
Although developed
for the defense

sector, lattice-based
access controls can

be used in most
circumstances

where information
flow is critical. They
are a key component
of computer security.

Lattice-Based
Access Control
Models

Ravi S. Sandhu, George Mason University

ystem architects and users recognized the need for information security
with the advent of the first multiuser computer systems. This need gained
significance as computer systems evolved from isolated mainframes be-

arded doors to interconnected and decentralized open configurations.
Information security has three separate but interrelated objectives:

(1) confidentiality (or sccrecv). related to disclosure of information,
(2) integriry, related to modification of information, and
(3) availability, related to denial of access to information.

These objectives appear in practically every information system. In a payroll
system, for example, confidentiality is concerned with preventing an employee
from finding out the boss’s salary; integrity, with preventing an employee from
changing his or her own salary; and availability. with ensuring that paychecks are
printed on time. Similarly, in a military command and control complex. confiden-
tiality is concerned with preventing the enemy from determining the target
coordinates of a missile: integrity, with preventing the enemy from altering the
target coordinates; and availability, with ensuring that the missile is launched when
the order is given.

Bell and LaPadula developed lattice-based access control models to deal with
information flow in computer systems. Information flow is clearly central to
confidentiality and also applies to integrity to some extent. But its relationship to
availability is tenuous at best. Hence, these models are primarily concerned with
confidentiality and can deal with some aspects of integrity.

Bell. Biba. LaPadula. and Denning performed the basic research in this area in
the 1970s. Since then, models have been implemented in a number of systems,
mostly driven by the needs of the US defense sector and its allies. The theory and
concepts are, however. applicable to almost any situation in which information
flow is a concern. The commercial sector has unique policies that concern informa-
tion flow.

Lattice-based access control is one of
the essential ingredients of computer
security. This article describes a num-
ber of models developed in this context
and examines their underlying theoret-
ical and conceptual foundations.

Information flow
policies

Information flow policies are con-
cerned with the flow of information from
one security class to another. In a sys-
tem, information actually flows from
one object to another. The models 1
discuss treat “object” as an undefined
primitive concept. An object can be in-
formally defined as a container of infor-
mation. Typical examples of objects are
files and directories in an operating sys-
tem, and relations and tuples in a
database.

Information flow is usually controlled
by assigning every object asecurity class,
also called a security label. Whenever
information flows from object x to ob-
ject y, there is an accompanying infor-
mation flow from the security class of x
to the security class of y. Henceforth,
when 1 talk about information flowing
from security class A to security class 5,
visualize information flowing from an
object labeled A to an object labeled B.

Denning defined the concept of an
information flow policy’ as follows:

Definition 1 [Information flow policy] ~
A triple < SC. 3, 0 > where SC is a set of
security classes. 3 c SC x SC is a binary

can-flow relation on SC, and 0 : SCX SC
+ SC is a binary class-combining or join
operator on SC.

All three components of an informa-
tion flow policy are fixed; they don’t
change with time. This definition allows
objects to be created and destroyed dy-
namically (as one would expect in use-
ful systems). Security classes, however,
cannot be created or destroyed dynam-
ically.

It is convenient to use infix notation
for the can-flow relation, so that A + B
means the same as (A, B) E +; that is,
information can flow from A to B. We
also write A k B to mean (A. B) cz +;
that is, information cannot flow from A
to B. In other words, information can
flow from security class A to security
class B under a given policy if and only
if A + B. (It might be more appropriate
to call this relation may-flow rather than
can-flow, since the connotation is that
the indicated flow is permitted under
the given policy. I opt to retain Den-
ning’s original terminology.)

Similarly, infix notation is used for
the join operator: that is, A 0 B = C
means the same as @(A, B) = C. The join
operator specifies how to label infor-
mation obtained by combining infor-
mation from two security classes. Thus,
A 0 B = C tells us that objects that
contain information from security classes
A and B should be labeled with the
security class C.

A trivial example of an information
flow policy is one in which no informa-
tion flow is allowed from one security
class to a different security class. (Note

Figure 1. Hasse
diagrams for cer-
tain information

flow policies.

H

I

(a) @) w
{A,5,CJ

(4 W

that information flow from a security
class to itself cannot be prevented and
therefore must always be allowed. Af-
ter all, information contained in an ob-
jectflows to that object, thereby result-
ing in information flow from the security
class of the object to itself.) This trivial
policy of isolated security classes is for-
mally stated as follows:

Example 1 [Isolated classes] -SC =
{A ,,..., A,J:fori=l... nwehaveA,+
A,andA,OA,=A,;andfori,j=t... II.
i + j we have A, k A, and A, 0 A, is
undefined.

The simplest form of a nontrivial in-
formation flow policy occurs when there
are only two security classes called, for
example, H (for high) and L (for low);
all flows are allowed except that from
high to low. In other words, high infor-
mation is more sensitive than low infor-
mation. This is stated formally as

Example 2 [High-low policy] - SC =
(H. LJ,and -+= ((H. H), (L. L). (L, H)].
Equivalently, in infix notation, H + H. L
+ L, L + H. and H k L. The join
operator is defined as follows: H 0 H = H.
LOH=H,HOL=H.andLOL=L.

This policy is represented by the Hasse
diagram in Figure la in which the can-
flow relation is understood to be direct-
ed upward. Reflexive flows from Hto H
and from L to L are implied but not
explicitly shown. The other Hasse dia-
grams in Figure 1 represent informa-
tion flow policies that I discuss in this
article. In these diagrams, transitive
edges, such as from L to H in Figure 1 b.
are implied but not explicitly shown.

Denning showed that under certain
assumptions. an information flow poli-
cy forms a finite lattice:

Definition 2 [Denning’s axioms]

(1) The set of security classes SC is finite.
(2) The can-flow relation + is a partial

order on SC.
(3) SC has a lower bound with respect to

+.
(4) The join operator 0 is a totally defined

least upper bound operator.

It can be shown that Denning’s axi-
oms imply the existence of a greatest
lower bound operator, which in turn
implies the existence of an upper bound
with respect to +. Example 2 satisfies
Denning’s axioms. whereas Example 1
does not, specifically failing to satisfy
axioms 3 and 4. I will illustrate how

10 COMPUTER

Example 1 can be extended to form a
lattice. Note that although this article
focuses on policies that satisfy Den-
ning’s axioms, there are legitimate in-
formation flow policies that do not sat-
isfy these axioms.

Denning’s first axiom. This requires
that the set of security classes be finite
and needs little justification. Keep in
mind that the axiom applies to security
classes and not to the objects in a sys-
tem. Denning’s axioms enable objects
to be created and destroyed dynamical-
ly, with no bound on the number of
objects that can be created.

Denning’s second axiom. This states
that 4 is a partial order on SC. A partial
order is a reflexive, transitive, and anti-
symmetric binary relation. Above, we
saw the need for reflexivity in the con-
text of Example 1, whereby A -+ A for
all A E SC. Transitivity requires that if A
+ Band B + C, then A + C: that is, if
indirect information flow is possible from
A to C via B, then we should allow
direct information flow from A to C.
This is a very reasonable requirement in
most situations. (There are, however,
situations in which indirect flow should
not imply direct flow. For example, sup-
pose we wish to allow transfer of infor-
mation from H to L but only if mediated
by a sanitizing process with security class
SAN. We then have H + SAN. SAN +
L, but H k L. These situations are
typically handled as exceptions falling
outside the normal lattice framework of
information flow. Such nontransitive
information flows can be enforced us-
ing the concepts of type etxforcetnent
and assured pipelines.’ Nontransitive
information flow policies can also be
expressed in the typed matrix access
model.‘)

Antisymmetry requires that if A 3 B
and B + A, then A = B. Given the
reflexive and transitive requirements,
antisymmetry merely eliminates redun-
dant security classes. In other words,
there is no point in having two different
security labels if objects with these la-
bels are restricted to having exactly the
same information flows.

Denning’s third axiom. This requires
that SC have a lower bound L (for sys-
tem low), that is, L + A for all A E SC.
This axiom acknowledges the existence
of public information in the system.
Public information allows for desirable

features such as public bulletin boards
and databases, which users expect to
find in any modern computer system.
From a theoretical perspective. one can
argue that information from constants
should be allowed to flow to any other
object: therefore, constants should be
labeled L. An example of such a con-
stant would be version information about
the operating system. Version informa-
tion is necessary for the correct opera-
tion of certain programs and should be
publicly available. Note that the policy
of Example 1 does not have a lower
bound.

Denning’s fourth axiom. This is the
most subtle. There are actually two parts
to it. First, the join operator is required
to be totally defined; that is, A 0 B is
defined for every pair of security classes
from SC. This means that it is possible
to combine information from any two
security classes and give the result a
label. In Example 1. this property was
not satisfied: that is, A, 0 A, was unde-
fined for i # j. To bring Example 1 into
line with Denning’s axioms, we can in-
troduce a new security class H (for sys-
tem-high security) and define A, 0 A, =
H for i # j. By introducing L and H. we
can modify Example 1 as follows:

Example3 [Bounded isolated classes]
-SC=(A ,..... A,,.L,H]: L+L.L+
H, H + H. and for i = 1 II WC have L
+ A,. A, + A,, A, + H: for i = 1 , n
wehaveA,OA,=A,,A,OH=H,andA,
OL=A,:andfori.j=I...n,i#jwehave
A,@A,= H.

The Hasse diagram in Figure 1 b shows
this policy. The can-flow relation goes
upward in the figure along the edges
shown. (Recall that reflexive edges, such
as from A, to A,. and transitive edges,
such as from L to H, are implied but not
explicitly shown.) System-high objects
have a practical role in that information
about the global state of the system can
only go in objects labeled H: such infor-
mation could be crucial for proper sys-
tem administration and audit. On the
other hand, this example also suggests
that in some situations it might be more
appropriate to use partially ordered la-
bels than to strive for a complete lattice.

The second part of Denning’s fourth
axiom states that the join operator is a
least upper bound. This means that for
all A, B, C E SC, we have property I.
whichisA+AOBandB+AOB,and
property 2 if A + C and B + C then A

0 B + C. Property 1 follows from the
intuition underlying the join operator:
that is, A 0 B is the label on information
collectively obtained from A and B.
Therefore, information from A, as well
as from B, should be able to flow to A 0
B. Property 2 stipulates that if informa-
tion can flow individually from A and B
to C, then information obtained by com-
bining information from A and B should
also be able to flow to C. This is a
reasonable requirement, somewhat anal-
ogous to the transitivity property in
Denning’s second axiom.

An important consequence of Den-
ning’s fourth axiom is that the join oper-
ator can be applied to any number of
security classes. This is because least
upper bound is an associative and com-
mutative operator. Thus, we can com-
pute A, 0 AI 0.. 0 A,, to be the least
upper bound of (A,.A?. . , A,,]. In this
manner, we can label the result of com-
bining information from any number of
security classes.

Finally. note that the security litera-
ture is usually cast in terms of the in-
verse of the can-flow relation. defined
as follows:

Definition 3 [Dominance] - A 2 B
(read as A dominates B) if and only if B
+ A. The strictly dominates relation > is
defined by A > B if and only if A 2 B and
A #B. We say that A and B arc comparable
if A t B or B 2 A: otherwise A and B arc
incomparable.

The strictly dominates relation has the
following significance: If A > B then
A k B. but B + A. In other words, A is
more sensitive than B.

The military lattice

The simplest examples of nontrivial
information flow policies occur when
the can-flow relation is a total or linear
ordering of the security classes. The
most common examples of totally or-
dered security classes are the 73 (for
top secret), S (for secret), C (for confi-
dential). and U (for unclassified) sensi-
tivity levels encountered in the mili-
tary and government sectors (see
Figure lc). In general. we can have any
number of totally ordered security class-
es. (In the security literature. a total or
linear ordering is often called a hierar-
chical ordering, but in this article I avoid
using that expression. since it is some-

November 1993 11

Figure 2. Embed-
ding a partial or-

der in a lattice.
ta) (b)

times understood to mean a tree-like
ordering.)

Note that 2 (or dominance) is a total
ordering if and only if its inverse + (or
can-flow) is a total ordering. Moreover,
there are noincomparable securityclass-
es in a total ordering. The definition of
A 0 B is then simply the maximum of A
and B with respect to the dominance
relation. Jn other words. when informa-
tion from two security classes is com-
bined, the label of the higher result of
the two classes is used for the result (for
example. S 0 U = S).

Similarly, subset lattices of any size
can be defined. Since there are 2” sub-
sets of a set of size II. there is an expo-
nential increase in the number of secu-
rity classes as the number of categories
increases. In practice. only a decreas-
ingly small fraction of the security class-
es actually would be employed for
large n.

Selecting an arbitrary subset of a lat-
tice will not necessarily yield a lattice.
For example, the partial order of Figure
2a results by selecting these four securi-
ty classes from the subset lattice on [A,
B, C, D). The partial order of Figure 2a
fails to be a lattice for two reasons. First,
it is missing the system-low and system-
high security classes. Second, the two
upper bounds of {A / and (8) are incom-
parable; hence there is no least upper
bound of {A) and (B). By filling in these
missing security classes, we can extend
the partial order of Figure 2a to obtain
the lattice of Figure 2b. Such a construc-
tion is always possible for any partial
order: that is. every partial order can be
embedded in a lattice by including addi-
tional security classes.

It is possible to generate very large
lattices in this manner. As mentioned
previously, only a small subset of the
entire lattice realistically would be used
in such cases. Smith’describes an actual
lattice based on common practice in the
military. This lattice consists of the four
linearly ordered security levels TS > S >
C > U. and eight categories {A, K, L, Q,
W, X. Y, 2) corresponding to, say. eight
different projects in the system. Smith’s
lattice (see Figure 3) has 21 labels from
a possible space of 4 x 2” = 1,024 labels.
The 21 labels actually used do consti-
tute a lattice. Except for the system-
high security class, combinations of cat-
egories occur only in twos and threes. In
addition, the use of categories occurs
mostly above top secret, and none occur
below secret.

Figure Id shows a partially ordered
lattice. The security classes are obtained
as the power set (that is, set of all sub-
sets) of {A. B}. Say A denotes salary
information and B denotes medical in-
formation in a personnel database. The
system-low class is the empty set, which
can have public information but no sal-
ary or medical information. The securi-
ty labels (A) and (B) are singleton sets.
respectively corresponding to salary
information and medical information.
When salary information and medical
information are combined, the result
must be labeled (A. B). Note that {A)
and (B) are incomparable and that {A)
0 (B) = {A, B). In this policy, can-flow is
identical to the subset relation, domi-
nance is identical to superset, and join is
the set union of the labels. Such a lattice
is called a subset lattice. In the military
and government sectors, the individual
set elements (that is, A and B) are known
as categories; the security classes (that
is, sets of categories) are known as com-
partments.

Access control models

Figure le shows a subset lattice with
three categories A, B, and C that might
denote salary, medical, and educational
information. respectively. In this case.
the security classes [A) and (B) have
two upper bounds, namely, [A, B) and
{A, B. C). with {A, B) being the least
upper bound.

The two lattices considered above
(that is, the totally ordered lattice and
the subset lattice) are often combined.
This is particularly true in the military
and government sectors, where this
structure is laid down by law. (The sys-
tem-high security clearance is sometimes
not given to any individual in systems
that contain highly sensitive informa-
tion.) Each security class has two com-
ponents: one from the totally ordered
security lattice of Figure lc, and the
second from a subset lattice on some
number of categories. One label is said
to dominate another if each component
of the first label dominates the corre-
sponding component of the second. For
example. c 7s. {A) > dominates < S, {A)
> but is incomparable to < S, (B) >. The
join of two labels is similarly defined as

The active entities in a system are
usually processes executing programs
on behalf of users. Therefore, informa-
tion flow between objects, and thereby
between security classes, is carried out
by processes. Information can poten-
tially flow from every object that a pro-
cess reads to every object that it writes.
In the absence of knowledge about what
a given program does, we must assume
the worst case and say that wherever
there is a potential for information flow,
the flow actually occurs. Said another
way, we must be conservative and en-
sure that programs simply do not have
the ability to cause information flows
contrary to the given policy. Before
showing how the Bell-LaPadula model”
addresses this objective. I introduce
some basic abstractions for access con-
trol models.

To understand access control and
computer security, we must first under-
stand the distinction between users and
subjects. This distinction is fundamen-
tal but often is treated imprecisely, lead-
ing to undue confusion about the objec-
tives of computer security.

We understand that a user is a human
being. And we assume that each human

12 COMPUTER

I

the pairwise join of the individual com-
ponents (for example, < 75. {A} > 0 < S,
(B) > = < 73. {A, B) >). It is easy to see
that the result is a lattice. In fact, it is
known as the product lattice of the two
underlying lattices. This example illus-
trates the general property that the prod-
uct of two lattices is a lattice.

being known to the system is recog-
nized as a unique user. Stated another
way, the unique human named Jane
Doe cannot have more than one user
identity in the system. If Jane Doe is not
an authorized user of the system, she
has no user identity. Conversely, if she
is an authorized user, she is known by
exactly one user identity, say, JDoe.

Clearly this assumption can be en-
forced only by adequate administrative
controls, which we assume are in place.
This assumption is not required for some
of the policies considered in this article.
At the same time, it is crucial for poli-
cies such as Lipner’s integrity lattice
and Chinese Walls, which are discussed
later. This assumption is often violated
in current systems. (It is worth observ-
ing that the converse requirement. that
each user identifier in the system be
associated with exactly one human he-
ing, is critical to maintaining strict ac-
countability. The use of shared uscr-
identifiers to facilitate sharing is usually
applied only because the system lacks
convenient facilities for such sharing. In
a properly designed system, there should
be no need for this artifice.)

We understand a subject to be a pro-
cess in the system: that is, a subject is a
program in execution. Each subject is
associated with a single user. with the
subject executing on the user’s behalf.
In general, a user can have many sub-
jects concurrently running in the sys-
tem. Every time a user logs in to the
system, the user does so as a particular
subject. (Note that access control mod-
els assume that identification and au-
thentication of users takes place in a
secure and correct manner, and are con-
cerned with what happens afterward.)

Different subjects associated with the
same user can obtain different sets of
access rights. Suppose that top-secret
user John logs in at the secret level. In
user-subject terminology. we interpret
this as follows: First. there is a unique
user, John, cleared to top secret: sec-
ond. John can have subjects executing
on his behalf at every level dominated
by top secret. For now. assume that
each subject runs at a fixed security
level. (Below, we see that the security
level of subjects can be changed in some
models.)

The access rights of subjects to ob-
jects in a system are conceptually repre-
sented by an access mufvi.~.‘This matrix
has a row for every subject and a col-
umn for every object. A subject can also

November 19%

be an object in the system; for example,
one process can execute suspend and
resume operations on another process.

In general, all subjects are also ob-
jects. but not all objects are subjects.
The cell for rows and column o is denot-
ed by [s, o] and contains a set of access
rights specifying the authorization of
subject s to perform operations on ob-
ject o. For example, rerrti t [s. 01 autho-
rizes s to read o. Operations authorized
by the access matrix are the only ones
that can be executed. In the access ma-
trix, all users are also regarded as sub-
jects in their own right. A subject re-
tains the access rights of the user. even
when the user is not engaged in any
activity in the system. The access matrix
is usually sparse and is stored in a sys-
tem using access control lists. capabili-
ties, relations, or another data structure
suitable for efficient sparse-matrix
storage.

The access matrix is a dynamic entity,
and its individual cells can be modified
by subjects. For example, if subjects is
the owner of object o (that is, own E [s,
cl]), then s typically can modify the con-
tents of all cells in the column corre-

sponding too. In this case. the owner of
an object has complete discretion re-
garding access to the owned object by
other subjects. Such access controls are
said to be discretionary.

The access matrix also changes with
the addition and deletion of subjects
and objects. (The typical access control
on files and directories, provided by
popular multiuser operating systems on
the basis of protection bits, is an exam-
ple of discretionary access control. An-
other example of discretionary access
control is the access control on relations
and parts of relations provided by pop-
ular relational database management
systems.)

By themselves. discretionary access
controls are inadequate for enforcing
information flow policies. Their basic
problem is that they provide no con-
straint on copying information from one
object to another. (There are also oth-
er, more subtle problems with discre-
tionary access controls, notably concern-
ing the so-called safety problem’ for
propagation of access rights.)

Suppose that Tom, Dick, and Harry
are users and that Tom has a confiden-

TS-AKLQWXYZ

Figure 3. Smith’s lattice,

13

tial file Private that he wants Dick to
read but doesn’t want Harry to read.
Tom can authorize Dick to read the file
byenteringreadin [Dick, Private]. (As-
sume that Dick does not thereby have
the authority to grant the read right for
Private to other users, such as Harry.)
Dick can easily subvert Tom’sintention
by creating a new file called Copy-of-
Private and copying the contents of Pri-
vate into it. As the creator of Copy-of-
Private, Dick has the authority to grant
read access for it to any user. including
Harry: that is. Dick can enter read in
[Harry, Copy-of-Private]. Then, for all
practical purposes, Harry can read Pri-
vate as long as Dick keeps Copy-of-
Private reasonably up to date with re-
spect to Private.

This situation is actually worse than
the above scenario indicates. So far, I
have portrayed Dick as a cooperative
participant in this process. Now sup-
pose Dick is Tom’s trusted confidant
and would not deliberately subvert
Tom’s intentions regarding the Private
file. However. Dick uses an ingenious
text editor that Harry gave to him. This
editor provides all the editing services
that Dick needs. In addition, Harry has
also programmed the editor to create
the Copy-of-Private file and to grant
Harry the right to read Copy-of-Pri-
vate. This kind of Trojnr? horse software
performs normal functions expected by
its user. but also engages in surrepti-
tious activities to subvert security. A
similar Trojan horse that Harry created
and Tom executed could actually grant
Harry the privilege to directly read Pri-
vate. We can require that all software
run on the system be free of Trojan
horses, but this is hardly practical, par-
ticularly if we wish to guarantee this
freedom with a high degree of assur-
ance. The solution is to impose manda-
tory controls that cannot be bypassed,
even by Trqjan horses.

l +-property (read as star-property):
Subject s can write object o only if

The Bell-LaPadula
model

Bell and LaPadula’ formalized the
concept of mandatory access controls.
defining a model commonly bearing their
names. Numerous variations of the
model have since been published. Con-
sequently. the exact meaning of the Bell-
LaPadula model is not clear.

In this article, 1 take a minimalist

Mandatory access
control policy is

expressed in terms of
security labels attached to

subjects and objects.

approach and define a model, called
BLP, that is generally the smallest mod-
el capturing the essential access control
properties I want to illustrate. The no-
tation and precise formulation of the
rules of BLP are substantially different
from those of the original Bell-LaPadu-
la model. BLP is more in line with the
formulations authors of more recent lit-
erature have used.

The key idea in BLP is to augment
discretionary access controls with man-
datory access controls to enforce infor-
mation flow policies. BLP takes a two-
step approach to access control. First is
a discretionary access matrix D, whose
contents can be modified by subjects (in
a way we don’t need to specify here).
However, authorization in D is not suf-
ficient for an operation to be carried
out. Second, the operation must be au-
thorized by the mandatory access con-
trol policy, over which users have no
control.

Mandatory access control policy is
expressed in terms of security labels
attached to subjects and objects. A la-
bel on an object is called a security clas-
sificatim, while a label on a user is
called a security clearance. A user la-
beled secret can run the same program.
such as a text editor. as a subject labeled
secret or as a subject labeled unclassi-
fied. Even though both subjects run the
same program on behalf of the same
user. they obtain different privileges
due to their security labels. It is usually
assumed that once assigned, the securi-
ty labels on subjects and objects cannot
be changed (except by the security of-
ficer). This assumption, known as tran-
quility, can be relaxed in a secure man-
ner (see below).

With h signifying the security label of
the indicated subject or object, the spe-
cific mandatory access BLP rules are as
follows:

l Simple-security property: Subjects
can read object u only if h(s) 2 h(o).

h(s) 2 h(o).

Read access implies a flow from ob-
ject to subject, hence the requirement
that h(s) > h(o) or equivalently h(o) +
h(s) (that is, X(,(o) can flow to h(s)).
Write access conversely implies a flow
from subject to object, hence the re-
quirement that h(s) I h(u) or equiva-
lently h(s) + h(o) (that is. h(s) can flow
to h(o)). Write access is interpreted here
as write only. In some models, write
access is interpreted to mean read and
write, with append access provided for
write only.

These properties are stated in terms
of read and write operations. In a real
system, additional operations will exist
(for example, create and destroy ob-
jects). Considering read and write suf-
fices to illustrate the main points. For
example. create and destroy are also
constrained by the *-property because
they modify the state of the object in
question. Mandatory controls are for-
mulated as “only if” conditions: that is,
they are necessary but not sufficient for
the indicated access. In operational
terms, we can visualize the mandatory
controls as kicking in only after the
checks embodied in the discretionary
access matrix D have been satisfied. If
D does not authorize the operation. we
do not need to check the mandatory
controls, since the operation will be re-
jected anyway. Equivalently. the man-
datory controls can be checked first,
followed by a check of the discretionary
controls.

The simple-security requirement ap-
plies to humans and programs equally,
and the need for it is self-evident. On
the other hand, the *-property is not
applied to human users, but rather to
programs. Human users are trusted not
to leak information. A secret user can
write an unclassified document because
we assume that he or she will put only
unclassified information in it. Programs,
on the other hand, are not trusted be-
cause they can have embedded Trojan
horses. The *-property prohibits a pro-
gram running at the secret level from
writing to unclassified objects, even if it
is permitted to do so by discretionary
access controls. A user labeled secret
who wishes to write an unclassified ob-
ject must log in as an unclassified
subject.

A curious aspect of the -+-property is

14 COMPUTER

that an unclassified subject can write a
secret file. This means that secret data
can be destroyed or damaged, perhaps
accidentally, by unclassified subjects.
To prevent this integrity problem, a
modified *-property is sometimes used
that requires h(s) = h(o); that is, sub-
jects can write at their own level but
cannot “write up.”

form the same change; that is, we re-
place the stipulation that X(s) = h(o)

be a secret (or above) file and Harry‘s
unclassified subjects will not be able to
read it. On the other hand, Dick’s un-

Here’s how these properties impact
the previous Tom, Dick, and Harry Tro-
jan horse example. Suppose Tom and
Dick are secret users and Harry is an
unclassified user. Tom and Dick can
have secret and unclassified subjects,
while Harry can have only unclassified
subjects. Now, let Tom create the secret
file Private via a secret subject, The
simple-security property will prevent
Harry’s subjects from being able to di-
rectly read the file Private. The simple-
security and *-properties will ensure
that Harry’s subjects cannot surrepti-
tiously read Copy-of-Private because
Copy-of-Private will either be labeled
secret (or above) or will not contain any
information from Private. Specifically,
if Dick’s Trojan horse-infected secret
subject creates Copy-of-Private, it will

Once covert channels
are detected, they are

difficult to close without
incurring significant

performance penalties.

munication is called a covert channel.’
Covert channels present a formidable

The covert channel problem is out-

problem for enforcement of informa-
tion flow policies. They are difficult to
detect, and once they are detected they

side the scope of lattice-based access

are difficult to close without incurring
significant performance penalties. Co-
vert channels tend to be noisy due to

control models such as Bell-LaPadula.

interference by the activity of other sub-
jects in the system. Nevertheless, stan-
dard coding techniques for communica-
tion on noisy channels can be used by
Trojan horses to achieve error-free com-
munication. The resulting data rates can
be as high as several million bits per
second if efforts are not made to miti-
gate the channels.

with h(s) > h(o). This latter case is inse-
cure, because upgrading an unclassified
file to secret by a secret subject will
make this file disappear from the view
of unclassified subjects, thereby open-
ing a means for communicating infor-
mation from secret to unclassified; this
could be exploited by Trojan horses. A
secret user can securely upgrade an un-
classified file to secret by logging in as
an unclassified subject.

The Biba model and
duality

Confidentiality considerations moti-
vated the mandatory controls in the Bell-
LaPadula model. Biba proposed that

tegrity objectives. The best known of

similar controls could be formulated for
integrity.“’ The basic concept in Biba’s
model is that low-integrity information

these is called strict integrity.

should not be allowed to flow to high-
integrity objects, whereas the opposite
is acceptable. Biba proposed several

In the usual formulation of the Biba

ways to use mandatory controls for in-

classified subject running the Trojan

was a secret user like Tom and Dick,

horse cannot read Private and copy it to

these controls would not solve the

Copy-of-Private. BLP mandatory access

problem.

controls only prevent information flow

Unfortunately,mandatorycontrolsdo

between security classes. Thus. if Harry

These models seek to prevent insecure

ing covert channels is considered an

information flows via objects that are

implementation and engineering issue,

explicitly intended for interprocess data

requiring analysis of the system archi-

sharing and communication. The prob-

tecture, design, and code (see Proctor

lem of avoiding, mitigating, or tolerat-

model, high integrity is placed toward

rectly opposite that of the Bell-LaPad-

the top of the lattice of security labels

ula model and Denning’s axioms. This

and low integrity at the bottom. With

led Biba to propose the following man-

this formulation. the permitted flow of

datory controls. in analogy with the

information is from top to bottom, di-

not solve the Trojan horse problem com-
pletely. A secret subject is prevented
from writing directly to unclassified
objects. There are. however, other ways
of communicating information to un-
classified subjects. For example, the se-
cret subject can acquire large amounts
of memory in the system. This fact can
be detected by an unclassified subject
that can observe how much memory is
available. Even if the unclassified sub-
ject is prevented from directly observ-

and Neumann”). Another class of mod-
els, called information flow models, at-
tempts to deal with all information flows
uniformly.’

Above I noted that the tranquility
assumption requires that security labels
of subjects and objects not change. This
assumption can be relaxed in several
different ways. some securely and oth-
ers insecurely (that is. they introduce
information flow contrary to the given
lattice). Suppose we allow a subjects to

mandatory controls of the BLP model
(o denotes the integrity label of a sub-
ject or object):

l Simple-integrityproperty: Subjects
can read object o only if o(s) 5 W(O).

l Integrity *-property: Subjects can
write object o only if w(s) 2 o(o).

These properties are said to be duals of
the corresponding properties in BLP.

There is nothing intrinsic about plac-
ing high integrity at the top of the lattice

ing the amount of free memory, it can change the security label of object o (or placing high confidentiality at the
do so indirectly by making a request for from h(o) to h’(o). with the stipulation top, for that matter). Top and bottom
a large amount of memory itself. Grant- that k(s) = h(o), and h’(o) > h(o); for are relative terms coined for convenience
ing or denying this request will convey example. an unclassified subject up- and have no absolute significance. But
some information about free memory grades the label of a file from unclassi- information flow in the Biba model can
to the unclassified subject. The load on fied to secret. Such a change is secure, be brought into line with the BLP mod-
the CPU can be similarly modulated to because it causes no information flow el by simply saying that low integrity is
communicate information.

This kind of indirect method of com-
from secret to unclassified. Now sup- at the top of the lattice and high integri-
pose we allow a secret subject to per- ty at the bottom. This forces us to invert

November 1993 15

Figure 4. Example
of equivalence: (a)

composite model
(and accompany-

ing table stating
resulting mandato-

ry controls); (b)
equivalent BLP
lattice (allowed

flows are upward);
and (c) equivalent

Biba lattice (al-
lowed flows are

downward).

(a)

W (c)

the dominance relation in the Biba model
so that low integrity dominates high
integrity.

With this viewpoint, we can use the
mandatory controls of the BLP model
to enforce the information flows re-
quired by the Biba model. This situa-
tion is symmetrical. We could equally
well invert the BLP (and Denning) lat-

tices to put low confidentiality at the
top and high confidentiality at the bot-
tom, and employ the mandatory con-
trols of Biba to enforce the information
flows.

There is no fundamental difference
between the Biba and BLP models. Both
are concerned with information flow in
a lattice of security classes, with infor-

S: System control

S: Repair
S: Production users
0: Production

data

S: Application
programmers

0: Development
code and data

S: System
programmers

0: System code
in development

0: Production code 0: Tools
I

1 0: System programs 1

Figure 5. Lipner’s composite model as a BLP lattice. Each box represents a la-
bel. Entries in each box specify subjects (prefixed S:) and objects (prefixed 0:)
that are assigned to that label. Allowed flows are upward.

16 COMPUTER

mation flow allowed only in one direc-
tion in the lattice. The BLP model al-
lows information flow upward in the
lattice, and the Biba model allows it
downward. Since direction is relative, a
system that can support one of these
models can also support the other (giv-
en some straightforward remapping of
labels to invert the dominance relation
as needed).

It is often suggested that the BLP and
Biba models could be combined in situ-
ations where both confidentiality and
integrity are of concern. If a single label
is used for both confidentiality and in-
tegrity, the models impose conflicting
constraints. One adverse factor to com-
bining them is that a subject can read or
write only those objects that have ex-
actly the same security label as the sub-
ject. This amounts to the trivial policy
of no information flows between securi-
ty classes as discussed in Example 1.

A more useful situation features in-
dependent confidentiality and integrity
labels, As such, each security class con-
sists of two labels: a confidentiality la-
bel hand an integrity label w, with BLP
mandatory controls applied to the former
and Biba controls to the latter. Let A =
(h,. . . A,,) be a lattice of confidentiality
labels, and let R = (0,. . , o(,) be a
lattice of integrity labels. Assume that
in both lattices high confidentiality and
high integrity are at the top, as pro-
posed in the original models. The com-
bined mandatory controls are

l Subject s can read object o only if
h(s) 2 h(o) and w(s) I w(o).

* Subject s can write object o only if
h(s) 5 h(o) and w(s) 2 w(o).

This popular composite model has
been implemented in several operating
system, database. and network prod-
ucts specifically built to meet require-
ments of the military sector. This model
amounts to the simultaneous applica-
tion of two lattices, with information
flow occurring in opposite directions
(going upward in the confidentiality lat-
tice and downward in the integrity lat-
tice). However, we can invert the integ-
rity lattice and view the composite model
as the simultaneous application of two
lattices with information flow going up-
ward in both of them. This gives us a
product of two lattices, which is mathe-
matically one lattice. Hence, the com-
posite model can be reduced to a single
lattice (see Figure 4).

Figure 4a shows two lattices A and ,Q
to which BLP and Biba controls. re-
spectively. are applied. The accompa-
nying table shows the resulting manda-
tory controls. Each entry specifies the
maximum access that a subject with a
label on the row can have to an object
with a label on the column. In this table,
r denotes read access, w denotes write
access, rw denotes both read and write
access, and @ denotes no access.

The same mandatory controls are
enforced by the BLP lattice of Figure
4b. Here, subjects labeled &,a+, cannot
read objects labeled hHcuL because of
the w-component of their labels. At the
same time, they cannot write objects
labeled h,w, because of the h-compo-
nent. They cannot read objects labeled
hLmL because of the o-component. and
they cannot write to these objects be-
cause of the h-component. We can sim-
ilarly interpret other relationships in
this lattice. Also note that the top ele-
ment of the lattice has high confidenti-
ality but low integrity, whereas the bot-
tom element has low confidentiality but
high integrity. The same mandatory
controls are enforced by the Biba lat-
tice of Figure 4c, obtained by inverting
Figure 4b. In short, the mandatory con-
trols expressed by the three formula-
tions of Figure 4 are precisely equiva-
lent. Which mandatory controls a system
enforces doesn’t matter - the net ef-
fect is identical.

Lipner:’ gave us another example of
the simultaneous use of confidentiality
and integrity labels. Lipner constructed
a composite lattice for possible applica-
tion in a conventional data processing
environment. The Lipner lattice con-
sists of three integrity levels, two integ-
rity categories. two confidentiality lev-
els, and three confidentiality categories.
This results in 3 x 2: x 2 x 2’ = 192 distinct
labels. all of which could be instantiated
as a single BLP lattice, as I have argued.
However. Lipner instantiates subjects
and objects with only nine distinct la-
bels. which are related by the BLP lat-
tice of Figure 5. In this lattice, system
programs have the highest integrity,
whereas audit trail has the highest con-
fidentiality. Audit trail can be read only
by system managers. It can be written
by all subjects (in an append-only mode).

Lipner also imposes the additional
constraint that production users can
execute only production code. Also. no
individual can be both an application
programmer and a production user. It is

November 1993

Company information

Conflict-of- Conflict-of-
, i , .” , inter as:-class j , interest-class i

Company i.1 . . . Company i.m . . - Company j.l . . . Company Jr7

Figure 6. Company information in the Chinese Wall policy.

easier to enforce this restriction if each
human being is required to have a unique
user identity in the system, as suggested
in the section on access control models.

Finally, in contradiction to the t-
property, system control subjects are
allowed to “write down.” Such addi-
tional constraints and relaxations of the
lattice model appear to be necessary for
the application that Lipner considered.
The point is not so much to discuss the
adequacy of the lattice model for integ-
rity applications but to emphasize that
lattice-based information flow policies
that combine several lattices can be cast
within a single lattice.

The Chinese Wall
lattice

The Chinese Wall policy that Brewer
and Nash’? identified arises in the seg-
ment of the commercial sector that pro-
vides consulting services to other com-
panies. In a 1992 paper. I presented a
lattice-based access control model for
enforcing this policy.‘? The objective of
the policy is to prevent information flows
that result in a conflict of interest for
individual consultants.

Consultants deal with confidential
company information for their clients.
But, a consultant should not have ac-
cess to information about, say. two banks
or two oil companies because such in-
formation creates a conflict of interest
in the consultant’s analysis and is a dis-
service to clients. Insider information
about two similar types of companies
also presents the potential for consul-
tants to use such knowledge for person-
al profit.

The Chinese Wall policy has a dy-
namic aspect to it. New consultants start
with no mandatory restriction on their
access rights. Say a consultant accesses
information about bank A. Thereafter,

this consultant is mandatorily denied
access to information about any other
bank. (This denial should persist long
enough to avoid a conflict of interest.
To simplify this discussion, assume that
this denial is forever.) However, there
are still no mandatory restrictions re-
garding the consultant’s access to an oil
company, an insurance company, and
so forth.

It is useful to distinguishpllblic infor-
mation from company information. Pub-
lic information involves desirable fea-
tures such as public bulletin boards,
electronic mail, and public databases;
has no mandatory reading controls: and
can have discretionary access controls
restricting who can read different pub-
lic items. (For simplicity’s sake in this
article, I ignore discretionary and addi-
tional mandatory controls, which coex-
ist with the Chinese Wall policy. Such
additional controls can also apply to
company information and are similarly
ignored.)

As Figure 6 shows, company infor-
mation is categorized into mutually dis-
joint conflict-of-interest classes. Each
company belongs to one conflict-of-in-
terest class. The Chinese Wall policy
requires that a consultant not be able to
read information for more than one com-
pany in any given conflict-of-interest
class. This policy applies uniformly to
users and subjects.

The policy for writing public or com-
pany information is derived from its
consequence on providing possible in-
direct read access contrary to mandato-
ry read controls. In this respect, users
and subjects (possibly infected with Tro-
jan horses) must be treated differently.
The policy for writing is essentially the
same as the Bell-LaPadula t-property.
To make this statement meaningful. we
need to define a lattice of labels.

Say there are y2 conflict-of-interest
classes: COI,, COI?, . , COI,, each with
M, companies, so that COZ, = (1,2, . .

17

in,), for i = 1. 2, . n. We propose to
label each object in the system with the
companies from which it contains infor-
mation. Thus, an object that contains
information from bank A and oil com-
pany OC is labeled {bank A, oil compa-
ny OC}. Assume that banks and oil com-
panies are distinct conflict-of-interest
classes. Then, labels such as {bank A.
bank B. oil company OC] are clearly
contrary to the Chinese Wall policy. We
prohibit such labels in our model by
defining a security label as an n-ele-
ment vector [i,,i,, . , i,,], where each i,
E COI, or i, = I for k = 1 . n. (The
symbol I is read as null.) An object
labeled [i,,i,, , i,?] is interpreted as
(possibly) containing information from
company i, of COI,, company i2 of COI?,
and so on. When an element of the label
is I rather than an integer, the object
cannot have information from any com-
pany in the corresponding CO1 class.
For example, an object that contains
information from company 7 in COI,
and company 5 in COI, is labeled [L 7.
1,5,i)..., I].

The dominance relation among la-
bels is defined as follows: I, 2 /? provided
I, and I, agree wherever l2 # 1. For
example, [t, 3,2] 2 [l, 3, I]. [I. 3, I] 2
[1. I, 11 while [1, 3, 21 and [l. 2, 31 are
incomparable. To be precise. let [[i,]
denote the i,-th element of label 1. Then
I, 2 l2 if l,[iJ = 12[ii] v L[iJ = I, for all k
=l...n.

The label with all null elements natu-
rally corresponds to public information.
There is, however, no naturally occur-
ring system-high label. In fact, such a
label is contrary to the Chinese Wall
policy. We can introduce a special label
Syshigh for this purpose, not assigning
that name to any subject in the system.
By definition Syshigh dominates all
other labels. (Alternately, we can rec-
ognize that the Chinese Wall policy
does not quite fit within a lattice and
requires the Syshigh class to be elimi-
nated. However. recall that when I dis-
cussed Example 3 above, 1 said the need
for system-high objects for system ad-
ministration and audit purposes could
be crucial.)

The class-combining join operator
must be defined to complete the lattice
structure. We say that two labels I, and
I, are compatible if wherever they dis-
agree at least one of them is I, that is.
l,[iJ =L[iJ orI,[i,] =lorL[i,] =Iforall
k = 1 ~1. Note that if I, dominates 1:
then I, and 1, are compatible. In other

18

Syshigh

A
[1,11 P 21 [Zll P21 I

[Lll I
Figure 7. Example of a Chinese Wall
lattice.

words, comparable labels are com-
patible.

Incomparable labels, on the other
hand, might or might not be compati-
ble. For instance, [1,3.2] and [I .2.3] are
incompatible, while [l, I, 21 and [lo 2, I]
are compatible. Incompatible labels
cannot be legitimately combined under
the Chinese Wall policy. This is ex-
pressed by the requirement that if 1,
is incompatible with II then I, 0 l2 =
Syshigh. For compatible labels the i,-th
element of the join is computed as fol-
lows: (I, 0 L)[iJ = if I,[iJ $1 then L,[iJ
else Iz[i,]. For example. [l. I, 21 0 [l. 2.
I] = [l. 2. 21. Finally, the join of any
label with Syshigh is Syshigh.

Given this lattice structure. here’s how
the Chinese Wall policy can be enforced.
I describe the solution in the context of
the specific lattice of Figure 7, which
contains two conflict-of-interest classes
with two companies in each class. The
solution is completely general, howev-
er, and applies to any Chinese Wall
lattice. Every object in the system bears
one of the labels in Figure 7. (I dis-
cussed the interpretation of these labels
previously.) Objects labeled Syshigh
violate the Chinese Wall policy by com-

bining information from more than one
company in the same CO1 class. These
objects are inaccessible in the system,
since no user will be cleared to Syshigh.

Next, consider labels on users and
subjects. We treat the clearance of a
user as a high-water mark that can float
up in the lattice but not down. A newly
enrolled user in the system is assigned
the clearance (I, I]. (This assumes that
the user is entering the system with a
“clean slate.” A user with prior expo-
sure to company information in some
other system should enter with an ap-
propriate clearance reflecting the ex-
tent of the prior exposure.) As the user
reads various company information. the
user’s clearance floats up in the lattice.
For example, by reading information
about company 1 in conflict-of-inter-
est-class 1, the user’s clearance is mod-
ified to [l, I]. Reading information about
company 2 in conflict-of-interest-class
2 further modifies the user’s clearance
to [1, 21. This floating up of a user’s
clearance is allowed as long as the clear-
ance does not float up to Syshigh. Oper-
ations that would force the user’s clear-
ance to Syshigh are thereby prohibited.

The ability to float a user’s clearance
upward addresses the dynamic require-
ment of the Chinese Wall policy. The
floating clearance keeps track of a us-
er’s read operations in the system. It is
also important to ensure that a consul-
tant cannot be known by two (or more)
user identities in the system. Otherwise,
each user identity could obtain infor-
mation about different companies in
the same conflict-of-interest class.

The exact manner in which a user’s
clearance is allowed to float up is not
specified in the model, since there are
numerous alternatives. If users have
complete freedom in this respect, the
proposed read access could be specified
at login. The system could then create a
suitable subject for that user session.

On the other hand, one might con-
strain this by discretionary access con-
trols. For instance, a user might be al-
lowed to read only company information
that the user’s boss assigns. In this case,
the float-up of a user’s clearance is ef-
fected by some other user. (A complete
treatment would require models such as
the typed access matrix.‘)

With each user we associate a set of
subjects whose labels are dominated by
the user’s clearance. Thus, if user Jane
has the clearance [l, 11. she could create
the following subjects associated with

COMPUTER

I

her: Jane.[l. 11. Jane.[l, I], Jane.[l, 11.
and Jane.[l. I]. Each of the subjects
corresponds to the label with which she
wishes to log in on a given session. (More
generally. a user might be allowed to
open several windows in a single login
session, with each window associated
with its own subject.) Each subject has a
fixed label that does not change.

The floating up of a user’s clearance
corresponds with the ability to create
subjects with new labels for that user.
For example, when Jane has the clear-
ance [l. i]. she can create subjects with
labels [l, I] and [I, I]. When Jane’s
clearance floats up to [l, I], she acquires
the ability to create subjects with labels
[l, I] and [1. I].

Each subject has a fixed label, and
each subject created by that subject in-
herits that label: that is, subject creation
is allowed only at the label of the creat-
ing subject. A subject’s label remains
fixed for the life of that subject.

All read and write operations in the
system are carried out by subjects. These
subjects arc constrained by the familiar
simple-security and *-properties of the
Bell-LaPadula model. Suppose Jane logs
in as a subject with label [I, I]. All
subjects created during that session will
inherit the label [l, I]. This will allow
these subjects to read public objects
labeled [I, 4, to read and write compa-
ny objects labeled [l, I]. and to write
objects with labels [l, 11. [l, 21. and
Syshigh.

A

lthough lattice-based access
controls were initially devel-
oped for military sector, they

can be applied in almost any situation
where information flow is of concern.
The commercial sector has largely ig-
nored lattice-based access controls, pos-
sibly due to their genesis in confidenti-
ality policies for the military and
government. However. as I have argued
in this article, lattice-based controls are
relevant to integrity policies in com-
mercial data processing, as well as for
confidentiality policies that are unique
to the commercial sector.

Lattice-based access control is a key
ingredient of information systems secu-
rity as we understand it today. At the
same time. the lattice-based approach
does not provide a complete solution
for information flow policies, let alone
for security policies in general. Albeit a
very important one, the lattice-based

November 1993

approach is but one ingredient of infor-
mation systems security. n

Acknowledgments
I thank the anonymous referees foridenti-

fying several subtle errors, omissions, and
ambiguities, therebv helping me to signifi-
cantly improve the final draft of this article.
This work was partially supported by Na-
tional Science Foundation Grant No. CCR-
9202270 and National Security Agency Con-
tract No. MDAY04-92-C-5141. I am grateful
to Dan Atkinson, Nathaniel Macon. Howard
Stainer. and Mike Ware for making this work
possible.

References
I.

2.

3 _

4.

5.

6

7

x

Y

D.E. Denning, “A Lattice Model of Se-
cure Information Flow,” Co,nm. ACM.
Vol. 19, No. 5. May 1976, pp. 236.233.

W.E. Boebert and R.Y. Kain, “A Practi-
cal Alternative to Hierarchical Intcgritv
Policies,” Proc. Eighth NBS-DOD Nat’1
ComputerSecurity Cor$, US Govt. Print-
ing Office. Washmgton. D.C., 1985, pp.
1 X-27.

R.S. Sandhu. “The Typed Access Matrix
Model.” Proc. IEEE Symp. Research in
Security rrnrl Privacy. IEEE CS Press,
Los Alamitos. Calif., Order No. 2825,
lYY2, pp. 122-136.

G.W. Smith, The Modeling and Repre-
.sentation ofSrcuri/y Semantics for Data-
hrre App/;cations, PhD thesis, George
Mason Univ.. Fairfax, Va.. 1990.

D.E. Bell and L.J. LaPadula. “Secure
Computer Systems: Mathematical Foun-
dations and Model,” Mitre Corp. Report
No. M74-244, Bedford, Mass., 1975. (Also
av8ailablc through Nat’1 Technical Infor-
mation Service. Springfield. Va., Report
No. NTIS AD-771543.)

B.W. Lampson. “Protection.” Fifth
Pritzcrron Symp. In,formation Science
andSystems, Princeton Univ., Princeton,
N..l..lY71,pp.537-443.ReprintedinACM
Operating Systems Rev.. Vol. 8. No. 1,
Jan. 1074, pp. 1X-24.

B.W. Lampson. “A Note on the Confine-
ment Problem.” Conrm. ACM, Vol. 16,
No. IO. Oct. 1973. pp. 613-615.

N.E. Proctor and P.G. Neumann, “Ar-
chitectural Implications of Covert Chan-
nels.” Proc. 15th NIST-NCSC Nat’1
C‘orrlplfter Secrlrit~ Conf., US Govt. Print-
ing Office, Washington, D.C.. 1YY2, pp.
28-43.

J.A. Gougen and J. Meseguer-. “Security
Policies and Security Models,” Proc.

IEEE Symp. Security and Privacy. IEEE
CS Press. Los Alamitos, Calif.. Order
No. 410 (microfiche only), 1982. pp.
11-20.

10. K.J. Biba, “Integrity Considerations for
Secure Computer Systems,” Mitre Corp.
Report TR-3153. Bedford. Mass., lY77.
(Also available through Nat’1 Technical
Information Service, Springfield. Va.,
Report No. NTIS AD-A039324.)

1 I. S.B. Lipner,“NondiscretionaryControls
for Commercial Applications,” Proc.
IEEE Syrup. Security and Privacy, IEEE
CS Press, Los Alamitos, Calif.. Order
No. 410 (microfiche only). 1982, pp. 2-10.

12. D.F.C. Brewer and M.J. Nash, “The Chi-
nese Wall Security Policy,” Proc. IEEE
Svmu. Research in Security nnd Privacy,
IEE’E CS Press. Los Alamitos, Calif.,
Order No. 1939 (microfiche only). 1989,
pp. 215-228.

13 R.S. Sandhu, “A Lattice Interpretation
of the Chinese Wall Policy.” Proc. 15th
NIST-NCSC Nat‘/ Comprrter Security
Con,f.. US Govt. Printing Office, Wash-
ington. D.C., 1992, pp. 329-339.

Ravi S. Sandhu is associate chair of the Infor-
mation and Software Systems Engineering
Department at George Mason University.
where he teaches several graduate-level
securitv courses. His research interest is in-
formation systems security, particularly re-
garding database management systems, dis-
tributed systems, and formal models. He has
published more than 60 papers on computer
security.

Sandhu received a BTcch degree in elec-
trical engineering from the Indian Institute
of Technology in Bombay. an MTech degree
in computer technology from IIT in Delhi.
and MS and PhD degrees in computer sci-
ence from Rutgers University. He is a senior
member of IEEE and a member of the IEEE
Computer Society

Readers can contact Sandhu at the De-
partment of Information and Software
Systems Engineering, George Mason
University, Fairfax, VA 22030. electronic
mail sandhu@isse.gmu.edu or sandhu@
gmu.cdu.

19

