
DECEMBER 2014 | VOL. 57 | NO. 12 | COMMUNICATIONS OF THE ACM 49

DOI:10.1145/2677034

 Article development led by
 queue.acm.org

What happened to the promise of
rigorous, disciplined, professional
practices for software development?

BY IVAR JACOBSON AND ED SEIDEWITZ

WHAT HAP P EN ED TO software engineering? What
happened to the promise of rigorous, disciplined,
professional practices for software development, like
those observed in other engineering disciplines?

What has been adopted under the rubric of
“software engineering” is a set of practices largely

adapted from other engineering dis-
ciplines: project management, design
and blueprinting, process control,
and so forth. The basic analogy was
to treat software as a manufactured
product, with all the real “engineer-
ing” going on upstream of that—in re-
quirements analysis, design and mod-
eling, among others.

Doing the job this way in other en-
gineering disciplines makes sense be-
cause the up-front work is based on a
strong foundational understanding,
so the results can be trusted. Software
engineering has had no such basis,
so “big up-front design” often just
has not paid off. Indeed, the ethos of
software engineering has tended to
devalue coders (if not explicitly, then
implicitly through controlling prac-
tices). Coders, though, are the ones

who actually have to make the soft-
ware work—which they do, regardless
of what the design “blueprints” say
should be done.

Not surprisingly, this has led to a
lot of dissatisfaction.

Today’s software craftsmanship
movement is a direct reaction to the
engineering approach. Focusing on
the craft of software development, this
movement questions whether it even
makes sense to engineer software. Is
this the more sensible view?

Since it is the code that has to be
made to work in the end anyway, it
does seem sensible to focus on craft-
ing quality code from the beginning.
Coding, as a craft discipline, can then
build on the experience of software
“masters,” leading the community to
build better and better code. In addi-

A New
Software
Engineering

http://dx.doi.org/10.1145/2677034

50 COMMUNICATIONS OF THE ACM | DECEMBER 2014 | VOL. 57 | NO. 12

practice

educate and support a new generation
of practitioners. Because craftsman-
ship is really all about the practitioner,
and the whole point of an engineering
theory is to support practitioners, this
is essentially what was missing from
previous incarnations of software en-
gineering.

How does the software community
go about this task of “refounding”
software engineering?

The SEMAT (Software Engineer-
ing Method and Theory) initiative is
an international effort dedicated to
answering this question (http://www.
semat.org). As the name indicates, SE-
MAT is focusing both on supporting
the craft (methods) and building foun-
dational understanding (theory).

This is still a work in progress, but
the essence of a new software engi-
neering is becoming clear. The re-
mainder of this article explores what
this essence is and what its implica-
tions are for the future of the disci-
pline.

Engineering Is Craft
Supported by Theory
A method (equivalently, methodology
or process) is a description of a way of
working to carry out an endeavor, such
as developing software. Ultimately, all
methods are derived from experience
with what does and does not work in
carrying out the subject endeavor.
This experience is distilled, first into
rules of thumb and then into guide-
lines and, when there is consensus,
eventually into standards.

In a craft discipline, masters, who
have the long experience necessary,
largely develop methods. In older
times, the methods of a master were
closely guarded and passed down
only to trusted apprentices. In today’s
world, however, various approaches
based on the work of master crafts-
men are often widely published and
promoted.

As a craft develops into an engi-
neering discipline, it is important to
recognize commonality between the
methods of various masters, based on
the underlying shared experience of
the endeavor being carried out. This
common understanding is then cap-
tured in a theory that can be used as a
basis for all the different methods to
be applied to the endeavor.

tion, many of the technical practices
of agile development have made it
possible to create high-quality soft-
ware systems of significant size using
a craft approach—negating a major
impetus for all the up-front activities
of software engineering in the first
place.

In the end, however, a craft disci-
pline can take you only so far. From an-
cient times through the Middle Ages,
skilled artisans and craftsmen created
many marvelous structures, from the
pyramids to gothic cathedrals. Unfor-
tunately, these structures were incred-
ibly expensive and time consuming to
build—and they sometimes collapsed
in disastrous ways for reasons that
were often not well understood.

Modern structures such as sky-
scrapers became possible only with
the development of a true engineering
approach. Modern construction engi-
neering has a firm foundation in ma-
terial science and the theory of struc-
tures, and construction engineers use
this theoretical foundation as the ba-
sis of a careful, disciplined approach
to designing the structures they are to
build.

Of course, such structures still
sometimes fail. When they do, howev-
er, a thorough analysis is again done
to determine whether the failure was
caused by malfeasance or a shortcom-
ing in the underlying theory used in
the original design. Then, in the latter
case, new understanding can be incor-
porated into the foundational practice
and future theory.

Construction engineering serves as
an example of how a true engineering
discipline combines craftsmanship
with an applied theoretical founda-
tion. The understanding captured in
such an accepted foundation is used
to educate entrants into the disci-
pline. It then provides them with a ba-
sis for methodically analyzing and ad-
dressing engineering problems, even
when those problems are outside the
experience of the engineers.

From this point of view, today’s
software engineering is not really an
engineering discipline at all.

What is needed instead is a new
software engineering built on the
experience of software craftsmen,
capturing their understanding in a
foundation that can then be used to

Today’s software
craftsmanship
movement is
a direct reaction
to the engineering
approach.
Focusing on
the craft of software
development,
this movement
questions
whether it even
makes sense to
engineer software.
Is this the more
sensible view?

DECEMBER 2014 | VOL. 57 | NO. 12 | COMMUNICATIONS OF THE ACM 51

practice

In this sense, theory is not the bad
word it is sometimes treated as in our
culture (“Oh, that’s just a theory”).
As noted earlier, having a theoreti-
cal foundation is, in fact, the key that
allows for disciplined engineering
analysis. This is true of material sci-
ence for construction engineering,
electromagnetic theory for electrical
engineering, aerodynamics for aero-
nautical engineering, and so forth.

Of course, the interplay between
the historical development of an engi-
neering discipline and its associated
theory is generally more complicated
than this simple explanation implies.
Engineering experience is distilled
into theory, which then promotes bet-
ter engineering, and back again. Nev-
ertheless, the important point to re-
alize here is this: traditional software
engineering did not have such an un-
derlying theory.

One might suggest computer sci-
ence provides the underlying theory
for software engineering—and this
was, perhaps, the original expectation
when software engineering was first
conceived. In reality, however, com-
puter science has remained a largely
academic discipline, focused on the
science of computing in general but
mostly separated from the creation of
software-engineering methods in in-
dustry. While “formal methods” from
computer science provide the prom-
ise of doing some useful theoretical
analysis of software, practitioners
have largely shunned such methods
(except in a few specialized areas such
as methods for precise numerical
computation).

As a result, there have often been
cycles of dueling methodologies for
software “engineering,” without a true
foundational theory to unite them. In
the end, many of these methods did
not even address the true needs of the
skilled craft practitioners of the in-
dustry.

So, how to proceed?
The creation of a complete, new

theory of software engineering will
take some time. Rather than starting
with an academic approach, we can
begin, as already mentioned, by cap-
turing the commonality among the
methods that have proven successful
in the craft of software development.
This, in turn, requires a common way

of describing, understanding, and
combining various software-develop-
ment techniques, instead of setting
them up in competition with each
other.

To see how this might be accom-
plished, let’s take a closer look at
methods and the teams of practitio-
ners that really use them.

Agility Is for Methods,
Not Just Software
The current movement to promote

agility in software development com-
plements the recognition of software
craftsmanship. As the name suggests,
agile software development is about
promoting flexibility and adaptability
in the face of inevitably changing re-
quirements. This is done by producing
software in small increments, obtain-
ing feedback in rapid iterations, and
continually adjusting as necessary.

Agile software-development teams
take charge of their own way of work-
ing. Such a team applies the methods

Figure 1. The kernel alphas.

C
us

to
m

er
S

ol
ut

io
n

E
nd

ea
vo

r

se
t

up
 t

o
ad

dr
es

s
>

Scopes and
constrains >

< produces
use and

consum
e > support >

focuses >
< provide

< fulfills

< performs and plans

< guides < applies

< demand

updates and changes >

< helps to address

Opportunity

Requirements

Stakeholders

Work Team

Way of
Working

Software
System

Figure 2. Tracking progress with alphas.

Opportunity

StakeholdersWay of Working

RequirementsTeam

Software SystemWork

52 COMMUNICATIONS OF THE ACM | DECEMBER 2014 | VOL. 57 | NO. 12

practice

practice is a repeatable approach to
doing something with a specific pur-
pose in mind. Practices are the things
that practitioners actually do.

For example, the agile method of
Extreme Programming is described
as having 12 practices, including pair
programming, test-driven develop-
ment, and continuous integration.
The agile framework Scrum, on the
other hand, introduces practices
such as maintaining a backlog, daily
scrums, and sprints. Scrum is not real-
ly a complete method but a composite
practice built from a number of other
practices designed to work together.
Scrum, however, can be used as a
process framework combined with
practices from, say, Extreme Program-
ming, to form the method used by an
agile team.

That exemplifies the power of ex-
plicitly considering how methods are
made up of practices. Teams can pull

it feels it needs for the project at hand
as they are needed, adapting the devel-
opment process throughout a project.
In effect, an agile team needs to evolve
and improve its methods in as agile a
fashion as it develops its software.

A lack of agility in methods is a cen-
tral failure of traditional software en-
gineering.

Software is, by its very nature, mal-
leable and (physically) easy to change.
A complicated software system, how-
ever, can exhibit a kind of intellectual
rigidity in which it is difficult to make
changes correctly, with each change
introducing as many or more errors
as it resolves. In the face of this, the
response of traditional software engi-
neering was to adopt process-control
and project-management techniques
such as those used to handle similar
problems with complicated hardware
systems.

From an agile viewpoint, however,

the application of hardware-engineer-
ing techniques was a mistake. Agile
techniques, instead, take advantage
of the changeable nature of software,
using quick feedback cycles allowed
by continuous integration and inte-
grated testing to manage complex-
ity, rather than process control. As a
result, agile development focuses on
supporting the practitioner in build-
ing quality software, rather than re-
quiring the practitioner to support the
process.

So, how do you introduce agility
into software-engineering methods?
By looking at the basic things that
practitioners actually do—their prac-
tices.

Methods Are Made
from Practices
A method may appear monolithic, but
any method may be analyzed as being
composed of a number of practices. A

va

Figure 3. Alphas made tangible with cards.

Identified

Opportunity

1 / 6

§ Opportunity identified that could be
addressed by a software-based solution

§ A stakeholder wishes to make
an investment in better understanding
potential value

§ Other stakeholders who share
opportunity identified

Involved

Stakeholders

3 / 6

§ Stakeholder representatives carry
out responsibilities

§ Stakeholder representatives
provide feedback and take part
in decisions in a timely way

§ Stakeholder representatives
promptly communicate to
stakeholder group

Addressed

Requirements

5 / 6

§ Enough requirements are implemented
for the system to be acceptable

§ Stakeholders agree the system
is worth making operational

Demonstrable

Software
System

2 / 6

§ Key architecture characteristics
demonstrated

§ Relevant stakeholders agree
architecture is appropriate

§ Critical interface and system
configurations exercised

Under Control

Work

4 / 6

§ Work going well, risks being
managed

§
under control

§ Work items completed within estimates

§ Measures tracked

Unplanned work and re-work

Performing

Team

4 / 5

§ Team working efficiently
and effectively

§ Adapts to changing context

§ Produce high quality output

§ Minimal backtracking and re-work

§ Waste continually eliminated

Way of
Working

3 / 6

§ Some members of the team
are using the way of working

§ Use of practices and tools
regularly inspected

§ Practices and tools being adapted
and supported by team

§ Procedures in place to handle feedback

In Use

DECEMBER 2014 | VOL. 57 | NO. 12 | COMMUNICATIONS OF THE ACM 53

practice

together the practices that best fit the
development task at hand and the
skills of the team members involved.
Further, when necessary, a team can
evolve its method in not only small
steps, but also more radical and bigger
steps such as replacing an old practice
with a better practice (without having
to change any other practices).

Note how the focus is on teams
and the practitioners in teams, rather
than “method engineers,” who create
methods for other people to carry out.
Creating their own way of working is a
new responsibility for a lot of teams,
however, and it is also necessary to
support a team’s ability to do this
across projects. It is also useful, there-
fore, to provide for groups interested
in creating and extending practices,
outside of any specific project, so they
can then be used as appropriate by
project teams.

This can be seen as a separation
of concerns: practices can be cre-
ated and grown within an organiza-
tion, or even by cross-organization
industry groups (such as is effectively
the case with Extreme Programming
and Scrum); practitioners on project
teams can then adopt, adapt, and ap-
ply these practices as appropriate.

What assurance do project teams
have that disparately created practices
can actually be smoothly combined
to produce effective methods? This
is where a new software-engineering
foundation is needed, independent
of practices and methods but able to
provide a common underpinning for
them.

The Kernel Is the Foundation
for Practices and Methods
The first tangible result of the SEMAT
initiative is what is known as the ker-
nel for software engineering. This ker-
nel can be thought of as the minimal
set of things that are universal to all
software-development endeavors. The
kernel consists of three parts:

 ˲ A means for measuring the prog-
ress and health of an endeavor.

 ˲ A categorization of the activities
necessary to advance the progress of
an endeavor.

 ˲ A set of competencies necessary to
carry out such activities.

Of particular importance is having
a common means for understanding

Group.6 In addition to the full kernel,
the Essence standard also defines
a language that can be used both to
represent the kernel and to describe
practices and methods in terms of
the kernel. Importantly, this language
is intended to be usable by practitio-
ners, not just method engineers; for
basic uses, it can be learned in just a
couple of hours (the alpha state cards
are an example of this).

Of course, this ability to use the
kernel to describe practices is exactly
what is needed as a foundation for
true software-engineering methods.

Practices Built on the Kernel
Enable Agile Methods
A practice can be expressed in terms
of the kernel by:

 ˲ Identifying the areas in which it
advances the endeavor.

 ˲ Describing the activities used to
achieve this advancement and the
work products produced.

 ˲ Describing the specific competen-
cies needed to carry out these activi-
ties.

A practice can also extend the ker-
nel with additional states, checklists,
or even new alphas.

The critical point is that the kernel
provides a common framework for
describing all practices and allowing
them to be combined into methods.
Bringing a set of practices into this
common system allows gaps and over-
laps to be more easily identified. The
gaps can then be filled with additional
practices and the overlaps resolved by
connecting the overlapping practices
together appropriately.

For example, consider two prac-
tices: one about using a backlog to
manage the work to be carried out by
a team (advancing the work alpha);
the other about defining require-
ments using user stories (advancing
the requirements alpha). The backlog
practice does not prescribe what the
items on the backlog must be, while
the user-story practice does not pre-
scribe how the team should manage
the implementation of those stories.
The two practices are thus comple-
mentary and can be used together—
but, when so combined, they overlap.
The two practices can be connected in
a smooth and intuitive way within an
overall method by identifying backlog

how an endeavor is progressing. The
SEMAT kernel defines seven dimen-
sions for measuring this progress,
known as alphas. (The term alpha was
originally an acronym for abstract-lev-
el progress health attribute but is now
simply used as the word for a progress
and health dimension as defined in
the kernel. Many other existing terms
were considered, but all had connota-
tions that clashed with the essentially
new concept being introduced for the
kernel. In the end, a new term was ad-
opted without any of the old baggage.)
The seven dimensions are: opportuni-
ty, stakeholders, requirements, soft-
ware system, work, team, and way of
working. These alphas relate to each
other as shown in Figure 1.

Each alpha has a specific set of
states that codify points along the
dimension of progress represented
by the alpha. Each of the states has a
checklist to help practitioners moni-
tor the current state of their endeavor
along a certain alpha and to under-
stand the state they need to move to-
ward next. The idea is to provide an in-
tuitive tool for practitioners to reason
about the progress and health of their
endeavors in a common, method-in-
dependent way.

One way to visualize the seven-di-
mensional space of alphas is using the
spider chart1 shown in Figure 2. In this
chart, the gray area represents how far
an endeavor has progressed, while the
white area shows what still needs to
be completed before the endeavor is
done. A quick look at such a diagram
provides a good idea of where a proj-
ect is at any point in time.

The alphas can be made even more
tangible by putting each of the alpha
states on a card, along with the state
checklist in an abbreviated form (see
Figure 3). The deck of all such cards
can then fit easily into a person’s pock-
et. Although more detailed guidelines
are available, these cards contain key
reminders that can be used by devel-
opment teams in their daily work,
much like an engineer’s handbook in
other disciplines.

A more complete discussion of the
kernel and its application is available
in previous work.2,3 The kernel itself is
formally defined as part of the Essence
specification that has been standard-
ized through the Object Management

54 COMMUNICATIONS OF THE ACM | DECEMBER 2014 | VOL. 57 | NO. 12

practice

nizations to simplify governance of
methods, using a pool of practices
that may be adopted and adapted by
project teams. Having Essence as a
common foundation for this also al-
lows practitioners to learn from one
another more readily.

The real shift, however, will only
come as teams truly realize the ben-
efits of Essence today and as SEMAT
builds on Essence to complete the
new software engineering paradigm.
A community of practitioners is now
contributing their experience and be-
coming part of this “refounding” of
software engineering—or, perhaps,
really founding it for the first time.

 Related articles
 on queue.acm.org

The Essence of Software Engineering:
The SEMAT Kernel
Ivar Jacobson, Pan-Wei Ng, Paul E. McMahon,
Ian Spence and Svante Lidman
http://queue.acm.org/detail.cfm?id=2389616

First, Do No Harm: A Hippocratic Oath
for Software Developers

Phillip A. Laplante
http://queue.acm.org/detail.cfm?id=1016991

Software Development with Code Maps
Robert DeLine, Gina Venolia and Kael Rowan
http://queue.acm.org/detail.cfm?id=1831329

References
1. Graziotin, D. and Abrahamsson, P. A Web-based

modeling tool for the SEMAT Essence theory of
software engineering. J. Open Research Software 1, 1
(2013), e4; http://dx.doi.org/10.5334/jors.ad.

2. Jacobson, I., Ng, P-W., McMahon, P., Spence, I. and
Lidman, S. The Essence of software engineering: The
SEMAT kernel. ACM Queue 10, 10 (2012); http://queue.
acm.org/detail.cfm?id=2389616.

3. Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I.
and Lidman, S. The Essence of Software Engineering:
Applying the SEMAT Kernel. Addison-Wesley, Reading,
PA, 2013.

4. Jacobson, I., Spence, I. and Ng, P.-W. Agile and SEMAT—
Perfect partners. Comm. ACM 6, 11 (Nov. 2013); http://
cacm.acm.org/magazines/2013/11/169027-agile-and-
semat/abstract.

5. Kuhn, T. The Structure of Scientific Revolutions.
University of Chicago Press, 1962.

6. Object Management Group. Essence—Kernel and
language for software engineering methods, 2014;
http://www.omg.org/spec/Essence.

Ivar Jacobson is the founder and chairman of Ivar
Jacobson International. He is a father of components
and component architecture, use cases, aspect-oriented
software development, modern business engineering,
the Unified Modeling Language, and the Rational Unified
Process.

Ed Seidewitz is the former CTO, Americas, for Ivar
Jacobson International and is currently chair of the
ongoing Essence Revision Task Force. With Ivar Jacobson
International, he has led agile system architecture and
development engagements in both the commercial
and government sectors and participated in practice
development.

Copyright held by owners/authors. Publication rights
licensed to ACM. $15.00.

items from the one with user stories
from the other, so that user stories be-
come the items managed on the back-
log.

Note, in particular, how the com-
mon framework of the kernel provides
a predictive capability. A construction
engineer can use material science and
the theory of structures to understand
at an early stage whether a proposed
building is likely to stand or fall. Simi-
larly, using the kernel, a software de-
veloper can understand whether a
proposed method is well constructed,
and, if there are gaps or overlaps in its
practices, how to resolve those.

Further, through the separation
of concerns discussed earlier, an or-
ganization or community can build
up a library of practices and even ba-
sic methods that a new project team
may draw on to form its initial way of
working. Each team can then contin-
ue to agilely adapt and evolve its own
methods within the common Essence
framework.4

Ultimately, the goal will be, as an
industry, to provide for the standard-
ization of particularly useful and suc-
cessful practices, while enhancing,
not limiting, the agility of teams in
applying and adapting those prac-
tices, as well as building new ones as
necessary. And that, finally, is the path
toward a true discipline of software
engineering.

Conclusion
The term paradigm shift may be a bit
overused these days; nevertheless,
the kernel-based Essence approach
to software engineering can quite
reasonably be considered to be such
a shift. It truly represents a profound
change of viewpoint for the software-
engineering community.

When Thomas Kuhn introduced
the concept of a paradigm shift in his
influential book, The Structure of Sci‑
entific Revolutions,5 he stressed the dif-
ficulty (Kuhn even claimed impossi-
bility) of translating the language and
theory of one paradigm into another.
The software-development commu-
nity has actually seen such shifts be-
fore, in which those steeped in the old
paradigm have trouble even under-
standing what the new paradigm is all
about. The move to object orientation
was one such shift, as, in many ways,

is the current shift to agile methods.
In this regard, Essence can, indeed,

be considered a paradigm shift in two
ways. First, those steeped in the “old
school” of software engineering have
to start thinking about the true engi-
neering of software specifically, rather
than just applying practices largely
adapted from other engineering disci-
plines. Second, those in the software
craftsmanship and agile communi-
ties need to see the development of a
true engineering discipline as a neces-
sary evolution from their (just recently
hard-won!) craft discipline.

In regard to the second point, in
his foreword to The Essence of Soft‑
ware Engineering: Applying the SEMAT
Kernel,3 Robert Martin, one of the SE-
MAT signatories, describes a classic
pendulum swing away from software
engineering toward software crafts-
manship. Martin’s assessment is cor-
rect, but it is important to note that
this proverbial pendulum should not
simply swing back in the direction it
came. To the contrary, while swing it
must, it now needs to swing in almost
a 90‑degree different direction from
which it came, in order to move to-
ward a new discipline of true software
engineering.

There is, perhaps, hardly a bet-
ter image for a paradigm shift than
that. In the end, the new paradigm of
software engineering, while building
on the current paradigm of software
craftsmanship, must move beyond it,
but it will also be a shift away from the
old paradigm of traditional software
engineering. And, like all paradigm
shifts before, this one will take con-
siderable time and effort before it is
complete—at which point, as the new
paradigm, everyone will consider its
benefits obvious.

Even as it stands today, though, us-
ing Essence can provide a team with
some key benefits. Essence helps
teams to be agile when working with
methods and to measure progress in
terms of real outcomes and results of
interest to stakeholders. These prog-
ress measurements are not only on
one dimension, but along the seven
dimensions of the kernel alphas, all
of which need to move along at some
pace to reduce risks and achieve re-
sults.

Further, Essence can allow orga-

