
 Functional dependency is a relationship of one
attribute or field in a record to another.

 In DB, we often have the case where one field
defines the other.

Eg1: Social Security Number (SSN) defines a name.

• if I know someone's SSN, then I can find their name.

• we will say that we have defined name as being
functionally dependent on SSN.

Chapter 5
Functional dependency and

Normalization

Functional dependency

Eg2: suppose that a company assigned each employee a
unique EmpNo. Each employee has a number and a name.
Names might be the same for two different employees, but
their employee numbers would always be different and
unique because the company defined them that way.

- It would be inconsistent in the database if there were two
occurrences of the same employee number with different
names.

 We write a functional dependency (FD) connection with an
arrow: SSN → Name

EmpNo → Name.

 The expression SSN → Name is read as "SSN defines Name"
or "SSN implies Name."

Eg:

EmpNo Job Name

101 President Herbert

104 Programmer Fred

103 Designer Beryl

103 Programmer Beryl

Is there a problem here?

We have the FD that

EmpNo → Name. This means

that every time we find 104,

we find the name, Fred.

Just because something is on the left-hand side of a FD, it does not

imply that you have a key or that it will be unique in the database.

i.e the FD X → Y only means that for every occurrence of X you

will get the same value of Y.

Functional dependency

No.

 Eg:going back to the SSN → Name
example and add a couple more attributes.

SSN Name School Location

101 David Alabama Tuscaloosa

102 Chrissy MSU Starkville

103 Kaitlyn LSU Baton Rouge

104 Stephanie MSU Starkville

105 Lindsay Alabama Tuscaloosa

106 Chloe Alabama Tuscaloosa

First, have we violated any FDs with our data? Because all SSNs are

unique, there cannot be a FD violation of SSN → Name. Why? Because a

FD X → Y says that given some value for X, you always get the same Y.

Because the X's are unique, you will always get the same value. The same

comment is true for SSN → School.

Here, we will define

two FDs:

1.SSN → Name and

School → Location.

2. SSN → School.

Functional dependency

How about our second FD, School→ Location? There are only
three schools in the example and you may note that for every
school, there is only one location, so no FD violation.

Now, we want to point out something interesting. If we define a
functional dependency X → Y and we define a functional
dependency Y → Z, then we know by inference that X → Z.

 Here, we defined SSN → School. We also defined

School → Location, so we can infer that SSN → Location

although that FD was not originally mentioned.

 The inference we have illustrated is called the transitivity
rule of FD inference. Here is the transitivity rule restated:

Given X → Y

Given Y → Z

Then X → Z

Functional dependency

 To see that the FD SSN→ Location is true in our data, you
can note that given any value of SSN, you always find a
unique location for that person.

 Another way to demonstrate that the transitivity rule is
true is to try to invent a row where it is not true and then
see if you violate any of the defined FDs.

 We defined these FD's:

Given: SSN → Name

SSN → School

School → Location

 We are claiming by inference using the transitivity rule that
SSN→ Location.

Functional dependency

There are other inference rules for functional dependencies.

A. The Reflexive Rule If X is a composite, composed of A
and B, then X→ A and X→ B.

Eg: X= Name, City. Then we are saying that X → Name and X → City.

Example: Name City

David Mobile

Kaitlyn New Orleans

Chrissy Baton Rouge

The rule, which seems quite obvious, says if I give you the

combination <Kaitlyn, New Orleans>, what is this person's

Name? What is this person's City? While this rule seems

obvious enough, it is necessary to derive other functional

dependencies.

Functional dependency

B. The Augmentation Rule If X→ Y, then XZ→ Y. You might

call this rule, "more information is not really needed, but it doesn't
hurt." Suppose we use the same data as before with Names and
Cities, and define the FD Name → City.

Now, suppose we add a column, Shoe Size:

Name City Shoe Size

David Mobile 10

Kaitlyn New Orleans 6

Chrissy Baton Rouge 3

Will there be a contradiction here, ever? No, because we defined

Name → City, Name plus more information will always identify

the unique City for that individual. We can always add information

to the LHS of an FD and still have the FD be true.

Now, I claim that because Name→ City,

that Name + Shoe Size → City

(i.e., we augmented Name with Shoe Size).

Functional dependency

C. The Decomposition Rule The decomposition rule says

that if it is given that X → YZ (that is, X defines both Y and Z),
then X → Y and X → Z.

example:

Name City Shoe Size

David Mobile 10

Kaitlyn New Orleans 6

Chrissy Baton Rouge 3

The rule says that given Name → City and Shoe Size together, then

Name → City and Name → Shoe Size. A partial proof using the reflexive

rule would be:

Suppose I define Name → City, Shoe Size.

This means for every occurrence of Name, I

have a unique value of City and a unique

value of Shoe Size.

Name → City, Shoe Size (given)

City, Shoe Size → City (by the reflexive rule)

Name → City (using steps 1 and 2 and the transitivity rule)

Functional dependency

D. The Union Rule The union rule is the reverse of the

decomposition rule in that if X → Y and X → Z, then X → YZ.

• The same example of Name, City, and Shoe Size illustrates the
rule. If we found independently or were given that Name →City
and Name → Show Size, we can immediately write Name→ City,
Shoe Size.

 You might be a little troubled with this example in that you may
say that Name is not a reliable way of identifying City; Names
might not be unique. You are correct in that Names may not

ordinarily be unique, but note the language we are using. In
this database, we define that Name → City and,hence, in this
database are restricting Name to be unique by definition.

Functional dependency

Functional dependencies (FDs)

– Are used to specify formal measures of the "goodness" of
relational designs

– And keys are used to define normal forms for relations

– Are constraints that are derived from the meaning and
interrelationships of the data attributes

Functional Dependency The value of one attribute in a
table is determined entirely by the value of another.

Functional dependency

 Full Dependency In a relation, the attribute(s) B is fully
functional dependent on A if B is functionally dependent
on A, but not on any proper subset of A.

 Partial Dependency A type of functional dependency
where an attribute is functionally dependent on only part
of the primary key (primary key must be a composite key).

Eg: SalesOrderNo, ItemNo, Qty, UnitPrice

 Transitive Dependency In a relation, if attribute(s) A→B
and B→C, then C is transitively dependent on A via B
(provided that A is not functionally dependent on B or C)

Eg: Staff_No→Branch_No and Branch_No→BAddress

Functional dependency

Keys and FDs
 The main reason we identify the FDs and inference rules is to be

able to find keys and develop normal forms for relational
databases.

 In any relational table, we want to find out which, if any
attribute(s), will identify the rest of the attributes. An
attribute that will identify all the other attributes in row is
called a "candidate key." A key means a ‘unique identifier’
for a row of inform

 Hence, if an attribute or some combination of attributes will
always identify all the other attributes in a row, it is a
"candidate" to be "named" a key.

SSN Name School Location

101 David Alabama Tuscaloosa

102 Chrissy MSU Starkville

103 Kaitlyn LSU Baton Rouge

104 Stephanie MSU Starkville

105 Lindsay Alabama Tuscaloosa

106 Chloe Alabama Tuscaloosa

suppose I define the

following fFDs:

SSN → Name

SSN → School

School → Location

SSN → Name (given)

SSN → School (given)

SSN → Location (derived by the transitive rule)

SSN → SSN (reflexive rule (obvious))

SSN → SSN, Name, School, Location (union rule)

So SSN can be a candidate key and primary key as well.

Keys and FDs
Example

 Keys should be a minimal set of attributes whose closure is all
the attributes in the relation — "minimal" in the sense that you
want the fewest attributes on the LHS of the FD that you choose
as a key.

 In our example, SSN will be minimal (one attribute), whose
closure includes all the other attributes.

 Once we have found a set of candidate keys (or perhaps
only one as in this case), we designate one of the candidate
keys as the primary key and move on to normal forms.

Keys and FDs

Normalization
 Dr. Codd discovered that unnormalized relations

presented certain problems when attempts were
made to update the data in them.

 Information is stored redundantly and Wastes storage,
Errors and/or inconsistencies will appear because of the
redundant data

He used the term anomalies for these problems.

The reason we normalize the relations is to remove these
anomalies from the data.

There are three types of anomalies:
 Insertion anomalies

 Deletion anomalies

 Update anomalies

 The update anomaly: refers to a situation where an update
of a single data value requires multiple tuples (rows) of
data to be updated.

 Consider the relation:

– EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

 Update Anomaly:

– Changing the name of project number P1 from “Billing”
to “Customer-Accounting” may cause this update to be
made for all 100 employees working on project P1.

Normalization

 The insert anomaly: refers to a situation where in one cannot
insert a new tuple into a relation because of an artificial
dependency on another relation.

 Consider the relation:

– EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

 Insert Anomaly:

–Cannot insert a project unless an employee is assigned to it.

 Conversely

– Cannot insert an employee unless an he/she is assigned
to a project.

Normalization

 The deletion anomaly: refers to a situation where in a
deletion of data about one particular entity causes
unintended loss of data that characterizes another entity.

 Consider the relation:

– EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

 Delete Anomaly:

– When a project is deleted, it will result in deleting all
the employees who work on that project.

– Alternately, if an employee is the sole employee on a
project, deleting that employee would result in deleting
the corresponding project.

Normalization

 Guideline I: Informally, each tuple in a relation should
represent one entity or relationship instance. (Applies to
individual relations and their attributes).

– Attributes of different entities (EMPLOYEEs,
DEPARTMENTs, PROJECTs) should not be mixed in the
same relation

– Only foreign keys should be used to refer to other entities

– Entity and relationship attributes should be kept apart as
much as possible.

 Guideline II:
– Design a schema that does not suffer from the insertion,

deletion and update anomalies.

– If there are any anomalies present, then note them so that
applications can be made to take them into account.

Normalization

Normalization is the process of organizing data in a
database. This includes creating tables and establishing
relationships between those tables according to rules
designed both to protect the data and to make the
database more flexible by eliminating two factors: redundancy
and inconsistent dependency.

• Normalization is the analysis of FDs between attributes.

• Is process of decomposing relations with anomalies to
produce well-structured relations.

• Well-structured relation contains minimal redundancy
and allows insertion, modification, and deletion
without errors or inconsistencies.

Normalization

 Normalization theory is based on the concepts of
normal forms.

 A relational table is said to be a particular normal
form if it satisfied a certain set of constraints.

 Edgar F. Codd originally established three normal
forms: 1NF, 2NF and 3NF. There are now others
that are generally accepted, but 3NF is widely
considered to be sufficient for most applications.
Most tables when reaching 3NF are also in BCNF
(Boyce-Codd Normal Form).

Normalization

Third normal form is sufficient for
most typical database applications.

Table with
Multivalued attribute

Remove multivalued attributes

Remove partial dependencies

Remove transitive dependencies

Removing remaining anomalies

First Normal Form

Second Normal Form

Third Normal Form

Boyce-Codd
Normal Form

Normalization

A relation is said to be in 1NF, if it contains no repeating group.

The value at the intersection of a row and column must be
atomic(having one value)

 If you developed a logical design by transforming ER
diagram into relations, there should not be any
multivalued attributes remaining

Consider the following relation:

Student (RegNo,Name,Program, C-Code, C-Title, C-Grade)

 This relation has a repeating group and therefore it has
the insert, delete and update anomalies.

First Normal Form (1NF)

 A relation is in 2NF if:

– It is in 1NF

– Every nonkey attribute is fully functionally
dependent on the primary key

A situation of Partial Functional Dependency arises when
PK of a relation is composite and a non key attribute is
functionally dependent on part (but not all) of the PK.

Referring to the Course relation:

Course (RegNo, C-Code,C-Title, C_Grade)

 The functional dependencies are:

C-Code -> C_Title (Partial FD)

RegNo,C_Code -> C_Grade (Full FD)

Second Normal Form (2NF)

 Since all the non key attributes are not fully functionally
dependent on the PK or there is partial functional
dependency in the relation, therefore it is not in 2NF.

 The Anomalies associated with the course relation are:

a. Insert Anomaly: A course instance cant be inserted
without a student (RegNo)

b. Delete Anomaly:Deleting a student will unnecessarily
delete course data.

c. Update Anomaly:A course cant be updated
independently.

Second Normal Form (2NF)

 The relation Course can be converted into 2NF by
decomposing it into the following relations:

Course (C-Code,C-Title)

Result (RegNo, C-Code, C_Grade)

 A relation in 1NF will be in 2NF if:

– The PK consists of only one attribute OR

– No nonkey attributes exist in the relation OR

– Every nonkey attribute is functionally dependent on
the full set of primary key attributes

Second Normal Form (2NF)

 A relation is said to be in 3NF, if it is in 2NF and there is
no Transitive Dependency.

 A Transitive Dependency is a functional dependency
between two or more non key attributes of a relation.

 Consider the following relation:

Emp (EmpNo, EName, Job, Sal, Proj-No,Proj-Details)

 In the above relation, there is a following transitive
dependency:

Proj-No -> Proj-Details

 Due to this, project information cant be maintained
independent of a employee record and hence there are
anomalies in the relation.

Third Normal Form (3NF)

 You can remove transitive dependency from a relation
in the following way:

 Create a new relation against transitively dependent
attributes and leave the PK of new relation in the old
relation to serve as a FK.

Emp (EmpNo, EName, Job, Sal, Proj-No)

Project (Proj-No, Proj-Details)

Complete Example:

PNo, PName, PBudget, EmpNo, EName, Job, ChgHour,
Hours

Third Normal Form (3NF)

 Order Relation:

OrderNo, OrderDetails, OrderDate, CustNo,

CustName, ProductNo, ProdName, Price, QtyOrdered

 Student Relation:

RegNo, Name, Address, Program, C-Code, C-Title,

C-Grade, T-Code, T-Name

 Patient Relation:

VisitNo, VisitDate, PatNo, PatName, PatAge, DNo,

DName, DSpeciality, Diagnosis

Normalization - Exercise

Boyce-Codd Normal Form (BCNF)

 A relation is said to be in BCNF, if it is in 3NF
and every determinant is PK or there is no
overlapping of candidate keys.

 If a table contains atomic candidate keys, the
3NF and BCNF are equivalent.

 Consider a relation R(A, B, C, D) such that

A,B -> C, D and C->B.

 The relation R has no partial dependency nor it
contains transitive dependency. Thus the
relation R is in 3NF.

 Consider the following relation:

PROJECT (RegNo, PTool, Supervisor)

Constraints:

1. For each Project Tool (PTool), a student has only one
supervisor.

2. A project may be in more than one tools.

3. Each supervisor can supervise only one too.

 In the above relation, no single attribute is a PK.

 Possible candidate keys are RegNo, PTool and RegNo,
Supervisor.

 The candidate keys overlap as they share RegNO.

 The Anomalies associated with the course relation are:

Boyce-Codd Normal Form (BCNF)

a) Insert Anomaly:

 Supervisor and PTool cant be defined unless a student
takes a project.

b) Delete Anomaly.

 Deleting a student will unnecessarily delete project data.

c) Update Anomaly.

 Updating a PTool may result in unwanted changes.

 The relation Project can be converted into BCNF by
decomposing it into the following relations:

PROJECT1 (RegNo, PTool)

PROJECT1 (Supervisor, PTool)

Boyce-Codd Normal Form (BCNF)

 Normalization:

– The process of decomposing unsatisfactory "bad"
relations by breaking up their attributes into smaller
relations

Thank You for your Attention!

