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Mathematics, Technology, and Trust:
Formal Verification, Computer Security,
and the U.S. Military
DONALD MACKENZIE AND GARREL POTTINGER

A distinctive concern in the U.S. military for computer security dates from the
emergence of time-sharing systems in the 1960s. This paper traces the sub-
sequent development of the idea of a “security kernel” and of the mathe-
matical modeling of security, focusing in particular on the paradigmatic Bell–
LaPadula model. The paper examines the connections between computer
security and formal, deductive verification of the properties of computer
systems. It goes on to discuss differences between the cultures of commu-
nications security and computer security, the bureaucratic turf war over se-
curity, and the emergence and impact of the Department of Defense’s
Trusted Computer System Evaluation Criteria (the so-called Orange Book),
which effectively took its final form in 1983. The paper ends by outlining the
fragmentation of computer security since the Orange Book was written.

Introduction
ow can computer systems be made secure? In the modern
world, such systems are crucial components of economic

and military power. From the 1940s onward, the U.S. military has
been the world’s single most important customer for, and commis-
sioner of, computer systems. By the mid-1990s, the Department
of Defense employed over two million computers, 10,000 local
networks, and 100 long-distance networks. This information in-
frastructure has become essential to almost all U.S. military ac-
tivities. Its possible vulnerability to intrusion, espionage, and
sabotage—a concern of insiders for at least 30 years—has re-
cently been the subject of public comment.1

Since the late 1960s, computer security has been at the heart of
one of the most important research and development efforts in
computer science. Reducing or removing computer systems’ vul-
nerabilities is not simply an important practical matter. It has in-
teracted closely with one of the central questions of computer
science: How can we know how computer systems will behave?
Their complexity makes it extraordinarily difficult—in practice,
usually impossible—to test them exhaustively. The history of
computer security is intertwined with the effort to gain deductive,
proof-based (in addition to inductive, test-based) knowledge of
the properties of computer systems, and thus is intertwined with a
significant part of the last three decades’ research in computer
science. This intertwining has had surprising results: For example,
it led to some automated mathematical theorem provers—an ap-
parently utterly esoteric technology—becoming classed as auxil-
iary military equipment for the purposes of export control.

Computer security is an area of conflict. Most obviously, it
raises important questions of the balance among privacy, crime

prevention, and government surveillance, an issue that has been
sharpest in respect to encryption technology. Less obviously,
computer security is a field in which the desires for national secu-
rity and for corporate profit have often been implicitly in tension,
and where the civilian and military agencies of government have
fought turf wars. Even within organizations such as the National
Security Agency (NSA), there has been a degree of conflict be-
tween those steeped in the older, secretive arts of cryptoanalysis
and communications security and those in the more open, more
academic discipline of computer security. The latter have even
asked the heretical (albeit naive) question: If a computer system is
secure and has been proven mathematically to be secure, is there
any reason to keep its details secret?

In its account of the history of computer security, this article
seeks to be neither definitive—too much of the detail of this area
remains classified, even in the United States, for that to be possi-
ble—nor comprehensive. Communications security and encryp-
tion remain in the background of our story, as do developments in
Europe and the history of computer security concerns in banking
and other areas of civil industry and commerce.

We begin by outlining the origins of a distinctive concern for
computer security in the emergence of time-sharing systems in the
1960s, concern that had come into focus by 1967. We next turn to
the first systematic investigations of computer security within the
U.S. military: the panels led by Willis H. Ware (which reported in
1970) and James P. Anderson (which reported in 1972). We trace
the emergence of the idea of a “security kernel” and of the
mathematical modeling of security, focusing in particular on what
was to become the paradigmatic definition of what security
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means: the Bell–LaPadula model.
We then turn to the connections between computer security and

formal, deductive verification of the properties of computer sys-
tems and describe two of the phenomena that make the formal
analysis of security more complicated than it first appears: the
need for “trusted subjects” and the practical infeasibility of elimi-
nating “covert channels.” We trace the sometimes stormy histories
of the Department of Defense Computer Security Evaluation
Center, of its famous criteria for the evaluation of secure systems
(the so-called Orange Book), and of the attempts to develop sys-
tems to meet the Orange Book’s highest security class, A1.

Finally, we outline the fragmentation of computer security
since the creation of the Orange Book. The boundary between
computer security and communications security has become
blurred; the operation of the secure computing market has under-
cut efforts to produce high-security, high-assurance systems; de-
spite efforts at synthesis, differences remain between commercial
and military approaches to computer security; and the Bell–
LaPadula model has lost its dominant role. Against the back-
ground of this fragmentation, however, we note that there is ten-
tative evidence of some convergence between the previously dis-
tinct spheres of safety and security.

Time-Sharing and Computer Security
Specific concerns about computer security began with the advent,
in the 1960s, of time-sharing computer systems. These made it
possible for several people to interact, seemingly simultaneously,
with the same computer system via terminals that could be in
separate rooms or separate buildings. In earlier batch-operated
computer systems, different users’ programs were executed one
after the other.2 Users could not interact with the computer system
while their programs were being run. Having sent or carried their
coding forms, punched cards, or reels of paper tape to their or-
ganization’s computer center, users had to wait to pick up their
programs’ output.

Batch systems had potential security problems; for example,
the output of a previous program would normally still be in
peripheral storage, such as magnetic tape or disks, when a new
one was being run, but these issues elicited little comment or
concern. Time-sharing, however, was different, both technically
and socially. Programs or data “belonging” to different users
would be present simultaneously in the computer’s main mem-
ory, not just in peripheral storage. Users could interact with
their programs as they were being run and could do so while
sitting at their own terminals, unseen by each other and by a
system’s operators. The activities, and even the identities, of
users were potentially problematic.

Time-sharing greatly increased the efficiency of computer in-
stallations. Most importantly, users could debug programs inter-
actively, instead of having to wait for several hours to see if a
program had run successfully. However, time-sharing also raised
the issue of how to prevent different users and different programs
from interfering with each other. Most obviously, the computer’s
main memory had to be divided between different users’ pro-
grams so as to prevent one program from overwriting a memory
location being used by another program. Ideally, though, these
memory bounds had to be flexible; otherwise, portions of memory
might remain unused by programs with modest memory demands,
while other users were unnecessarily constrained. The twin de-

mand for efficient use of resources and for keeping different pro-
grams from interfering with each other rendered the design and
development of system software for time-sharing systems a diffi-
cult and crucial task.

Even in the late 1980s, entry to the
Edinburgh Multiple-Access System was

controlled by each user’s four-letter
password, which could be a meaningful

English word, and which users were
never under any compulsion to change.
(Current computer security specialists
would regard each of these features of

the password with scorn.)

In the late 1950s and early 1960s, much of the early develop-
ment of time-sharing took place at the Massachusetts Institute of
Technology (MIT). By 1963, MIT’s Multiple Access Computer
could serve up to 24 users at once, via teletypewriter terminals
connected to the central computer through MIT’s telephone sys-
tem.3 In a university environment, security was not a dominant
issue. Different programs certainly had to be prevented from
writing in portions of memory being used by other programs, but
stopping different users from reading others’ data was not, in
practice, a major concern.4 Furthermore, freedom to grant permis-
sion to read or to modify files was entirely at users’ discretion
(unlike in the military, where the basic rules of security are man-
datory), and controls over access to the overall system were typi-
cally relaxed. One of us (MacKenzie) was for many years a user
of one pioneering university time-sharing system, the Edinburgh
Multiple-Access System. Even in the late 1980s, entry to the Ed-
inburgh Multiple-Access System was controlled by each user’s
four-letter password, which could be a meaningful English word,
and which users were never under any compulsion to change.
(Current computer security specialists would regard each of these
features of the password with scorn. For example, passwords that
are meaningful words—especially meaningful words of a short,
set length—are vulnerable to “dictionary attack,” in which a ma-
chine-readable dictionary is used to generate and try possible
passwords.)

The quite different priorities of national defense were, how-
ever, present from the very beginning of time-sharing. Much of
the interest at MIT in time-sharing grew out of earlier experience
developing the interactive air defenses that eventually became the
continent-wide Semiautomatic Ground Environment system. The
Department of Defense’s Advanced Research Projects Agency
(ARPA) funded Project MAC (Multiple Access Computer) and
other early time-sharing work, notably at the Rand Corporation’s
spin-off company, the System Development Corporation (which
was responsible for programming the Semiautomatic Ground
Environment system).5

The armed services could not be expected to take the relaxed
attitude to security that was possible at universities. By the second
half of the 1960s, important actors in the U.S. defense sector had
realized that time-sharing computer systems posed security issues
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that went beyond the traditional concerns for secure communica-
tions, physical protection against intrusion, and the vetting of key
personnel. These issues first came into clear focus in 1967, with
an authoritative statement of them by Bernard Peters of the NSA
at the Spring Joint Computer Conference. Based in Fort Meade,
Md., NSA had, and has, responsibility not just for decoding the
communications of actual or potential foes (its more famous role)
but also for protecting the security of classified U.S. government
communications. Peters’s speech was unusual in that his affilia-
tion with NSA was openly stated at a time when that agency’s
existence was not widely advertised: Computer-industry insiders
used to joke that the initials stood for “No Such Agency.”

Ware (Fig. 1), one of the senior figures of U.S. computer sci-
ence, opened the special session. Ware had taken part in the cele-
brated digital computer project, inspired by John von Neumann, at
the Institute for Advanced Study6 and had gone on to become a
member of the Rand Corporation’s computer science department
and, later, its head. Ware, Peters, and some of Ware’s Rand col-
leagues had been discussing computer security for some time, and
Rand had done some penetration studies (experiments in circum-
venting computer security controls) of early time-sharing systems
on behalf of the government.7 In his talk, Ware tied the new secu-
rity problem firmly to time-sharing:

with the advent of computer systems which share the re-
sources of the configuration among several users or several
problems, there is the risk that information from one user
(or computer program) will be coupled to another user (or
program)

and he identified possible threats using what was to become a
famous, often copied illustration (Fig. 2).8

Fig. 1. Willis H. Ware.
Courtesy Willis H. Ware, Rand Corporation.

Ware then turned the floor over to the NSA’s Peters. Peters
spelled out the question that was to dominate research and devel-
opment in computer security for much of the following 20 years:
how to embody security in the system software of a “large multi-
programmed system with remote terminals.”9 NSA’s judgment
was that no adequate solution to this problem was available, either
in the university time-sharing systems or in the commercial prod-
ucts that were beginning to appear (in October 1967, for example,
IBM released its Time Sharing System, for the System/360 Model

67).10 Peters emphasized that from a military security point of
view, it was necessary to do more than prevent one user’s pro-
gram from inadvertently overwriting a memory location being
used by another program. Programs—and, by extension, human
users—“must be considered to be hostile,” said Peters. So:

Fig. 2. A 1967 view of the security vulnerabilities of a resource-
sharing computer system. (A monitor is what would now be called an
operating system, and a private in would now be called a trap door.
Radiation refers to the possibility of breaching security by analysis of
electromagnetic emissions from a system.)

From Willis H. Ware, “Security and Privacy in Computer Systems,”

AFIPS Conf. Proc., vol. 30, Spring Joint Computer Conf. Washington, D.C.:

Thompson Books, 1967, p. 280.

Memory protect must be sufficient so that any reference,
read or write, outside of the area assigned to a given user
program must be detected and stopped. There are several
forms of memory protect on the market which guard against
out-of-bounds write, thus protecting program integrity, but
they do not guard against illegal read. Read protect is as im-
portant as write protect, from a security standpoint, if classi-
fied material is involved.11

Peters did little more than sketch how it might be possible to
design system software to prevent both illegal reads and illegal
writes. Nevertheless, his talk did outline three issues that were to
become of great importance as the field of computer security de-
veloped. The first was the key role in security played by the oper-
ating system or monitor:

the monitor acts as the overall guard to the system. It pro-
vides protection against the operators and the users at the
remote terminals.12

Second, Peters raised the issue of certification, emphasizing that a
monitor must be “approved by the appropriate authority.” In the
armed services, this would be a security officer; in business, it
would be corporate management. “Who can tell who is in charge
in a university?” he added dryly. The need for authoritative ap-
proval implied that it was necessary “to adequately demonstrate
the security capability to the governing authority.” To facilitate
this, suggested Peters (raising a third issue that was a harbinger of
later developments), the monitor “must be carefully designed to
limit the amount of critical coding [program writing].” Critical
security functions (in particular, the software handling the
“interrupts” that transferred control from user programs to the
monitor) should be embedded in relatively small amounts of code:
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When an interrupt occurs ... [t]he monitor must, as soon as
reasonable, adjust the memory bounds to provide limits on
even the monitor’s own coding. This requires that the cod-
ing which receives interrupts be certified as error free for all
possible inputs and timing. ... By keeping the amount of
coding that can reference any part of core without restric-
tion to a few well-tested units, confidence in the monitor
can be established.

On the economics of computer security, Peters was optimistic,
saying that “the cost of a properly designed monitor is probably
not more than 10 percent greater than that of a monitor which is
minimally acceptable for multiprogramming.”13

During 1967, increasing numbers of the new time-sharing sys-
tems were procured for U.S. government installations. Concerns
about their security properties began to grow, for example, after a
large defense contractor proposed selling, to commercial users,
time on an IBM mainframe computer employed in a classified
aircraft project, and the Department of Defense realized it had no
policy to cover such a situation.14 In response to these concerns,
the Defense Science Board set up a task force in October 1967 to
address the security problems of “multi-access, resource-sharing
computer systems.” Rand’s Ware chaired the task force, with rep-
resentation from the NSA, Central Intelligence Agency, Depart-
ment of Defense, defense contractors, and academia. It produced
its classified report (originally drafted by Ware, but extensively
rewritten by Thomas Chittenden of NSA) in February 1970 (see
Fig. 3). The report’s proposals covered a wide range of organiza-
tional and technical matters, with, as in Peters’s paper, a particular
focus on how to design a secure operating system, or
“Supervisor.”15

The task force proposed that the system maintain a “catalog”
of “flags” to indicate the security status of users, of terminals, and
of the files within which information was stored in computer
memory. The system of flags would be modeled on the existing
system for classifying written documents. Users, terminals, files,
particular jobs (computing tasks), input, and output would be
classed into a vertical hierarchy of top secret, secret, confidential,
and unclassified, according to their clearances and security sta-
tuses. There was also provision for horizontal compartmentaliza-
tion, such as the special category of clearance (Q-clearance) re-
quired for access to information about nuclear weapons.

The Ware task force’s proposed access-control rules were
common-sense extensions of those that applied to documents.
Fundamental was the rule that can be summarized as “no read
up”: For example, a user with a secret clearance, using an appro-
priate terminal, would (unless barred by horizontal compartmen-
talization) be permitted to run jobs requiring read access to files
bearing the flags secret, confidential, and unclassified, but not a
job that required access to files bearing the top-secret flag.

A no-read-up rule (see Fig. 4) seemed extremely simple. But
by 1970, it was already clear to the task force that implementing it
securely was a difficult task. Complications arose from the fact
that computing was a dynamic process: A figure for the range or
effectiveness of a weapon might be more sensitive than the data
from which it was calculated. More generally, “as a job unfolds,
[its] security flag may have to be modified automatically by the
system to reflect the security flags of files of information or files
of other programs that are used.” The task force also noted that
“operating systems are very large, complex structures, and thus it

is impossible to exhaustively test for every conceivable set of
conditions that might arise,” so it was necessary to separate the
design of the supervisor into distinct modules, each of which
“must be fully described with flowcharts to assist in its security
analysis.”16

Fig. 3. The Ware Report.

Fig. 4. An example of no read up. A user with secret clearance can
read secret, confidential, and unclassified files, but not top-secret files.
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Despite the attention that Ware and his colleagues devoted to
their task, their proposals appear not to have produced any imme-
diate response. Two years later, in February 1972, a further study
was commissioned by Major Roger Schell of the Electronic Sys-
tems Division of the U.S. Air Force. In Schell’s view, “the Ware
panel put together an assessment that says, ‘You’ve got all these
problems.’ They offer almost nothing by way of solutions. And
what the Air Force was interested in was ‘How do we provide
solutions?’”17

Heading the study Schell commissioned was Anderson, a com-
puter consultant who headed his own company based in Fort
Washington, Pa. The tone of the Anderson panel’s report, com-
pleted in October 1972, was more urgent and more alarmist than
that of its predecessor. Its argument was that no existing system
could be operated securely in a multilevel mode (that is, contain-
ing information for which some users were not cleared), and the
Air Force was losing $100 million a year through the resulting
inefficiencies. Whenever “tiger teams” had attempted to circum-
vent the security controls of existing systems, they had succeeded.
(As Ware now puts it, the operating systems of the 1960s were
“Swiss cheese in terms of security loopholes.”18) It was difficult,
expensive, and probably futile to try to patch the vulnerabilities
that made this possible. Nor, in the view of the Anderson panel,
was computer science or the computer industry producing solu-
tions. “There is virtually nothing now being done that is applica-
ble to the problem of secure computing in the USAF,” and if the
Air Force itself did nothing:

The situation will become even more acute in the future as
potential enemies recognize the attractiveness of Air Force
data systems as intelligence targets, and perceive how little
effort is needed to subvert them.19

The Anderson panel proposed an $8 million research and de-
velopment program to address these problems. It incorporated
into its report two notions that Schell had formulated: the
“reference monitor” and “security kernel.” The former was the
requirement “that all references by any program to any program,
data or device are validated against a list of authorized types of
reference based on user and/or program functions.” The Anderson
panel defined the latter as the “software portion of the reference
monitor and access control mechanisms.”20

The notion of a security kernel involved a shift in design phi-
losophy. Instead of adding security controls to an existing operat-
ing system, security functions were to be isolated into a kind of
primitive operating system, directly interacting with the system
hardware. The analogy that naturally comes to mind is of concen-
tric shells (see Fig. 5). A kernel “represents a distinct internal
security perimeter. In particular, that portion of the system respon-
sible for maintaining internal security is reduced from essentially
the entire computer to the kernel.”21 If security functions are
properly implemented in the kernel (which was sometimes taken
to include security-relevant hardware as well as software),22 then
the design of the rest of the operating system is not critical from a
security point of view. All security-relevant requests by nonkernel
programs (for example, requests for access to data files) had to
invoke the kernel’s subroutines, and the kernel would accept only
those requests that did not compromise security. Its functions
were many fewer than those of a full operating system, so the
hope was that it could be kept “simple” and “formal.”23 Although

later kernels were to become significantly more complex, a dem-
onstration security kernel commissioned by the Air Force Elec-
tronic Systems Division consisted of only about 20 subroutines,
totaling around 1,000 instructions. The kernel was developed for
the Digital Equipment Corporation (DEC) PDP-11/45 by the Mi-
tre Corporation, an offshoot of MIT’s Lincoln Laboratory that was
originally set up to take over the latter’s responsibilities for the
Semiautomatic Ground Environment system.24

Fig. 5. Security kernel (schematic).
From Roger R. Schell, “Computer Security: The Achilles’ Heel of the

Electronic Air Force?” Air Univ. Rev., vol. 30, p. 29, Jan.-Feb. 1979.

Embodying security in a small kernel had social as well as
technical advantages. A persistent worry in the development of
secure systems was the risk that they might be compromised from
the very start. A hostile agent who was part of the development
team might, for example, deliberately build in a trap door (a sur-
reptitious entry point) to circumvent security controls. It was far
easier to guard against this in the development of a kernel than in
that of a whole system:

protecting the kernel ... involves far fewer people and a
much more controlled environment ... thus, in contrast to
contemporary systems, the kernel makes it tractable to pro-
tect against subversion.25

The VAX security kernel, discussed below, exemplified what
“controlled environment” meant:

The CPU and console of the development machine were
kept inside a lab that only members of the VAX Security
Kernel development group could enter. Within that lab, the
development machine was protected by a cage, which con-
sists of another room with a locked door. Physical access to
both the lab and to the cage within the lab was controlled by
a key-card security system. ... Our development machine
was not connected to Digital’s internal computer network,
so as to minimize the external threat to our development en-
vironment and our project.26

Modeling Security
In order to design a security kernel successfully, however, one
also had to have a clear notion of what security was. To the Elec-
tronics Systems Division’s Schell, ad hoc “penetrate and patch”
approaches were grossly inadequate. The fact that a system sur-
vived tiger team efforts at penetration might mean only that the
team had not been skilled or imaginative enough. Indeed, in prac-
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tice, the situation was worse than that: Serious tiger team efforts
seemed always to succeed, even after expensive “patching” of the
vulnerabilities discovered by earlier penetration experiments. This
implied:

the impossibility of arriving at anything that you would
classify as a secure system by informal means. I saw ... in-
stances of systems where people had put millions of dollars
into making them secure, and to no real avail.27

For Schell, what was needed was a mathematical model of secu-
rity that would:

raise ... the kernel design and evaluation process above a
mere game of wits with an attacker. ... A dramatic effect is
that the kernel facilitates objective evaluation of internal se-
curity. The evaluator need not examine the nearly endless
number of possible penetration attempts; he need only ver-
ify that the mathematical model is correctly implemented by
the kernel.28

The Ware panel had provided a “formal specification of the de-
cision rules ... determining whether an individual with a particular
clearance and need-to-know can have access to a quantum of
classified information in a given physical environment.”29 Its
model (largely restricted to formalizing the no-read-up rule) was
never applied practically. The first practical attempt to apply a
mathematical model of multilevel military security was the
Adept-50 operating system, developed in the late 1960s by Clark
Weissman and colleagues at the Rand offshoot, the System De-
velopment Corporation, with support from ARPA. Adept-50 was
designed to improve the security of a standard commercial com-
puter (the IBM 360 model 50). It embodied an algorithm that
dynamically reclassified the security status of files, analyzing the
security profile of a job and classifying the files the job created
according to the job’s security “high-water mark.” The term was
analogous to “the bath tub ring that marks the highest water level
attained.”30

Schell and the Air Force Electronic Systems Division were not
satisfied with either the high-water-mark model or the Ware
panel’s approach. Indeed, the Anderson panel explicitly criticized
the latter for possibly having “a negative effect due to its specifi-
cation of necessary, but not sufficient, criteria” of security.31 The
tighter definition they sought emerged from research funded by
the Electronic Systems Division between 1972 and 1976 at Case
Western Reserve University (where K.G. Walter and colleagues
developed a security model similar to, if less elaborate than, that
developed by David Elliott Bell and Leonard J. LaPadula)32 and
at the Mitre Corporation, where Bell and LaPadula developed the
paradigmatic mathematical definition of security that came to bear
their names.

Bell and LaPadula’s fundamental approach was to model a
system as “a relation on abstract sets.” A particular influence,
especially on LaPadula (see Fig. 6), was the General Systems
Theory then current, notably a mathematical version of it put for-
ward by M.D. Mesarovic, D. Macko, and Y. Takahara in 1970.33

Bell and LaPadula’s model of a system was dauntingly abstract in
its most general formulation, but as far as security properties are
concerned, the key issue is access by “subjects” (not only human
users but also their “surrogates,” i.e., processes and programs in
execution) to “objects” such as data files. Bell and LaPadula real-
ized that the rules of access had to go beyond the no-read-up rule

(or simple security property, as they called it) governing access by
human readers to documents. In particular, it was vital to have an
explicit mechanism to prevent “high classification material
[being] added to a low classification file without appropriate
changes being made to the security classifications list.”34

Fig. 6. Leonard J. LaPadula.
Courtesy Leonard J. LaPadula.

In document-based systems, human users were implicitly
trusted not to “write down” in this way. However, the broadening
of the notion of “subject” to include computer processes and pro-
grams raised a new issue: the risk that a hostile agent might in-
sinuate a Trojan horse into a trusted system. Introduced by Daniel
Edwards, an NSA representative on the Anderson panel,35 the
term Trojan horse referred to a program that, in addition to per-
forming its overt function, surreptitiously violated security con-
trols, for example, by writing classified data to an unclassified file
(see Fig. 7).

Fig. 7. Why the *-property is needed. (Based on a figure in D.E. Bell
and L.J. LaPadula, Secure Computer System: Unified Exposition and
Multics Interpretation. Bedford, Mass.: Air Force Electronic Systems
Division, Mar. 1976, ESD-TR-75-306, p. 17.)
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Continually checking each and every program to ensure it was
not a Trojan horse would be a daunting task, but Trojan horses
could be defeated, Bell and LaPadula realized, if systems were
designed in such a way as to ensure subjects could not write
down. A secure system must satisfy not just the simple security
property but also what Bell and LaPadula called the “*-property”
(pronounced star property):

We require that if [a subject] S has write or append access
to some objects and read or write access to some objects,
then the classifications of the objects to which S has write
or append access must exceed or equal the classifications of
the objects to which S has read or write access.36

Put more simply, the *-property requires that a subject can have si-
multaneous “observe” access to one object and “alter” access to an-
other only if the classification level of the second object was greater
than or equal to that of the first.37 If the simple security property was
no-read-up, the *-property was no-write-down (see Fig. 8).

Fig. 8. An example of no-write-down. A subject with read access to
confidential objects has write access to confidential, secret, and top-
secret objects, but does not have write access to unclassified objects.

As well as formulating and showing the need for *-property,
Bell and LaPadula also formulated a theorem (the Basic Security
Theorem) that, in their view, greatly simplified the mathematics of
security. Security, they concluded, had a mathematically
“inductive nature.” If changes to the state of a system satisfy the
simple security property and *-property, together with a matrix
representing discretionary security (where individuals can extend
access to a document to anyone permitted by the mandatory secu-
rity rules to view it), then the system would remain secure. More
formally, the Basic Security Theorem is:

S(R, D, W, zo) is a secure system iff [if and only if] zo is a
secure state and W satisfies the conditions of theorems A1,
A2, and A3 for each action.

S represents a system; R represents requests (e.g., for access); D
represents decisions in response to requests; W represents the
rules governing changes of state; zo represents an initial state of
the system; and A1, A2, and A3 are theorems concerning the
characteristics of W that are necessary and sufficient to maintain
the simple security property, *-property, and discretionary security
property. Bell and LaPadula wrote:

The importance of this result [the Basic Security Theorem]
should not be underestimated. Other problems of seemingly
comparable difficulty are not of an inductive nature. ... The
result therefore that security (as defined in the model) is in-
ductive establishes the relative simplicity of maintaining se-
curity: the minimum check that the proposed new state is
secure is both necessary and sufficient for full maintenance
of security.38

That was an optimistic conclusion—albeit immediately quali-
fied by some important provisos concerning, inter alia, “trusted
subjects” and “covert channels” (see below)39—and an influential
one. In 1979, for example, Schell (by then promoted to lieutenant
colonel) spelled out for an Air Force audience what he believed to
be the significance of the “foundation of mathematical complete-
ness” provided by the Bell–LaPadula analysis and similar model-
ing efforts:

Security theorems have been proved showing that (since the
kernel precisely follows the model) the kernel will not per-
mit a compromise, regardless of what program uses it or
how it is used. That is, the kernel design is penetration-
proof—in particular to all those clever attacks that the ker-
nel designers never contemplated.40

Security and Proof
How, though, was an evaluator to verify that a kernel or system
was a correct implementation of a mathematical model of secu-
rity? Here, the history of computer security became intertwined
with the more general history of software engineering. During the
1960s, there was a growing sense of dissatisfaction with existing
ways of developing software. By 1968, a software crisis had fa-
mously been diagnosed.41 Among a variety of responses to this
crisis42 was a growing interest in showing that programs were
correct implementations of their specifications, not just by testing
them empirically (as the NSA’s Peters had implied in 1967)43 but
also by applying mathematical proof. By 1972, “program proof”
or “formal verification” was a focus of much research effort in
academic computer science, and it was particularly attractive to
those concerned with military security, because it, together with a
formal model of what security was, appeared to promise certainty
that systems were without security flaws.

Without proof, even the most determined efforts to make sys-
tems secure could produce ambiguous results. For example, “the
ease of defeating” the Adept-50’s security controls was “a matter
of some debate.”44 The Anderson panel wrote in 1972:

Because the reference validation mechanism is the security
mechanism in the system, it must be possible to ascertain
that it works correctly in all cases and is always invoked. If
this cannot be achieved, then there is no way to know that
the reference validation takes place correctly in all cases,
and therefore there is no basis for certifying a system as se-
cure. ... Structured programming and program-proving
techniques can be used to assure that the [security] model
design and implementation correspond.45

In the United States, the group most prominent in the early
application of “formal verification” to security was SRI Inter-
national in Menlo Park, Calif. A series of grants in the 1970s
from government agencies with responsibility for secure com-
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puting supported SRI’s work on the development and applica-
tion of formal techniques. Among members of the SRI group
were the following:

• Peter Neumann, who had previously worked at Bell Labs
with MIT on the development of Multics, the first important
operating system developed with a strong emphasis on secu-
rity, and who was later to become well-known in computer
science generally for his work as convenor of the famous
RISKS Bulletin Board;

• Robert S. Boyer, whose joint work with J. Strother Moore
(then at the Xerox Palo Alto Research Center) created the
Boyer–Moore theorem prover, the key tool used in the
automation of proofs in the early SRI work;

• Richard J. Feiertag, who developed an influential tool for
analyzing information flow between the variables in a sys-
tem specification (and for detecting the “covert channels”
discussed below);46 and

• Karl N. Levitt and Lawrence Robinson, who played a cru-
cial role in the development of SRI’s overall methodology,
called Hierarchical Development Methodology.47

Perhaps SRI’s most significant individual project was Provably
Secure Operating System (PSOS), which began in 1973 and in
which the techniques the SRI group developed were applied to the
design of an operating system “intended to meet advanced secu-
rity requirements” and to the verification of its security proper-
ties.48 PSOS was an entire operating system, not a security kernel.
Although Feiertag and Neumann also worked on a Kernelized
Secure Operating System, the SRI team felt that the advantages of
kernels had to be weighed against the disadvantages, such as the
inflexibility arising from the fact that a kernel was specific to a
particular security model.49 The SRI team began their work on
PSOS with a loosely defined system and gradually moved to a
complete specification of the design, which was decomposed into
a hierarchy of different modules at different levels. The full for-
mal specification of PSOS was a 400-page volume.50 Consider-
able effort was devoted to showing that the most detailed specifi-
cation of PSOS was a correct implementation of the system’s
security model (which was basically the Bell–LaPadula model,
together with a loosely analogous model covering the integrity of
data, rather than data confidentiality).

However, although much work was done on proving that the
specifications for PSOS implemented the security model, and
some work was done to prove that the implementation of this
specification was correct, the 1980 report on the PSOS project, by
then seven years old, was careful not to exaggerate what had been
done:

“PSOS” might be considered an acronym for a “potentially
secure operating system,” in that PSOS has been carefully
designed in such a way that it might some day have both its
design and its implementation subjected to rigorous proof;
considerable effort has gone in to trying to enhance that
possibility.51

Slow progress with PSOS verification was not an experience
unique to SRI and was encountered even when a kernel, rather
than an operating system, was the target. At the University of
California at Los Angeles (UCLA), considerable effort was ex-
pended in the late 1970s to verify the correctness of a kernel de-
signed to allow the Unix operating system to be run securely on a

DEC PDP-11 computer. The approach taken was different from
that of SRI, with less attention to work on specifications and more
on verification “of the lowest level assembly code.” Again,
though, considerable difficulties were encountered. The work was
never completed, although “verification of 35 to 40 percent of the
kernel led developers to claim that, given sufficient resources,
verification of the entire kernel was feasible.”52

It was a demanding task to verify
formally that a real operating system
(or even just a real kernel) conformed
to a mathematical model of security.

With the SRI and UCLA research projects meeting with prob-
lems, it is not surprising that the most important practical devel-
opment effort of the 1970s involving formal verification ran into
severe difficulties. Automatic Digital Network (Autodin) II was
an ambitious plan to provide a multilevel-secure packet-switching
system for the Department of Defense: The earlier Autodin I was
a much simpler record message system. Two industry teams com-
peted: one, involving the Arpanet prime contractor firm of Bolt,
Beranek and Newman, essentially proposed simply adding en-
cryption to a network akin to the existing Arpanet; the other team,
led by Western Union, and involving Ford Aerospace and the
System Development Corporation, proposed a system based
around the emerging computer security notions of a secure kernel
and formal verification. The latter team was awarded the contract
in late 1976. The request for proposals was, however, drawn up
“without adequately defining ‘kernel’ or the requirements for
formal specification and verification. There were many problems
in its development, including a court fight over the definition of
‘formal specification.’”53 These problems contributed to difficul-
ties in achieving security certification, and, although this was
eventually gained, the system was, by then, two-and-a-half years
behind schedule, and there were worries about its cost and surviv-
ability in the face of attack. In 1982, it was canceled in favor of a
revived version of the original, more standard, cryptographic al-
ternative.54

Trusted Subjects and Convert Channels
The difficulties of PSOS, UCLA “data secure Unix,” and Autodin
II indicated that it was a demanding task to verify formally that a
real operating system (or even just a real kernel) conformed to a
mathematical model of security, such as the Bell–LaPadula
model. One reason for the problems was, simply, that formal veri-
fication was a new field, where many of those involved were still
feeling their way and where the automated tools to assist them
were still immature. Another reason was that practically applying
security models, such as the Bell–LaPadula model, to real systems
was more difficult than it first appeared. As Bell put it, “simple
rules ... need to be refined to accommodate reality better.” The
Mitre effort, referred to above—to apply the Bell–LaPadula
model to a security kernel for the DEC PDP-11/45—led to the
realization that the *-property was “overly simple.”55 There was,
in practice, a need for “trusted subjects,” which could be relied on
never to “mix information of different security levels,” and which
could therefore be allowed to operate without the *-property be-
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ing imposed on them. Permitting trusted subjects, then, would
“free a design as much as possible from excessive preventive
measures.”56

System designers found trusted subjects to be a practical neces-
sity in multilevel time-sharing systems. Consider, for example, the
subject (print spooler or print driver) that controls printing in a mul-
tilevel secure system. Unless completely separate print control paths
are provided for all security classes, the print spooler must be per-
mitted to violate the *-property. If it is to read, say, top-secret infor-
mation and write it to the queue for an appropriate printer, the
spooler must be a subject with top-secret status. The *-property
would then prevent it writing secret, confidential, or unclassified
data to queues with only these classification levels. So, it must be
trusted to perform writes in violation of the *-property without
mixing information of different security levels.57

The need for trusted subjects increased the formal verification
task. It was not enough to verify that the simple security property
and *-property had been implemented correctly in a security ker-
nel. It was also necessary to prove that the nonkernel trusted sub-
jects in a system—such as file system backup and retrieval pro-
grams, network interfaces, and input–output spoolers58—were
indeed trustworthy: that they would not violate security, even if
“attacked” by a hostile agent. The “trusted computing base”59 that
had to be subject to formal verification had, therefore, to include
the trusted subjects as well as the mechanisms enforcing the sim-
ple security property and *-property.

The second practical complication in applying security models
was “covert channels,” a term introduced into the open literature
in 1973 by Butler Lampson of the Xerox Palo Alto Research
Center. Lampson was not directly considering military security:
His 1973 paper on the “confinement problem” talked about a
customer using a computer service who wished to ensure that data
could not be read or modified without permission.60 However, the
phenomena Lampson was referring to were already known to
defense-sector computer security practitioners,61 and those theo-
rizing about the latter field, such as Bell and LaPadula,62 quickly
realized that here was an issue they had to tackle.

“Covert channel” is a slippery term, with no entirely stable
meaning. In a sense, the notion is parasitic on the enterprise of
modeling security: Covert channels are all those means of trans-
ferring information that are not encompassed by a formal security
model, especially the Bell–LaPadula model. In any real, physical
computer system, there are, potentially, a variety of mechanisms
by which a subject with a high security clearance (a subject that
could be a Trojan horse program) could signal information to an
uncleared, or less highly cleared, subject without violating the
simple security property and *-property.

For example, suppose a subject with read access to top-secret
files and an uncleared subject both have access to the same un-
classified file. Because of the *-property, the top-secret subject
cannot modify the file’s contents, but programs can read the file;
the uncleared subject can both read it and write to it. Any practi-
cal multiuser system will contain an interlock mechanism to pre-
vent a file being modified by one user while being read by an-
other, so the top-secret subject can “signal” to the uncleared sub-
ject simply by reading the file, because the uncleared subject’s
requests to write to the file will be rejected while the top-secret
subject is reading it. The interlock is not intended as a repository
of information (so it would not normally be treated as a Bell–

LaPadula “object”), but it can thus be used covertly for that pur-
pose, with the secret user signaling information, one binary digit
at a time, by either reading the file or refraining from doing so.

The above example would be referred to by computer security
specialists as a “storage channel,” because the interlock is being
used covertly to store information.63 The other type of covert
channel is a “timing channel,” in which the high-security subject
signals to the low-security subject by affecting the amount of time
it takes the latter to detect a change in some system attribute or to
receive access to some system resource. Nearly all computer sys-
tems, for example, contain a clock, which all user programs can
read. Suppose (for reasons of simplicity) that only two user pro-
grams are present. The higher security program could be designed
in such a way that it signaled to the lower security program by
occupying the system central processor unit up until a particular
clock time. The lower security program could then infer that clock
time by recording when it was able to begin execution, and so
clock time could be used as a signaling medium.64

In any real, physical computer system,
there are, potentially, a variety of

mechanisms by which a subject with a
high security clearance ... could signal

information to an uncleared, or less
highly cleared, subject without violating

the simple security property
and *-property.

Of course, any actual multiuser system will normally support
more than two users, so a timing channel is likely to be “noisy,”
and sophisticated information-theory techniques may be needed to
exploit it in practice. Furthermore, both storage channels and
timing channels will typically have small bandwidths; that is, they
transmit information very slowly. However, transmitting informa-
tion cannot, in practice, be eliminated entirely. A 1976 theoretical
analysis suggested that the confinement problem, as Lampson
defined it, was unsolvable in the most general case: It was
equivalent to the Turing machine halting problem. So:

there is no hope of finding an algorithm which can certify
the safety [i.e., security] of an arbitrary configuration of an
arbitrary protection system, or of all configurations for a
given system.65

That did not rule out finding more-restricted cases where the con-
finement problem was tractable, but the practical secure systems
development efforts of the 1970s found that it was infeasible to
remove completely all possible covert channels. In a multilevel
time-sharing system, resources had to be shared, and efforts to
block the resultant covert channels (which typically involved
“virtualizing” these resources) often had serious penalties in deg-
radation of system performance for legitimate users. The best that
could be done in practice, concluded the authors of one influential
project (to develop a security kernel for IBM’s widely used Sys-
tem/370 computers), was to reduce covert channels to “acceptable
bandwidths.”66
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The Computer Security Evaluation Center
The difficulties of formal verification, the need for trusted sub-
jects, and the practical infeasibility of entirely eliminating covert
channels all indicated, by the end of the 1970s, the technical com-
plexity of computer security. Some of its social complexities were
also beginning to emerge by then. The most pressing issue in the
United States was who should have organizational responsibility
for ensuring the security of the design of military computer sys-
tems. The obvious answer was the NSA. However, though the
NSA was powerful and well-funded, there were tensions between
its entrenched culture and the perceived requirements of the new
field.

The key relevant facet of the NSA’s culture was its approach to
what NSA insiders called COMSEC, communications security.
The goal of COMSEC was to preserve the communications secu-
rity of the United States, which was the obverse of NSA’s more
celebrated role of breaking other nations’ codes. Practitioners of
COMSEC were steeped in a culture of secrecy and of government
dominance of industry. In effect, NSA’s experts decided what
technologies were needed to protect U.S. government communi-
cations, provided industry with detailed instructions as to what it
was to produce, and insisted that firms comply with a stringent
security classification. The emphasis on secrecy was understand-
able. Cryptography was central to COMSEC, and traditional
codes were immediately vulnerable if their keys were known (this
is no longer straightforwardly the case with “public key encryp-
tion,” but that was a later development). Even knowledge of gen-
eral design features of encryption devices could be of great use to
an enemy.

The COMSEC tradition in the United States stretched back to
World War I.67 The success of Allied COMSEC in World War II,
and the successful cracking of the Axis codes, gave the activity
considerable status within the inner circles of government and the
intelligence community. COMPUSEC, as computer security is
known within NSA, was much more recent, much less prestig-
ious, and much less well-entrenched in NSA’s hierarchy.

COMPUSEC’s attitude to secrecy was different from that of
COMSEC. Academics—with their need to publish—were far
more important in the emergence of COMPUSEC than they had
been in that of COMSEC. The technical bases of the two fields
were different. COMSEC typically sought only probabilistic secu-
rity: codes with an extremely low probability of being broken. At
least until the practical infeasibility of entirely eliminating covert
channels was accepted, COMPUSEC’s goal was deterministic
security (systems that could not be penetrated) and deductive,
proof-based certainty of that security. If these goals were achiev-
able, it was natural to ask whether the secrecy that had to sur-
round COMSEC was necessary for COMPUSEC. In the words of
NSA officer George F. Jelen: “If a system could be proven to be
impenetrable, then there would appear to be nothing gained from
secrecy.” Jelen also suggests that the different circumstances of
the two fields’ births left their mark:

Most of the significant early development of COMSEC de-
vices took place during an era when government was gener-
ally trusted. That of COMPUSEC did not. When COMSEC
device technology was maturing, the environment was that
of a country unified by war against a common, foreign en-
emy. The current [1985] political environment surrounding
the government’s efforts in computer security is set against

the backdrop of Watergate. ... The “high politics” factor,
then, is that in the minds of many people today, the enemy
most to be feared is government itself.68

More immediately troublesome for computer security practi-
tioners, however, was what Jelen called “low politics”:
“bureaucratic battles over turf.”69 Despite early interventions such
as the Peters speech quoted above, NSA did not move decisively
and openly into the new field of computer security, preferring to
operate behind the scenes and anonymously. Computer security
specialists receiving research grants from NSA, for example,
could not openly refer to the organization as their source of fund-
ing, and NSA staff attending technical meetings were not nor-
mally permitted to disclose their affiliations.

ARPA was suspected by many in the
military of insufficient focus on real

defense needs.

NSA’s secrecy and hesitancy left computer security in some-
thing of an organizational vacuum. An obvious alternative to NSA
was ARPA, with its considerable experience in supporting state-
of-the-art computer research and development in both industry
and academia.70 However, ARPA was suspected by many in the
military of insufficient focus on real defense needs. The Anderson
panel noted pointedly that ARPA-funded projects “appear to be
focusing on one or more interesting (to the principal investigator)
research problems, but do not evidence a comprehensive or cohe-
sive approach to solve the ... Computer Security Problem.”71

As we have seen, the vacuum was filled in the early 1970s by
Major Schell and his colleagues at the Air Force’s Electronic
Systems Division. They gave currency to the notions of refer-
ence monitor and security kernel; created the Anderson panel;
supported the modeling work of Bell, LaPadula, and others;
and, by the mid-1970s, had made significant progress toward
practical implementation of many of these ideas. They were,
however, less successful in keeping the support of their Air
Force superiors (who were perhaps unconvinced that their
service should be seeking to solve what was really a generic
Department of Defense problem). Without wholehearted top-
level Air Force backing, congressional support, in turn, became
problematic. The upshot was a sudden cutoff of funding in
1976, which created a “hiatus from which the [Department of
Defense] has had difficulty recovering.”72

Stephen T. Walker was central to the efforts to recover mo-
mentum. ARPA hired Walker in 1974 to head its computer secu-
rity work, and, in early 1978, he moved on to the Office of the
Secretary of Defense, where he became the single most influential
public figure in U.S. computer security: His formal title was Di-
rector, Information Systems, Office of the Assistant Secretary of
Defense for Communications, Command, Control, and Intelli-
gence. Although Walker went from NSA to ARPA,73 he had been
profoundly influenced by ARPA’s more open style. In particular,
he concluded that computer security could not successfully follow
the traditional COMSEC approach of government direction and
tight security.

Walker favored using government research and development
funding (such as the Department of Defense’s Computer Security
Initiative, that Walker headed and launched in 1978) to encourage
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academic and industrial activity in computer security, but he did
not believe in directing that activity closely or in shrouding it in a
high security classification. Walker was beginning to see com-
puter security as a government-wide problem, not just a problem
specific to the Department of Defense. He also wanted “to get
industry involved in figuring out how to build trusted systems”74

and then to have a government agency evaluate how successful
firms had been in this effort.

The natural candidate for the evaluative role was, of course,
NSA, but its COMSEC culture did not fit the vision Walker was
developing. He briefly and unsuccessfully floated a plan for a
Program Management Office for computer security, located
within NSA but organizationally autonomous.75 However, he
soon broadened his horizons to propose a federal (not just De-
partment of Defense) Computer Security Center. Such a center:

needed to be able to sit down and talk with industry and
convince industry to do things, as opposed to the typical
NSA communications security model, which was, “I’ll
write you a contract, I will clear all your people, I will tell
you exactly what to do, and you’ll do it only my way.” I had
had extensive discussions in the ’79–’80 timeframe with
folks at NSA, trying to argue that this needed to be done as
an open activity, where you tried to convince people, as op-
posed to telling them. ... We wanted to get industry to do
this as part of their normal product, which they’d make
available to anyone, not as a special purpose product just for
the Defense Department.76

Walker saw funding for such a center coming from the Depart-
ment of Commerce, as well as Department of Defense, and envi-
sioned a potential home for it at the National Bureau of Standards,
a civilian organization (part of the Department of Commerce) that
had, inter alia, responsibility for advising federal agencies on
computer procurement.77

Early in 1980, Walker began circulating this proposal around
Washington, D.C. The threat that computer security might move
outside its ambit galvanized NSA. Walker realized that NSA was
unhappy, and he sought a meeting with its director, Vice Admiral
Bobby R. Inman, to explain his ideas. He finally got to meet In-
man in August 1980. Thirteen years later, that meeting, in Admi-
ral Inman’s impressively huge office, remained vivid in Walker’s
mind. Inman listened quietly as Walker spoke, until he came to his
proposal to involve the Department of Commerce and to site the
center in the National Bureau of Standards. Then Inman erupted,
rolling forward in his chair, pounding his fist on his desk: “I will
never let that happen. I will go to the President to keep that from
happening!”78

To Walker’s surprise (“I was sitting there thinking, How can I
get out that door?”),79 Inman’s tone then became conciliatory. He
asked Walker what had become of his earlier proposal for a com-
puter security center situated within NSA and indicated that he
would be willing to support that idea. He even agreed with Walker
when the latter insisted “that this should not be done in the same
way COMSEC was done.”80 Inman asked Walker to set the bu-
reaucratic procedures in motion by writing to him about a com-
puter security center.

Unknown to Walker, his dramatic meeting with Inman was
following a partially prearranged script. Hearing of Walker’s
campaign several months earlier, Inman had asked Walker’s boss,

Assistant Secretary of Defense Gerald P. Dineen, to meet with
him privately, and the two men had, between them, hammered out
the agreement that “emerged” from Walker’s meeting with In-
man.81 It was Walker, though, who was responsible for the cru-
cial—albeit, as we shall see, temporary—separation of the com-
puter security center from the NSA COMSEC organization.82 In
the final, lame-duck days of President Carter’s administration,
Walker worked furiously to flesh out, and gather further support
for, what came to be called, first, the Department of Defense
Computer Security Evaluation Center and, then (from 1985), the
National Computer Security Center. In the words of the 1982
official directive that, finally, officially established the center, it
was to be “a separate and unique entity within the NSA,” whose
prime tasks were to “establish and maintain technical standards
and criteria for the evaluation of trusted computer systems,” to
evaluate actual systems against these criteria, and to conduct and
sponsor computer security research and development.83

The Orange Book
From the late 1970s onward, attention began to focus on the crite-
ria that the proposed new center would use to evaluate trusted
computer systems. By then, there was little doubt that some form
of mathematical proof would be necessary for systems in the
highest assurance category. However, what form of proof was still
an open question. Thus, in 1979, when G.H. Nibaldi of the Mitre
Corporation sketched out a hierarchy of security classes for oper-
ating systems, the three highest levels were distinguished largely
by different requirements for proof. Level 4 required mathemati-
cal proof that a detailed specification of the system was a correct
implementation of an approved model of security. Level 5 ex-
tended this formal verification to the source code of the imple-
mented system. Level 6 extended the analysis (though not neces-
sarily the formal proof) to the object code generated by the com-
piler. Formal proof ought eventually to extend even to the hard-
ware itself, wrote Nibaldi:

Axiomatization of the underlying hardware base, and formal
verification of the security-relevant hardware mechanisms,
are also required. It is recognized, however, that these re-
quirements are beyond the anticipated state-of-the-art of
verification in the 1980s.84

During the early 1980s, doubts began to appear not just about
hardware verification but also about the verification requirements
of Nibaldi’s Levels 5 and 6. The essential problem was the practi-
cal feasibility of formal verification of programs of the size re-
quired for a security kernel. As Walker put it in 1980:

Our success in achieving the widespread availability of
trusted systems is more dependent upon progress in the
verification field than in any other single activity. It is for
this reason that I have made support of verification technol-
ogy the single primary technology development activity in
the Computer Security Initiative.85

Despite this support for program verification, progress re-
mained slow. The automated program verification systems that
had been developed in the 1970s and early 1980s, often with
computer security funding, were still very far from automatic.
They needed highly skilled human beings to operate them. For
example, the Gypsy verification system, developed by Donald
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Good at the University of Texas at Austin, was used in code veri-
fication for one early security project, the Encrypted Packet Inter-
face. Using that project as a benchmark:

yields programmer-verifier productivity levels of perhaps
2-6 verified lines of code per work day, by highly trained
verification specialists. The entire community of such indi-
viduals probably numbers less than 200 individuals.86

The Encrypted Packet Interface was unusual among the early
verification projects in that it was brought to a successful conclu-
sion: As we have seen, others were simply never finished.
Futhermore, though the Encrypted Packet Interface was a sub-
stantial program (over 4,000 lines long), it was still considerably
smaller than the security kernels being considered in the early
1980s.

So, when the definitive version of the Orange Book, the De-
partment of Defense’s Trusted Computer System Evaluation Cri-
teria, was issued in 1985 (a final draft was circulated in 1983),
code verification was not required, even for the highest evaluation
category. The Orange Book provided for four ascending divisions,
some with subcategories. Division D consisted of systems that
provided minimal or no protection. Division C was systems that
contained audit capabilities and could support discretionary secu-
rity, but were not suited for use in a multilevel environment with
users with different levels of security clearance. Division B sys-
tems were judged suitable for multilevel use. The trusted com-
puter base of a Division B system preserves “the integrity of sen-
sitivity [i.e., classification] labels and uses them to enforce a set of
mandatory access control rules.” B2 systems had to be “based on
a clearly defined and documented formal security policy model,”
and in B3 systems there also had to be “a convincing argument”
that the specification of the trusted computer base was consistent
with the security model. A1 certification (the highest) required
use of an automated verification system endorsed by the National
Computer Security Center to show, using both “formal and infor-
mal techniques,” that the system specification was consistent with
the security model.87

Even for A1 Orange Book systems, therefore, proof meant
“design proof” (demonstration that the specification of a system
was “correct” in terms of a formal security model) rather than
“code proof” (demonstration that an actual program was a correct
implementation of the specification). In the early 1980s, it had
been expected that a higher, A2, subdivision, incorporating code
proof, would eventually be added, but the addition was never
made. To some, the restriction of the meaning of “proof” to
“design proof” was unjustifiable. Automated theorem proof spe-
cialists Boyer and Moore (who had by then left SRI) wrote in
1985:

Of course, a program whose design has been verified is un-
worthy of trust until the running program has been shown to
implement the design. Especially to be distrusted are those
software products constructed by two unrelated teams: those
who write the code, and those who simultaneously and in-
dependently write the formal specifications which are then
checked for security. Alas, several such projects are cur-
rently funded by the U.S. Government. This travesty of
mathematical proof has been defended with the claim that it
at least gives the government better documentation. The

Department of Defense has published official standards
authorizing this nonsense.88

To others, such as SRI’s Neumann, “design proof” was a perfectly
sensible strategy:

The attitude of having to prove everything from the hard-
ware, or from the ions, all the way up into the application, is
untenable ... by the time you have finished it, the system is
no longer what it was when you proved it, because the sys-
tem tends to be a moving target. ... By the time you get a
system evaluated against those criteria [such as the Orange
Book], the vendor has already moved on to three or four
versions later. And so the idea that one can thoroughly
prove a system from stem to start, and from bottom to top,
is unreal. So the question is, where does the biggest pay-off
come? ... We took the attitude that the code proofs were ab-
solutely irrelevant if the specifications were wrong, and that
the immediate pay-off would come from showing that the
design was no good. Rather than trying to prove things are
correct, you are really trying to find the flaws. So the inter-
esting challenge becomes to model the properties of the
system that you are trying to achieve, at whatever layer of
abstraction you are dealing with, and to try to prove ... that
the specifications are consistent with those properties.89

The Encrypted Packet Interface was
unusual among the early verification
projects in that it was brought to a

successful conclusion.

Even with “proof” restricted to design proof, meeting the de-
mands of the Orange Book’s A1 category was expensive and dif-
ficult. The specialized skills required for formal proof, and the
sheer time it took, meant that the tendency to dissociation between
design verification and system construction, identified by Boyer
and Moore, was certainly present in early efforts at A1.90 Fur-
thermore, the practical limitations of the available verification
systems on the Computer Security Center’s Endorsed Tools List
were troublesome. The first system to achieve A1 rating was
Honeywell’s Secure Communications Processor (SCOMP):

The amount of effort required to verify the SCOMP system
was very large. The tools were often very slow, difficult to
use, and unable to completely process a complex specifica-
tion. There were many areas where tedious hand analysis
had to be used.91

Three sets of verification tools were endorsed: Good’s Gypsy,
SRI’s Hierarchical Development Methodology, and the System
Development Corporation’s Formal Development Methodology.92

While support from agencies with computer security interests was
certainly important in the development of these tools, not all of
those involved agree that its effects were entirely beneficial. After
a verification system became an endorsed tool, it had to be con-
verted to be run on the Multics system used by the Computer
Security Evaluation Center, a very considerable effort. Further-
more, endorsed tools became subject to export controls. Walker
comments:
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They made everybody port everything to Multics at the
same time that the world was going to stand-alone ma-
chines. ... They burned up everybody’s energy on the con-
versions to Multics, and then they restricted who could see
them or use them. So without actually advancing the tech-
nology at all, they basically submerged it. ... I remember
complaining rather bitterly to management at NSA that,
“don’t let your people get a hold of some of these technolo-
gies, because they’ll kill them.” I have this image of giant
oak trees ... and then these vines start growing up round
them. ... Some of these technologies, that are very impor-
tant, are being killed by the very guys that ought to be try-
ing to promote them.93

Nevertheless, progress was made. The System Development
Corporation, for example, found considerable difficulty in its
early work using formal verification on security-critical systems
such as Autodin II:

The field of formal notations and mathematical formalism
was new and most programmers unaware of its properties.
... The formal specs were treated like code, not math, and
impossible for them to comprehend, let alone prove. [The]
“throwing it (formal specs) over the wall” method failed.

Next we tried doing it ourselves with skilled mathemati-
cians ... that was not a success ... because of ...
“dissociation” of teams. The [specification] and [code] were
in a race to finish, and code won. As is typical in large pro-
gramming jobs, the code deviated from the DTLS [detailed
top-level specification] and the DTLS was not updated. In
the end, the FTLS [formal top-level specification] was
being developed from the code, a terrible form of “reverse
engineering.”94

With time and experience, along with development of the Formal
Development Methodology tools, the state of the art at the System
Development Corporation eventually improved considerably by
comparison with these earlier problems. This was evidenced by
the corporation’s Blacker program, an integrated set of devices
designed to make the Defense Data Network secure. Development
of Blacker began in 1984, and it received A1 rating in 1991, “after
5 years of very detailed ... evaluation” by the National Computer
Security Center. Classes were held to educate the programmers
involved in the formal notation being used, while

the formal team was trained on the programming tools and
methods. ... To integrate the teams further, the formal team
was required to do quality control on all the specs and de-
sign documentation, and later the unit code. Many hours of
“burned eyeballs” were spent by the formal team reading
DTLS [detailed top-level specification] and code and un-
covering problems early.95

This integration ensured that the design proof was not epiphe-
nomenal to the actual coding, although the former still required
considerable skill:

There is a delicate balance between the level of detail in the
spec, the number of invariants, and the difficulty in achiev-
ing proofs. Achieving that balance is still an art. We have on
average written/proven specs about three times before the

balance is achieved. There is a considerable learning curve
with experience.96

The Fragmentation of Computer Security
Blacker, however, underlined an emerging problem. It was not a
classical computer-security system—that is, a kernelized operat-
ing system. The problem was in its network role, a system that
bridged the fields of COMPUSEC and COMSEC. Its security
model, however, was the traditional COMPUSEC Bell–LaPadula
model, and design proof against a formal security model was not
carried out for its COMSEC functions:

Since Blacker is to be COMSEC and COMPUSEC secure,
we initially considered a security policy that captured both
requirements. We had no examples of formal specification
of COMSEC design reduced to practice, and Blacker is a
product development program, not an R&D vehicle for ad-
vancing the state of the art. It was concluded that COMSEC
and COMPUSEC was more than A1 certification required,
and beyond the state of the art.97

In a network, however, the Bell–LaPadula model is not always
straightforward to apply: It is, for example, not always clear
which entities should be considered “subjects” and which
“objects.” In the development of Blacker, “there were many un-
usual situations that arose ... that required going back to first secu-
rity principles to arrive at a solution.”98 The different cultures of
COMSEC and COMPUSEC caused problems:

It was decided from inception to keep the bulk of the staff
and the formal specifications [cleared] at the lowest possible
security level, to encourage peer review. That is an under-
pinning of COMPUSEC, but not, however, of COMSEC. ...
Most of the staff are clear to the Secret level, with some
special clearances. All the system formal specs were kept
Unclassified, Official Use Only. Device formal specs are
classified at least Secret.99

The growing interconnection of computers into networks
blurred the boundary between COMSEC and COMPUSEC. The
National Computer Security Center’s hard-won autonomy was
gradually lost as NSA brought COMSEC and COMPUSEC to-
gether. A 1985 reorganization merged NSA’s COMSEC and
COMPUSEC functions, and, in 1990, the National Computer
Security Center’s “research and evaluation functions were inte-
grated with the NSA’s communication security functions.”100

Yet another problem was indicated by the six-year gap between
SCOMP’s A1 rating, achieved in 1985, and Blacker’s, achieved in
1991. Other projects aiming at A1 either progressed slowly or
were canceled. A dramatic case in point is the security kernel
DEC developed for the VAX architecture (see Fig. 9). Despite
some dissociation between the formal proof work and code writ-
ing (“we never really achieved what I would call ideal coupling
between the formal specification/verification process and the sys-
tem development process,”101 and the formal top-level specifica-
tion was never completed), those involved were confident that the
VAX security kernel was “capable of receiving an A1 rating,” and
it “underwent a highly successful external field test,”102 yet DEC
never brought it to market. While some of those involved felt that
there were enough potential users,103 Steven Lipner, then of DEC,
believed otherwise:
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The project was abandoned because there was not a suffi-
cient market and Digital (I in particular as the responsible
group manager) determined that canceling the project was a
better business decision than shipping the product and living
with an unprofitable offering.104

Export restrictions were part of the reason why DEC decided
that the market would be insufficient:

The current U.S. State Department export controls on oper-
ating systems at the B3 and A1 levels are extremely onerous
and would likely have interfered with many potential sales,
even to close NATO allies.105

The project was conceived in 1981, with a feasibility study con-
cluding favorably in 1982. A research prototype of the security
kernel was operating by 1984, but it was late 1989 before full
external field testing of the VAX security kernel began. By then,
its intended hardware base “was late in its life cycle and thus slow
and costly compared to the newest VAX offerings.”106 To shorten
development time, Ethernet support was not included, an absence
that attracted critical comment from potential users.107 More fun-
damentally, the world of computing was seen as having moved
on: “we were prepared to offer an A1 timesharing system in a
world that had largely moved to work stations.” DEC had plans to
address all these issues, “but doing the requisite development
would have cost money that we could not convince ourselves the
market would ever repay us.”108

These were symptoms of a general problem, not just specific to
this one particular development. The original version of SCOMP,
for example, achieved few sales: “under 30. It never broke
even.”109 When SCOMP’s developer, Honeywell, decided to re-
work the system for a newer, more sophisticated hardware plat-
form, the company’s marketing staff investigated how much
“additional market is opened up by having an A1 system versus a
B3 system.” The marketing staff came back with the answer: “at
best, you are maybe looking at 5 percent.” So the decision was
taken not “to do any more formal work” and to aim only for the
lower rating.110

By the early 1990s, there was a widespread perception that the
computer security market “has not worked well.”111 There was a
vicious circle in which the requirements of developing a demon-
strably secure system, and having it evaluated by the Computer
Security Center (a process that could take years), led to products
that were expensive and, by the time they were on the market,
outdated by comparison with analogous technology that had been
developed without high security in mind. The temptation for sys-
tem procurers, then, was to go for the cheaper, more up-to-date,
less secure alternative:

The government was saying all along that they needed this
type of system, yet the market was never really as large as
people expected. ... You would get ... Requests for Propos-
als that would imply strong security requirements, and then
they would be waived, watered down. ... Things never really
materialized like people expected.112

A small market increased unit costs, and so the vicious circle
continued. Export controls further intensified the problem, how-
ever understandable they are from the point of view of national
security interests. Besides the desire not to make systems avail-
able for detailed scrutiny, there was also the consideration that

“adversaries’ uses of computer security technologies can hamper
U.S. intelligence gathering for national security purposes.”113

Fig. 9. VAX security kernel layers.
From Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason,

and Clifford E. Kahn, “Retrospective on the VAX VMM Security Kernel,”

IEEE Transactions on Software Engineering, vol. 17, p. 1,154, 1991.
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Therefore, many saw it was imperative to increase the size of
the security-critical market. There were two obvious routes to
reach that goal. One was to internationalize the market. The Or-
ange Book had considerable influence on the United States’ close
allies, with Canada, Germany, the Netherlands, France, and Brit-
ain all setting up their own organizations akin to the National
Computer Security Center and writing their own analogues to the
Orange Book. But overseas, especially in Britain, the Orange
Book was perceived as embodying a serious flaw. Its classes were
hierarchical in two senses: security functionality and assurance. A
Division B system, for example, was intended to have more-
sophisticated security functions than a Division C system and
greater assurance of the correct implementation of those func-
tions. This bundling of security and assurance in the Orange Book
was a quite deliberate decision. The goal was to provide a simple
system of categories that “the average marketing guy, the average
program manager” could understand:

You are giving him a shorthand for something, that if it
meets this level, I can use it here. If I need something better
than that, I need something higher. ... People understand.
They don’t understand what goes into a B2, but they know
what to do with it. And that’s very, very valuable.114

The problem with bundling functionality and assurance was
that it ruled out systems that had simple functions but high as-
surance of the correctness of those functions. Despite the em-
phasis on simplicity in the notion of a security kernel, systems
aiming at A1 were typically quite large. The SCOMP security
kernel, for example, involved approximately 10,000 lines of
Pascal code, and the trusted software outside the kernel con-
sisted of approximately 10,000 lines of C.115 The VAX security
kernel consisted of almost 50,000 executable statements; even
its formal top-level specification would, if it had been com-
pleted, have been over 12,000 lines long.116 Overseas observers
concluded that part of the reason for the difficulty of conducting
even design proof was the sheer complexity of the systems to
which it was being applied. So, they sought to unbundle secu-
rity and functionality, to provide for the possibility of applying
formal verification to simple systems.

The development of international standards forced a decision
between the Orange Book bundled approach and the European
unbundled one. The international Common Criteria that
emerged from this effort largely reflect the European approach,
although there is a provision for bundled protection profiles.117

Even draft U.S. Federal Criteria, issued in December 1992 by
the NSA and the National Bureau of Standards (now known as
the National Institute of Standards and Technology), went too
far for one of the key figures in the background of the Orange
Book:

We have gone way too far [with unbundling]. The Federal
Criteria makes it even worse, because there is even more
detail and more levels, and varying levels of levels. ... It
really bothers me that we have just sort of blown this
thing wide open, you can pick and choose whatever you
want. And people will do that, and they will get hurt real
bad.118

The other way of extending the computer security market was
to include in it sectors that were nonmilitary but had computer
security concerns: other departments of government and the

commercial sector, especially banking. This, for example, was
part of the rationale for elevating the Department of Defense
Computer Security Center to the status of National Computer
Security Center. However, the attempt to integrate military, non-
military governmental, and commercial security was only par-
tially successful. Civil libertarians opposed the extension of
NSA’s role, and congressional reaction forced the abandonment of
the more controversial aspects of the move.119 Furthermore, civil
government and industry did not see themselves as facing the
same high-level threat as the defense sector faced, and so did not
perceive themselves as requiring the same high-assurance, for-
mally verified systems to meet it.

Its response to any request was to
downgrade the security level of every

subject and object in the system to the
lowest possible level.

In addition, the meaning of “security” for the banking and fi-
nancial services sector, which obviously did have strong secu-
rity concerns, was subtly different from its meaning in the de-
fense sector. The primary defense meaning of “security” was
confidentiality: prevention of unauthorized disclosure of data.
Banks and financial institutions, on the other hand, were more
interested in “security” in the sense of integrity: prevention of
unauthorized alteration of data.120 While integrity was clearly of
importance in military systems, and had been modeled in the
early 1970s’ Mitre work,121 it was never as prominent a concern
as confidentiality. Furthermore, other sectors did not have the
military’s elaborate system of multilevel clearances and security
classifications. The A and B divisions of the Orange Book, de-
signed to satisfy the needs of a military multilevel environment,
were largely irrelevant to the requirements of other sectors.
What nonmilitary users felt they needed were systems with
security functions of the type of the Orange Book’s Division C.
The relatively low levels of assurance that went with Division C
were not a major concern.

Even within military security, the dominance of the Bell–
LaPadula model had been severely shaken by the late 1980s. It
had been sharply criticized, especially by John McLean, one of a
group of computer security specialists at the U.S. Naval Research
Laboratory.122 In 1985, McLean claimed that the Bell–LaPadula
Basic Security Theorem (described above) could be proven for a
system—“System Z”—that was patently insecure, in that its re-
sponse to any request was to downgrade the security level of
every subject and object in the system to the lowest possible
level.123 Whether McLean’s System Z genuinely refutes the Bell–
LaPadula model is a controversial matter that space prohibits us
from discussing here.

Influential alternatives to the Bell–LaPadula model emerged
during the 1980s. The first important one was the model SRI’s
Joseph Goguen and José Meseguer developed. Its basic concept
was noninterference:

One group of users, using a certain set of commands, is
non-interfering with another group of users if what the first
group does with those commands has no effect on what the
second group of users can see.124
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Fig. 10. A group, mainly of formal methods specialists, attending a lecture by Professor C.A.R. Hoare of Oxford University at the National Secu-
rity Agency, circa 1987.

Courtesy Carl Landwehr, U.S. Naval Research Laboratory.

The noninterference notion was more general than the Bell–
LaPadula model. For example, covert channel analysis
(essentially a separate activity in the Bell–LaPadula approach)
was subsumed under noninterference. The noninterference model
was first used on a real system in the development of Honeywell’s
LOCK (LOgical Coprocessing Kernel). LOCK involves a hard-
ware-based reference monitor, SIDEARM, designed to be inte-
grated into a variety of host systems to enforce security.125 How-
ever, critics have seen the price of the new model’s generality as
an even greater constraint:

Unfortunately, by providing a means to define even more
rigid security controls this approach [noninterference] exac-
erbated the conflict between security and functionality.126

Conclusion
In the late 1970s and early 1980s, the path to achieving computer
security appeared clear. A dominant problem had been identified:
designing a multilevel secure operating system. The route to a
solution—implementing a reference monitor in a security ker-
nel—was widely agreed. There was a single dominant model of
what security meant: the Bell–LaPadula model. There was wide-
spread acceptance that formal proof should be applied to demon-
strate correspondence to that model, and it was anticipated that
while proof might initially mean design proof, code proof would
follow. Formal methods—on the face of it, an academic and ab-
stract approach to computer science—had aroused the interest of
powerful, practically minded organizations such as the NSA (see,
for example, Fig. 10) and even secured their endorsements. The
United States played the unquestioned leading role in matters of
computer security, and, within the United States, there was at least
outline agreement as to the appropriate nature and role of an or-
ganization to certify the security of actual systems.

A decade later, this partial consensus had fragmented. As com-
puting moved beyond the traditional multiuser mainframe, the
classical computer security problem had largely been superseded
by a host of more diverse problems, many having to do with the
integration of computer and communications security in networks;

and there was no clear unitary route to the solution of network
security. The Bell–LaPadula model was no longer dominant. In-
stead of formal verification of trusted systems progressing down-
ward from formal specifications deeper into systems, as had been
anticipated at the start of the 1980s, it remained frozen as “design
verification,” and even the latter was no more common in practice
in the mid-1990s than it had been in the mid-1980s. The United
States was no longer as dominant as it had been, and the workings
of its computer security evaluation system had been criticized
sharply.127

In the interim, of course, the Cold War had ended, and the So-
viet Union had collapsed. The consequent cuts in defense budgets
threw a harsh light on the costs of high-security, high-assurance
systems designed specifically for defense needs, and the search
was on for cheaper commercial off-the-shelf solutions. Yet, the
fragmentation of computer security was not the result of the end
of the Cold War alone. Computer security was torn by internal
conflicts, in particular, the vicious circle that could be seen, even
in the 1980s, undermining the high-security end of the computer
security marketplace. These conflicts mean that, even though
there is sharply increased interest in computer security evident in
the latter part of the 1990s (with reports claiming large numbers
of unauthorized intrusions into defense computer systems and
high-level conferences on “information warfare”),128 it is unlikely
that the fragmentation of the classical computer security approach
will be reversed.

Commercial off-the-shelf products represent one form of syn-
thesis in the face of this fragmentation, with the same products
meeting both commercial and defense security needs. (Microsoft’s
Windows NT, for example, is being used increasingly in the de-
fense sector, although it is worth noting that, as of summer 1996,
its C2 rating is dependent on it being run on stand-alone machines
with their floppy drives disabled).129 As noted above, this synthe-
sis is likely to be primarily at assurance levels corresponding to
the Orange Book’s Division C, not higher. In particular, there is
no immediate likelihood of the commercial sector demanding
formal verification of computer security products.

Another possible form of synthesis is as yet far more tentative.
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The need to know the properties of computer systems with great
certainty is at least as strong in safety-critical systems as in secu-
rity-critical ones. The two spheres have largely been separate
socially, with different constituencies of sponsoring organizations
and only partial overlap in suppliers. Yet, there are important po-
tential commonalities of interest. As computer systems develop,
safety and security concerns have begun to merge. In some ver-
sions of the Boeing 777, for example, there is a physical intercon-
nection between in-flight entertainment units on each seat and
flight-critical computer systems. So, the developers of the 777’s
computer systems had to attend to the computer security problem
of ensuring that passengers cannot interfere with flight control
computers. They also used a traditional security technique—tiger
team attempts at penetration—to check the partitioning protec-
tions between different processes in the flight control software.130

The concerns we discussed in this paper meant that security-
critical systems were the leading early field of application of for-
mal verification, especially in the United States. As computer
security has fragmented, that leadership is passing to safety-
critical systems, with Europe playing a far more important role
there than in security. Perhaps, then, the skills so painstakingly
built up to provide high assurance of security will blossom in a
worldwide effort to provide high assurance of safety.
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