
1. Create project estimates
2. Write staged delivery plan
3. Ongoing planning activities

Final Preparations

73

• Estimate effort, cost, and schedule
• Rules of thumb to keep in mind

– Accurate estimate IS possible
– Accurate estimate takes time
– Requires quantitative approach (software

tool)
– Use data from projects completed by same

group
– Estimates require refinement

Final Preparations
Project Estimates

74

• Estimation procedure should:
– Be written
– Include time for all normal activities
– Not assume working overtime
– Come from estimation software
– Be based upon data from completed projects
– Be re-estimated several times during project
– Be placed under change control

• Watch for estimates developers don’t accept

Final Preparations
Project Estimates (2)

75

• Most important functionality first
• Reduces time that seems to be required
• Design a THEME for each stage

– Simplifies decision of included features
– Example:

• Stage 1 – Database
• Stage 2 – Billing
• Stage 3 – Networking
• Stage 4 – Extended Reporting
• Stage 5 - Automation

Final Preparations
Staged Delivery

76

• Look at plans that were developed earlier
– Risk Management

• Update Top 10 Risks a few times by now
• New risks – cost, resources, technical aspects, …

– Project Vision
• Revise if necessary
• Must provide direction for all project phases

– Personnel
• Project Morale, problematic members, organization,

additional recruitment, …

– Software Development Plan

Final Preparations
Ongoing Planning Activities

77

• Introduction
• The Survival Mindset
• Survival Preparations
• Succeeding by Stages
• Mission Accomplished
• References

Software Project Survival
Guide
Succeeding by Stages

78

• Ch 12: Beginning of Stage Planning
• Ch 13: Detailed Design
• Ch 14: Construction
• Ch 15: System Testing
• Ch 16: Software Release
• Ch 17: End-of-Stage Wrap-Up

Succeeding by Stages
Outline

79

• Why is Stage Planning Needed?
– Minimize damage caused by shaky estimates
– Forces developers to have a releasable product
– Reduces Risk

• Create Individual Stage Plan
– Tells how to conduct detailed design, coding, …
– Add it to the Software Development Plan

• Mini Milestones help track progress

Stage Planning
Beginning-of-Stage Planning

80

• Includes milestones, schedules, and tasks for
– Risk management - Detailed design
– Construction - Test case creation
– Technical reviews- Defect corrections
– Coordination between developers and testers
– Project tracking (mini-milestones)
– Updating user documentation
– Integration and release
– Updating requirements
– End-of-stage wrap-up

Stage Planning
The Stage Plan

81

• Labor intensive but vitally important
– Frequent targets - Daily to Weekly level
– Binary milestones (Done / Not Done)
– Keeps team focused better than long-term

ones
– List EVERY task needed to release software

• All projects will have mistakes
“Project success depends on positioning the

project team to detect and correct these
mistakes quickly and easily”

Stage Planning
Miniature Milestones

82

• Reduces risk of low-quality software
• Missed Milestones is an early warning
• If frequently missing milestones

– Recalibrate the schedule
– Reduce the project scope
– Reassign parts to other developers

• Let people define their own milestones

Stage Planning
Miniature Milestones (2)

83

• Extends work done by architecture
– Architecture = system level organization
– Detailed Design = class/routine level organization

• Reuse analysis
• Trace and resolve requirements
• Construction plan with mini-milestones
• Correct defects in the architecture
• Stage 1 design to address potential

problems

Detailed Design
Overview

84

• 2 or 3 person review team checks for:
– Correctness (Will it work as intended?)
– Completeness (Is the design adequate?)
– Understandability (Is it easily understood?)
– Meets all requirements
– Does NOT exceed the requirements

• Facilitates cross-training
• Provides early defect detection

Detailed Design
Technical Reviews

85

• Use a coding standard
– Prevents a Rube Goldberg contraption
– Enables maintainability and extensibility
– Layout of classes, modules, routines, and

code
– Comments
– Naming variables, functions, and code files
– Degree of complexity allowed

• Typically enforced during code reviews

Construction
Keeping it Productive and Fun

86

• Developers look to optimize and simplify
– Projects not cancelled from lack of

complexity
– Complexity can make future changes

impossible

• Use the project vision to guide
decisions

Construction
Simplify

87

• Integration procedure
1. Developer develops a piece of code
2. Developer unit tests the code
3. Developer steps through each line of code

including exception and error cases in an
interactive debugger

4. Integrates code with private version of main
build

5. Developer submits code for technical review

Construction
Software Integration Procedure

88

• Integration procedure (continued)
6. Developer turns code over to testing for test

case prep
7. Code is reviewed
8. Developer fixes problems identified during

review
9. Fixes are reviewed
10. Developer integrates final code with main

build
11. Code is declared “complete”

Construction
Software Integration Procedure

89

• Requires discipline
• Provides project control benefits

– “Done” means “Done”
– Stable foundation for other developer’s work
– Reduces latent quality issues later on

Construction
Software Integration Procedure

90

• Daily build and smoke test procedure
1. Merge code changes
2. Build and test a private release
3. Execute the smoke test
4. Check in
5. Generate the daily build
6. Run the smoke test
7. Fix any problems immediately

Construction
Daily Build and Smoke Test

91

• Every Day – complete rebuild and
smoke test
– Run app and see if something breaks

“smokes”
– Can be automated
– Ensures/improves quality

Construction
Daily Build and Smoke Test

92

• Big job during construction
• Mini-milestones must be tracked

– Use automated tools such as Microsoft
Project

• Similarly with time-accounting
• Provides visibility

Construction
Tracking Progress

93

• Weekly project tracking update
– Compare planned vs. actual

• Defects, milestones, effort, …
– Top 10 Risks
– Anonymous feedback
– Changes proposed and approved
– Effect on the Schedule or Project Plan
– Take corrective action if necessary
– Update software project log
– Communicate changes to management and

users

Construction
Tracking Progress

94

• Construction is THE critical activity
• Everything else supports construction
• Success/failure largely based on

groundwork

“If upstream project stages have been conducted
effectively, construction will be a time during

which a great deal of work takes place
uneventfully”

Construction
Is that all there is to it?

95

• System testing at same time as
construction

• Verifies requirements are met
• Verifies level of quality
• Test entire system scope
• During each stage

– Add new test cases to cover new
requirements

– Regression test the previous requirements

System Testing
Test Philosophy

96

• Testers expose defects to be corrected
• Ensure system quality is high
• Developers correct defects quickly
• PM limits unresolved defects
• Defect tracking identifies problematic

routines
– 80% of system errors found in 20% of routines
– Review those routines and bring up to

standard

System Testing
Testers and Developers Support Each
Other

97

• Staged delivery relies on bringing the
software to a releasable quality level

• Failure to do so results in low quality
• When to Release?

– Defect counts
– Effort per Defect (time required to fix)
– Defect density (defects per 1000 lines of code)
– Defect Pooling
– Defect Seeding
– Defect Modeling

Software Release
Drive to a Releasable Level

98

• Avoid simple oversights
• Focus not on testing
• Focus on easily overlooked items

– Version numbers
– Removing debugging code
– Remove seeded defects
– Smoke/Regression test the Final Build
– Install on clean system
– Install over previous version
– Verify Copyright, license, …

Software Release
Release Checklist

99

• Opportunity to learn from the experience
• Hold a Change Board Meeting
• Recalibrate Estimates
• Re-estimate Productivity
• Evaluate performance against Project

Plan
• Archive project media
• Update the Software Project Log

End-of-Stage Wrap-Up

100

• Introduction
• The Survival Mindset
• Survival Preparations
• Succeeding by Stages
• Mission Accomplished
• References

Software Project Survival
Guide
Mission Accomplished

101

• Learn from successes and failures
• Gather data from postmortems or emails

– What worked
– What didn’t
– Discuss insights
– Project Review Questionnaire

• Formalized in the Project History Document
• Don’t forget it – Use in future projects

Mission Accomplished
Project History

102

• Summary of successful projects
– DO’s

• Create and follow a Software Development Plan
• Empower project personnel
• Minimize the bureaucracy
• Define the requirements baseline, manage changes to it
• Take periodic snapshots of project health and progress
• Re-estimate system size, effort, and schedules

periodically
• Define and manage phase transitions
• Foster a team spirit
• Start the Project with a small senior staff

Mission Accomplished
NASA’s Success Checklist

103

• Summary of successful projects
– DONT’s

• Don’t let team members work in an unsystematic way
• Don’t set unreasonable goals
• Don’t implement changes w/o assessing impact, approval
• Don’t gold-plate
• Don’t overstaff, especially early in the project
• Don’t assume schedule slip mid-phase will be made up later
• Don’t relax standards to cut costs or to shorten schedule
• Don’t assume tons of documentation ensures success

Mission Accomplished
NASA’s Success Checklist

104

• Similarities
– Staged releases

• Focus on in-phase defect removal
• Bring software to releasable level regularly
• Reduced integration risk – small amount being integrated
• Evidence of progress, adds visibility to customer
• Increases morale

– Daily build and smoke test
• Requires discipline and effort to keep the build healthy

– Organization Environment
• Adaptable to many small and medium-sized organizations

Mission Accomplished
Compare with Agile Methods

105

• Somewhat Similar
– Agile goals

• Working software over comprehensive documents
• Customer collaboration over contract negotiation
• Individuals and interaction over processes and tools
• Responding to change over following a plan

Mission Accomplished
Compare with Agile Methods

106

• Differences
– Staged releases

• Agile looks for frequent releases (weekly to monthly)
• Book doesn’t specify but uses 3-month examples
• Agile does not require all steps in each phase

– Requirements
• Agile assumes very dynamic requirements (few up

front)
• Book advises to work hard to firm up requirements early

– Documentation
• Agile assumes little or no documentation

Mission Accomplished
Compare with Agile Methods

107

• Differences
– Acceptance testing

• Agile (XP) has on-site customer create acceptance tests
• Book says testers create tests upon required functionality

– Team meetings
• Agile (scrum) promotes daily 15-minute stand-up meeting
• Book focuses more on visibility of status and progress

– Code Ownership
• Agile (XP): any programmer works on any code any time
• Book: code divided by programmer, strict code reviews

Mission Accomplished
Compare with Agile Methods

108

• Book balances process with agility
– Based on project size and complexity
– Enough process for project survival and success

• In Steve’s own words
“I've never been either pro-agile or anti-agile --
I've always been pro-whatever-practices-work-
best. In many situations the practices that work
best are the practices that today are associated

with agile development. And in some
circumstances, other older practices still work

best.”

Mission Accomplished
Compare with Agile Methods

109

For more than a generation, medium-size
projects have been failing for no good
reason.

Like Edward Bear, developers, project
managers, and customers bump their
heads down stairs exactly the same way
project after project.

The work required to make a software
project succeed is not especially difficult
or time-consuming, but it must be
executed diligently from the first day of
the project to the last.

Epilogue
Bump, bump, bump…

110

• Introduction
• The Survival Mindset
• Survival Preparations
• Succeeding by Stages
• Mission Accomplished
• References

Software Project Survival
Guide
References

111

• Construx website:
http://www.construx.com/survivalguide

• NASA’s SEL Recommended Approach to
software Development, Rev 3, free online
at
http://homepages.inf.ed.ac.uk/dts/pm/Pap
ers/nasa-approach.pdf

• Key Practices of the Capability Maturity
Model, Version 1.1, free online at
http://www.sei.cmu.edu/reports/93tr025.p
df

References

http://www.construx.com/survivalguide
http://homepages.inf.ed.ac.uk/dts/pm/Papers/nasa-approach.pdf
http://homepages.inf.ed.ac.uk/dts/pm/Papers/nasa-approach.pdf
http://www.sei.cmu.edu/reports/93tr025.pdf
http://www.sei.cmu.edu/reports/93tr025.pdf

	Software Project Survival Guide How to be sure your First Important Project isn’t your Last by Steve McConnell (author of Rapid Development and Code Complete)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

