
CHAPTER 9

DATABASE NORMALIZATION DESIGN TOOL

9.1 INTRODUCTION

Since this work is centered on designing of database tables, a comprehensive tool has been

developed which automates the design. This software helps in normalizing the database

relational schemas without going through a rigorous manual process. Normalization is a

process that reduces the redundancies and removes any possible anomalies. A number of

normal forms are well defined in the literature. The most significant of these are 3NF and

BCNF. The normalization process initially accepts a relational schema, R and checked for a

series of normal forms. It is generally desired to normalize the relations up to BCNF, though it

is sufficient to stop at 3NF. However, dependency preservation is not guaranteed in BCNF

[Ullman, 1988] [Peter, 2004].

 There are two ways by which normalization process can be done. First, the relation along

with the Functional Dependencies (FDs) may be given as the input. Second, the instance of the

relation filled with sample records could be given. In the first case, normalization can be

carried out using classical algorithms and in the second case the FDs have to be discovered in

synthesis method. Both these problems are addressed and implemented here.

 In order to normalize any arbitrary relation, one would compute first the candidate keys

and employ this in the normalization algorithms. An efficient algorithm is used in order to

determine the candidate keys of a given relation. This algorithm is based on building a

dependency graph for a given set of FDs.

Though there are many classical algorithms to compute the candidate keys, the most

efficient one is given by Saiedian and Spencer [Saiedian, 1996]. Once the candidate keys are

computed, theseare used in 3NF and BCNF normalization algorithms. For 3NF the algorithm

given in [Saiedian, 1996] is used. Similarly, for BCNF the algorithm suggested by Tsou and

Fischer [Tsou, 1980] is used. To discover the exact FDs from a given relation, an extension of

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

213

the SQL-based algorithm of Victor Matos and Becky Grasser [Victor, 2004] is used with the

Oracle database.

Fig. 9.1 Schematic showing the Architecture of the proposed Normalization Software

 The architecture of the software tool is as shown in Figure 9.1. It is basically a three-layer

architecture. The users, from the home page, can go to the appropriate web page after

registering themselves to the web site. Every user has two options to select namely normalize

or synthesis. If the normalize hyper link is clicked, they can either type their relation attributes

and FDs or load some pre-defined relations. If the synthesis hyper link is selected, a set of

Oracle tables will be displayed from which appropriate table of their interest, for which the FDs

are to be discovered, may be selected. Then the output (all exact FDs of R) is displayed.

 From the normalize approach, once the input data is typed, the decomposed tables can be

seen on a separate web page called the result page. We can visualize the whole system having

three layers: users in the top layer, the computational part for normalization and synthesis

engine in the middle layer, and the physical database in the bottom layer.

 Having decided on the various algorithms to be used, the next issue is to implement these

algorithms. The major points to be considered for implementation are the language, platform,

and other supporting tools or utilities. As explained earlier, the tool is an online web-based

software. The Microsoft Visual Studio 2005 has been used as the major tool to design. In

particular, C# is used for the entire development along with ASP.NET and ADO.NET for web

design and data access respectively.

User 1 User 2 User n ……..

Web Interface

Business Logic

(Synthesis)

Business Logic

(Normalization)

 Disk Database

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

214

9.2 DEFINITIONS AND BACKGROUND

A relational database schema R is denoted by R (A1, A2, …,An). Here, A1, A2, …, An are the

attributes of the database schema. Here, the term relation to mean relational database schema.

The elements of the relation are called as the rows or tuples. Every relation has one or more

Functional Dependencies (FDs). An FD is to describe the relationship between attributes in a

given relation, R denoted as X Y, which means that Y is functionally dependent on X. Let F

be the set of FDs that are defined for R.

 By definition, a relation can’t have two tuples with the same value. This is known as the

uniqueness property. In practice, it is often the case that some proper subset of the set of all

attributes of the relation R has the uniqueness property.

Definition: Let K be a subset of attributes of the relation R. Then, K is a candidate key if and

only if it satisfies the following two conditions:

Uniqueness: No legal values of R ever contain two distinct tuples with the same values. That

is, for any two tuples t1 and t2, t1[K] ≠ t2 [K].

Irreducibility: No proper subset of K has the uniqueness property.

Every relation has at least one candidate key. K is considered as a superkey if it satisfies the

uniqueness property but not the irreducibility property. Any attribute that is a member of a key

is called as prime attribute and the other attributes are called as nonprime attributes.

 An FD is trivial if and only if the attributes in the right-hand side is a subset of the left-

hand side. That is, X Y is trivial if Y X. For example, AB B is trivial whereas AC BC

is nontrivial. The set of all FDs that are implied by a given set of FDs, say F, is called as the

closure of F and is denoted by F
+
. The new FDs that are inferred are based upon the Armstrong

Axioms [Navathe, 2009] [Zaniolo, 1982]. Given a relation R with a set of attributes X and a set

of FDs F that hold on R, in addition to computing F
+
, also the attribute closure, denoted as X

+
 is

computed.

 The relation R is in 3NF if and only if it is already in Second Normal Form (2NF)

[Ramamkrishnan, 2004] and if, for every FD X A in F
+
, at least one of the following

statements is true:

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

215

 A X (trivial functional dependency)

 A is a part of a candidate key K of R (A is prime)

 X is a superkey

A relation R is in BCNF, if for every FD X A in F
+
, at least one of the following

statements is true:

 A X (trivial functional dependency)

 X is a superkey

 When the relation is neither in 3NF nor in BCNF, then appropriate decomposition

algorithms is to be applied [Zaniolo, 1982].

9.3 ALGORITHM FOR COMPUTING THE CANDIDATE KEYS

Though many algorithms were proposed over the years, the algorithm developed by

Saiedian and Spencer has been used here. The method is based on the attribute graph being

drawn for the given FDs as a directed graph. A modified algorithm is proposed by redefining

the graph as dependency graph. A dependency graph is a digraph with one vertex for each

attribute of R and one directed edge for each functional dependency in the set F. The direction

of the edge is drawn as per the given dependency. For example, the FD X Y is represented as

a directed edge from vertex X to vertex Y. In case of multiple attributes on left-hand side and/or

right-hand side, edges are drawn for each of the attributes.

 To determine the candidate keys, the algorithm shown below is followed. Let LS denote an

attribute set which contains all the attributes that appear only on LHS, RS denote all the

attributes that appear only on the RHS, and BS denote all the attributes that appear on both the

sides of F. Also assume that CK is an array of attribute set to hold all the candidate keys. With

this representation, the following algorithm can find all the candidate keys of R:

In the below algorithm, Step 1 is the initialization of the attribute set variables which would

hold the various attributes and candidate keys. Step 2 takes care of building the dependency

graph. From the graph we can easily find the indegree and outdegree of each vertex.

Accumulate these vertices (i.e. attribute set) to the appropriate variables LS, RS, and BS.

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

216

Algorithm CandidateKey(R, F)

1. LS ; RS ; BS ; CK

2. Build the dependency graph for R and F.

3. From the graph compute the following:

 LS LS all vertices with zero indegree

 RS RS all vertices with zero outdegree

 BS BS all vertices with nonzero indegree and outdegree

4. If LS = and RS = Then

 use the algorithm of [Saiedian, 1996] // all attributes in BS

5. If LS + = R

 CK CK LS;

 goto step 7.

6. For each attribute A BS do

 LS LS A;

 If LS + = R

 CK CK LS;

 LS LS – A;

7. Return CK.

 Suppose, if all the attributes are in BS (LS and RS are empty), then every subset of attributes

in BS may be a candidate to be part of the key. This requires exponential time algorithms and

handled by using the algorithm of [Saiedian, 1996]. If LS includes all the attributes of R

(closure), then this is the only candidate key. Otherwise, add one attribute at a time from BS to

LS and compute the closure to find all the candidate keys.

9.3.1 COMPUTING STRONGLY CONNECTED COMPONENTS

One of the important steps in the algorithm proposed by Saiedian [Saiedian, 1996] is to

calculate the Strongly Connected Components of the given dependency graph G. For this the

Depth-First Search (DFS) method is used as shown in Figure 9.2 and call it as

Strongly_Connected_Components(G) [Cormen, 1999]. In this algorithm, it is assumed that f is

the finish times, d is the discovered vertices, and S is a set of strongly connected components.

Note that G[R, F] represents the dependency graph for the given R and F.

In order to represent the graph an adjacency list is used and hence the algorithm takes only

time complexity of linear time, (V + E), where V is the number of vertices and E is the

number of edges. To compute G
T
 the brute-force method of traversing the adjacency list of G

and construct a new adjacency list by adding reversed edge information is adopted.

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

217

Algorithm Strongly_Connected_Components(G[R, F])

1. f ; d ; S ;

2. Foreach vertex u in G[R, F] do

 Compute finish times f [u] and d[u] using DFS(u).

3. Compute GT (GT is a graph of G with all edges reversed)

4. Sort f in descending order.

5. Foreach vertex u in f do

 Call DFS(u);

6. S S {Strongly Connected Components of trees in DFS forest}.

7. Return S.

Fig. 9.2 Algorithm to Compute Strongly Connected Components

 The second step in the algorithm is to compute the source component of G among all the

strongly connected components that have been found using the above algorithm. This is

obtained by deleting the edges in the adjacency list of G within any given strongly connected

graph. Here only the edges between strongly connected components are retained. From this

reduced graph determining the source component is easy.

 The algorithm for computing the source components of the given dependency graph can be

stated as follows:

Algorithm Source_Components(G[R, F], S)

1. C ; I ;

2. Foreach strongly connected component Z in S do

 Delete all edges in Z;

3. Build the reduced graph GR

4. Foreach vertex u in GR do

 Compute I[u]; // Indegree of each vertex

 If I[u] = 0

 C C u;

5. Return C.

The algorithm takes two arguments: the first one is the graph and the second is a set of all

strongly connected components. Step 2 deletes all the edges that are within the same

component so that a reduced graph G
R
 consisting of each vertex corresponding to the strongly

connected component is obtained. From G
R
 the indegree of each vertex is found and stored in a

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

218

vector called I. All vertices with indegree zero are collected and returned as the source

components.

Fig. 9.3 Strongly Connected Components and G
R

Applying the above two algorithms to the graph of Figure 9.3, a three vertex graph is

obtained as there are only three strongly connected components, shown as dotted lines. After

step 4, C contains {AB} as it is the only source component. In case if G
R
 has more than one

source component, all such vertices are returned.

9.3.2 FINAL ALGORITHM

This section presents the complete algorithm for computing all the candidate keys,

irrespective of whether the graph is strongly connected or not. Let Sr represent the set of keys

of restrict, Sc represent the set of keys of contract, S stores the final set of all candidate keys, Z

to store all the strongly connected components, and X stores the source components.

Algorithm SS_CandidateKeys(R, F)

1. Sr ; Sc ; S ; X ; Z ;

2. Build the dependency graph G[R, F].

3. If IsSCC(G)

 Sc = Sc MinimalKeys(R, F)

 Return Sc;

4. Z Strongly_Connected_Components(R, F);

5. X Source_Components(R, F, Z);

6. // Fr is the set of FDs of Restrict

 Compute restrict(X, Fr);

7. Sr Sr MinimalKeys(X, Fr);

8. T R – X+

A B E

C D

F

AB EF

CD

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

219

9. // Compute Contract

 Foreach fd in F do

 Foreach attribute A in fd do

 If A T Then remove A from fd;

10. Foreach fd in F do

 If fdLHS = or fdRHS =

 F F – fd;

11. Sc Sc SS_CandidateKeys(T, F);

12. Foreach key Kr Sr do

 Foreach key Kc Sc do

 S Kr Kc;

13. Return S.

The algorithm first tests whether the given relation R is strongly connected. If it is so then it

uses the Lucchesi and Spencer [Lucchesi, 1978] method of computing all the candidate keys.

Otherwise, it finds the restrict and contract components; then calls SS_CandidateKeys

algorithm recursively. Finally, S returns the set of all candidate keys.

9.4 ALGORITHM FOR 3NF NORMALIZATION

Once all the candidate keys of R for a set of FDs F are known, finding it being in 3NF is

easy [Douglas, 2004]. The problem can be stated as:

 For all FDs X A in F, either X is superkey or A is prime, then R is in 3NF. When at least

one FD violates this condition, then R is not in 3NF and requires decomposition.

SS_CandidateKeys(R, F) and MinimalCover(R, F) are used to decompose R into 3NF

relations. Below is the algorithm that uses CK for a set of candidate keys, MC for minimal

cover [Maier, 1980] FD set, Z for the set of decomposed relations.

Algorithm TNF(R, F)

1. CK ; MC ; Z ; J ; Y ;

2. CK SS_CandidateKeys(R, F);

3. MC MinimalCover(R, F);

4. test Is3NF(R, F);

5. If test = true

 Return F;

6. // Merge FDs whose LHS are same

 Foreach fd in MC do

 S {X A1, X A2, …, X An};

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

220

 S {X A1A2A3….An};

 Z Z S;

7. // Put all unplaced attributes into a new relation

 Foreach fd in Z do

 J J {fdLHS fdRHS};

 Y R – J;

 If Y

 TLHS CK;

 TRHS ; // dummy attribute

 Z Z T; // for dependency preservation

8. // If no relation contains a key CK, Then create a

 // new relation U that contains the attributes to form a key.

 Z Z U;

9. Return Z.

 With this algorithm, the decomposed relations are guaranteed to be in 3NF with lossless-

join and dependency preserving properties satisfied. Decomposing the 3NF relations into

BCNF with lossless join has been implemented using Tsou and Fischer algorithm [Tsou, 1980].

9.5 ALGORITHM FOR DATABASE SYNTHESIS

A simple strategy is proposed to discover the FD match from the tuples of R [Brockhausen,

1995]. A SQL query is used to determine the exact rules X A and is illustrated as shown in

Figure 9.4(a). The following query checks the validity of the FD AB C. It retrieves the

distinct count of C with AB in the GROUP BY clause.

SELECT A||B AS "AB", COUNT(DISTINCT C) AS "CountC"

FROM R1

GROUP BY A||B;

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

221

 (a) (b)

Fig. 9.4 (a) Relation instance (b) Output

The output of the above query is as shown in Figure 9.4(b). The last two tuples in R1 have

two distinct values for AB. By modifying the above query, as shown here, the validity of the

FD can be checked.

SELECT A||B AS "AB", COUNT(DISTINCT C) AS "CountC"

FROM R1

GROUP BY A||B

HAVING COUNT(DISTINCT C) > 1;

 When the output of this query is NULL, it signifies that the FD holds. Similarly, SQL

statements are written for all the combinations of the attributes but with a constraint that the

right hand side of the FD should be a single character.

 For the relation instance of Figure 9.4(a), 7 combinations are obtained as follows: A, B, C,

AB, AC, BC, and ABC. Each combination defines the X attribute set and R – X gives the Y

attribute set. Here the FDs to be checked are: A BC, B AC, C AB, AB C, AC B,

BC A. However, when any particular FD is checked the RHS attribute should be a single

character. In A BC, both the FDs A B and A C must be tried.

R1

A B C

1 1 1

1 2 2

2 2 1

2 2 1

2 3 2

3 3 1

3 4 2

3 4 3

AB CountC

11 1

12 1

22 1

23 1

33 1

34 2

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

222

9.6 SOFTWARE TOOL: THE FORMAL DESIGN

The formal design of this tool is based on object oriented strategy for which a language like

C# is used. This tool is named as DNorm version 1.0 and the software requirement

specifications are listed below:

 Given a relational schema, R with a set of attributes and FDs, the tool is expected to

normalize up to BCNF.

 In case the FDs are not available, the relational instance must be given.

 Users must be able to login, logout, normalize their relations, see the output in a

readable form, save their output, load some sample relations.

 Authentication of users shall be done by storing the encrypted passwords, may be by

using XML files or database table.

 It should work in Web browsers like Internet Explorer or Netscape Navigator.

9.6.1 USE CASE MODEL

Figure 9.5 shows the Use Case diagram for the DNorm version 1.0 package. The only actor

in this system is the user and the possible use cases are Normalization, Synthesis, and Log In.

As mentioned earlier, any legal user (with proper user name and password), will be able to

interact with the Normalization and Synthesis use cases.

Fig. 9.5 Use Case Diagram of DNorm 1.0 System

When users provide just the relational instance, the Normalization use case uses the

Synthesis use case to discover the exact FDs. Since the main objective of this system is to

decompose the relations, no other features like the other commercial sites are included. Next,

Figure 9.6 shows the detailed use case diagram of Normalization process.

user

Normalization

Synthesize

Log In

<uses>

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

223

Fig. 9.6 Use Case Diagram of Normalization Process

When the user submits the required input to the system the main task of the Normalization

use case is to invoke 3NF and BCNF algorithms. Note that Candidate Key use case is being

used by both these algorithms. Yet another process, minimal cover, may also be used to

compute 3NF which is not shown in the use case diagram. Similarly, the Display use case helps

the user to display the decomposed relations for further processing.

Following are the assumptions made while designing the tool:

 The Table name is a simple text, the attributes are set of characters (uppercase or

lowercase) but restricted to ‘A’ to ‘Z’ or ‘a’ to ‘z’.

 The FDs are generally written as two different items: left-side attribute set and right-

side attribute set.

 Any number of attributes may be written; but attributes are selected from check boxes

to avoid erroneous input data (e.g. duplicates).

 No flexibility to dynamically upload user’s sample data to the tool from disk files.

 All the candidate keys of R and the normalized relations shall be shown.

 The BCNF is final [Douglas, 2004] and no attempt is made to normalize R into 4NF and

5NF.

9.6.2 ACTIVITY DIAGRAM

The DNorm version 1.0 system is built keeping in mind the following major activities as

shown in Figure 9.7 for the activity diagram:

a) Handle the users. It should authenticate the logged on users and provide with proper

messages. For instance, if the user is not a registered user, then show the registration page.

b) Once the user is successfully logged in, there are two major activities that could be

interacted. The first one is the normalization and the other is the synthesis.

c) If the user selects the normalization link, he would be prompted with data entry panel where

the attributes and FDs of R can be entered.

user

3NF

BCNF

Display

Candidate
 Keys

<uses>

<uses>

Normalization

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

224

d) Alternatively, the synthesis activity again prompts the user to select the relation which

contains sample tuples.

e) For every activity the results are to be displayed. A separate web page must take care of

displaying the results in a tabular form.

f) After applying synthesis we get the output in the form of FDs. Now it is left to the user to

send these FDs to the normalization process or simply take a look at the FDs (display). Also

notice that the FDs are obtained using SQL-based pattern search algorithm as explained

already.

The diagram may not depict all the activities of the system, but it does bring out the major

activities.

9.7 IMPLEMENTATION OF DNORM SYSTEM

The implementation of the tool is broadly encompasses the following modules:

(a) Normalization: Computing Candidate Keys, Minimal Cover, 3NF, BCNF, etc.

Fig. 9.7 Activity Diagram of DNorm System

Normalize R
into 3NF

Display 3NF
Relations

Normalize R
into BCNF

Display BCNF
Relations

Get Attributes
and FDs

Compute
Candidate Keys

Compute
Minimal Cover

Get the
Table Name

Compute
Attribute

Subset

Build the SQL query
for data mining to
extract exact FDs

Display FDs

start

done

done

done

[Synthesize]

[Normalize]

[3NF?]

[Not in 3NF]
[In 3NF]

[BCNF?]

[Not in BCNF?]

[Yes]

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

225

(b) Synthesis: Generating subsets of the attributes, Building SQL query, Mining for the pattern,

etc.

(c) Web Interface: User management, reading input data, display the results, etc.

In order to apply Object Oriented technique for this system, C# and ASP.NET under Visual

Studio 2005 framework is preferred. To store the relation instance for synthesis, Oracle 10g

database is used. In fact, ASP.NET is ideally suited for web application development as C# can

be used for implementing the business logic.

The next three sections will explain the implementation logic of all these modules.

(a) Business Logic for Normalization

 As explained earlier, there are several classes required to build the system. The major tasks

are to store the attributes, FDs, dependency graph, et al. The class diagram is as shown in

Figure 9.8.

Fig. 9.8 Class Diagram for Normalization

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

226

The attributes of the LHS or RHS of the FD is stored in the AttributeSet class. This class

has only one field called attribute which is a Boolean array. The object of this class can store a

maximum of 26 distinct attributes 'A' to 'Z'. Each attribute is converted to an integer which in

turn is used as an index in the attribute array to mark it true. For example, to store the attribute

'AB', the attribute field would look like:

 attribute[]

 0 1 2 25

initial false false false false false

A true false false false false

B true true false false false

After adding AB, attribute[0] and attribute[1] will change from their initial values of false

to true. To store both LHS and RHS attribute sets, another class called Dependency is used.

Every object of Dependency can store an FD consisting of lhs and rhs. Each FD_Set object is

capable of storing an array of FDs (MAXFD) each one being a Dependency object.

To build the adjacency list of the dependency graph, List and AdjList classes are designed.

The methods in AdjList class can take care of building the adjacency list, computing the

indegree, and many more tasks needed to compute the candidate keys. The key tasks of

normalization algorithms are included in a separate class called NormalForms which in turn

uses FD_Set class as indicated in the class diagram.

 All these classes are stored in a single namespace called 'DependencyGraph' and Visual

Studio 2005 has an option to build this project as a class library. Therefore, a dll file called

DNorm-DLL.dll is created so that this can be easily added in the design of web forms using

ASP.NET.

9.7.1 BUSINESS LOGIC FOR SYNTHESIS

As explained in the earlier sections, when a user does not supply the FDs, but the instance,

an elegant method must be devised to discover the FDs based on SQL queries. The requirement

is that the attributes of the relation must be single character and the rows can remain as it is,

assuming that the relation is available in the default user area Scott.

 Two major classes are used: GenerateSubsets and FindFD. The logic for generating the

subset of attributes is based upon a classical algorithm. Converting the n attributes into binary

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

227

and generating all combinations, i.e. 2
n
 – 1, an array of size 2

n
 – 1 n is built by adding

attribute into the ArrayList, whenever the value is one.

 The FindFD class prepares the LHS attribute set and RHS attribute set and uses the SQL

query to check whether this FD holds or not. When the queries yield no rows, only those FD

combinations are stored in an ArrayList collection. This data structure can then be sent to the

Normalization module for further processing.

9.7.2 WEB INTERFACE

ASP.NET 2.0 is used for web interface design. The following are the main web pages:

a) Home Page (index.aspx): This page is to give an introduction to the DNorm 1.0 and

enables the user to log in or register.

b) Data Entry Page (Default.aspx): Users can enter the relation name, attributes (through

check boxes), and FDs. Alternatively, they can load certain predefined examples too.

c) Synthesis Page (Synthesize.aspx): By default the system connects to Oracle database

under the default user Scott and displays all the tables. One can select the table from

the ListBox and the columns and the tuples are displayed. By clicking the Compute

button the exact FDs computed are displayed.

d) New Users Page (Register.aspx): New users can register themselves by typing the

relevant details (details are shown later).

e) Examples Page (examples.aspx): It is a simple HTML page containing the predefined

example attributes and FDs.

f) Results Page (Resultsnewp.aspx): This page uses a GridView to display the various

decomposed tables.

 A novel technique for storing the user name and password in a XML file is used. The

Users.xml file would like:

<Users>

 <Users>

 <UserName>gayan</UserName>

 <UserPassword>

 134B20FFF068BEBD6014C15D1BF2F3BEC3FDC8A6

 </UserPassword>

 </Users>

 <Users>

 <UserName>sng</UserName>

 <UserPassword>

 40BD001563085FC35165329EA1FF5C5ECBDBBEEF

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

228

 </UserPassword>

 </Users>

</Users>

 When a new user registers, the password is hashed using the

HashPasswordForStoringInConfigFile() method and stored along with the user name in the

XML file (see the <UserPassword> tag above). This file is stored in the web server's folder

C:\Inetpub\wwwroot\Users.xml. Web-based programming distinguishes itself as a

programming idiom in which the applications are managed serving multiple users distributed

over a wide area. This web application will be made available to a large number of clients, and

hence it is necessary to use Session State in ASP.NET. All the objects that are needed for the

decomposition and synthesis are stored in these Session objects. Normally these session

variables are stored in a separate file called Global.asax including whether a user has logged in

or not.

9.8 TESTING AND RESULTS

Testing web based multiuser kind of software is a difficult task. A systematic testing

procedure and rigorous evaluation has been carried out. Since .NET Framework works on the

Windows-XP platform, this tool also is hosted on the Windows platform [Troelsen, 2003].

Following are the steps used:

a) Normalization module has been tested by giving input of all possible examples that appear

in the Reference section of this paper. Before integrating with the web interface, the

results are seen as a console output (See Table 9.1 to 9.4).

Table 9.1 Candidate Keys

Sl. No. Relation Attributes and FDs Expected Output Result

1
R(A, B, C, G, H, I)

F = {A BC, CG HI, B H}
{A G} OK

2

R(A, B, C, D, E, H)

F = {A B, AB E,BH C,

C D, D A}

{A H}

{B H}

{C H}

{D H}

OK

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

229

Table 9.2 Minimal Cover

Sl. No. Relation Attributes and FDs Expected Output Result

1
R(A, B, C, G, H, I)

F = {A BC, CG HI, B H}
{A G} OK

2
R(C, S, Z)

F = {CS Z, Z C}

{C S}

{S Z}
OK

Table 9.3 Third Normal Form

Sl. No. Relation Attributes and FDs Expected Output Result

1
R(C, S, Z)

F = {CS Z, Z C}

CK = {C S, S Z}

in 3NF

2
R(S, A, I, P)

F = {SI P, S A}

CK = {S I}

D = {SIP, SA}
OK

3
R(A, B, C)

F = {A B, C B}

CK = {AC}

D = {AB, BC, AC}
OK

4

R(A, B, C, D, E, F, G, H, I, J)

F = {AB C, A DE,

B F, F GH, D IJ}

CK = {ABD, ABF}

D = {ABC, ADE,

BF, FGH, DIJ}

OK

Table 9.4 Boyce-Codd Normal Form

Sl. No. Relation Attributes and FDs Expected Output Result

1
R(C, S, Z)

F = {CS Z, Z C}

CK = {CS, SZ}

D = {SZ, ZC}
OK

2
R(A, B, C)

F = {C A, C B}

CK = {C}

D = { in BCNF}

b) Next, the Synthesis module is tested by creating few example tables in Oracle with

different attributes and rows.

Fig. 9.9 Snapshot of the Home Page

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

230

Fig. 9.10 Normalization Page

Fig. 9.11 Results Page

Fig. 9.12 Synthesis Page

CHAPTER 9 - DATABASE NORMALIZATION DESIGN TOOL

231

All these modules are integrated to the ASP.NET environment and tested for various inputs.

These web pages are tested first by executing the pages with localhost. To test in the actual

internet or intranet environment, first the Internet Information Services (IIS) is configured in

the web server. Then the site is published on the web server. The results of the web pages are

shown in Figures 9.9 to 9.12. Apart from the sample test data several other FDs have been tried

and the output has been verified.

9.9 DISCUSSIONS

This chapter presented a novel way of designing the database applications. It is mainly an

experimental work where more emphasize was given to the implementation issues and the

working of the tool. It is well known that the database application development is a tedious

task, because generally there are many relations with complex functional dependencies due to

stringent business rules. If the relations are not normalized properly then they have to pay

heavy penalty in terms of storage space, time, and man power. This automated tool could solve

these drawbacks.

 Even when a relation is available with no functional dependencies, but with actual tuples

then this tool discovers the FDs and provides normalized relations. Probably the tool could be

integrated with the ER diagram preparation tools to make it as integrated design software.

Currently the tool does not support 4NF and 5NF normalization processes. However, adding

such facilities is not cumbersome. This tool has been used to design various database relations

used in the implementation of SQL based K-Means clustering algorithms.

9.10 SUMMARY

Normalization is a process that reduces the redundancies and removes any possible

anomalies. The prominent normal forms are 3NF and BCNF. In order to normalize any

arbitrary relation the candidate keys are to be computed with efficient algorithms. A simple

architecture of the web based database normalization tool called DNorm is discussed.

ASP.NET 2.0 is used for web interface design under VS2008. A systematic testing procedure

and rigorous evaluation is conducted on various relations and the results are as expected.

