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Abstract. We give the first proof of security for the full Unix password
hashing algorithm (rather than of a simplified variant). Our results show
that it is very good at extracting almost all of the available strength from the
underlying cryptographic primitive and provide good reason for confidence
in the Unix construction.

1 Introduction

This paper examines the security of the Unix password hashing algorithm, the core
of the Unix password authentication protocol [14]. Although the algorithm has been
conjectured cryptographically secure, after two decades and deployment in millions
of systems worldwide it still has not been proven to resist attack. In this paper, we
provide the first practical proof of security (under some reasonable cryptographic
assumptions) for the Unix algorithm.

The hashing algorithm is a fairly simple application of DES, perhaps the best-
known block cipher available to the public. Since DES has seen many man-years of
analysis, in an ideal world we might hope for a proof (via some reduction) that the
Unix password hash is secure if DES is. However, so far no such proof has appeared
in the literature.

In earlier work, Luby and Rackoff presented strong theoretical evidence that the
basic approach found in the Unix algorithm is likely to be sound, by presenting
proofs of security for a simplified variant of the Unix hash [12,13]. However, their
proofs have three serious limitations: the abstract model they analyze omits some
important features of the real algorithm (they analyze the variant k¥ — E}(0) rather
than the full iterated construction k — EZ°(0)); their proofs of security are asymp-
totic, and so do not directly apply to real (necessarily finite) instantiations of the
construction; and they assume a uniform distribution on passwords. Therefore, we
feel that, from a practical point of view, the security of the real Unix password hash
remains an open question.

In the first half of this paper, we take a further step towards justifying the design
of the Unix password hash by removing the first two limitations mentioned above
(we also make some progress towards removing the final limitation in the second
half of this paper, as will be discussed below). Our primary contribution is that we
show how to analyze the full Unix construction, removing the need to abstract away
features of the algorithm. This removes the gap between what has been analyzed
and what is currently in use. In particular, we extend Luby and Rackoff’s proof
techniques to handle the iterated construction k — (Ej o0 Ej, o --- 0 E})(0) found in
the real Unix hash.

We also provide explicit, quantitative security measures for the Unix hash (in-
stead of asymptotic estimates), and as a result, our proofs can be directly applied
to the real (finite) Unix algorithm. We make no claims about the novelty of this
calculation—it is a straightforward technical exercise—but the concrete bounds are
important if we are to assess the practical security of the Unix hash construction in
real life.



In practice the Unix password hash suffers from the same limitation as DES:
both algorithms appear to be very well designed, but their short key size limits the
attainable security level. Nonetheless, we show here that the construction used in
the Unix password hash is cryptographically sound and does a very good job of
extracting almost all of the available strength from the underlying cryptographic
primitive.

We also show a result that may be of independent interest: every pseudo-random
generator forms a one-way function, and this construction is simultaneously very
efficient and strongly security-preserving. See Theorem 1 for a surprisingly tight
reduction (our concrete security parameters are better than those obtained from
the apparently-standard analysis of this construction [6, Proposition 3.3.6]). This
theorem was effectively the main tool in the Luby-Rackoff proof, but it was never
separated out explicitly.

The main practical shortcoming of the proof techniques discussed above is that,
for best results, we must assume that the passwords are uniformly distributed. To
remedy this shortcoming, we also present some initial progress towards handling
the non-uniform case as well.

In general, the security issues associated with non-uniformly distributed keying
material appear to be under-represented in the literature. A second contribution of
this paper is that we make some initial progress on this problem, presenting a formal
model that we hope may serve as a foundation for future exploration in this area.
Using this model, we are able to show relatively good lower bounds on the security
of the Unix algorithm when used with non-uniformly distributed passwords. These
techniques provide practically useful results for the special case of the Unix hash
function, but in general the results that can be obtained via these methods are not
as strong as we would like, and so we leave this as an open question for further
research. See Section 7.

This paper is structured as follows. We recall the definition of the Unix password
hash in Section 2 and then summarize the results of our analysis in Section 3. The
remainder of the paper is dedicated to the theoretical analysis: Section 4 outlines
the main ideas from a high level, Section 5 gives some important definitions, and
Section 6 dives into the details of the proofs. Finally, Section 7 gives a formal model
for security with non-uniformly distributed passwords and presents some initial
results in this area.

2 The Unix algorithm

We briefly recount the definition of the Unix password hashing function. The function—
let us call it H—is built out of a 25-fold iterated version of DES, in the follow-
ing way. Let DES;(z) denote the DES encryption of plaintext z under key k and
DES}(z) = DES;(DES} !(z)) denote the n-fold iteration of DES;. Then the hash
H (k) of the 8-character password k may be defined as

H(k) = DES2(0).

When a new user account is created, the hash H(k) of the user’s initial pass-
word is stored with the user’s id in the (world-readable) system password file
/etc/passwd. When the user attempts to log on with password k', the system
computes H (k') and compares the result to the value stored in the password file,
allowing the user to log on only if H (k") = H(k).

Our description of the Unix password scheme omits one important feature of
the construction: the salt. In fact, when the user register his password k for the first
time, a random 12-bit salt s is generated, and the system computes a salted hash
H, (k) from k and s. We do not analyze the effect of the salt in this paper.



3 Results

The main consequence of our analysis is the following informal result:

If DES is a (t,25, e)-secure block cipher, then the Unix password hashing
function is a (t',p)-secure password hashing function, where ¢’ &~ t and
p= (14+1/255)e.

Some interpretation of this analytical result is clearly in order. Formal defini-
tions of (t, ¢, e)-security for block ciphers and (', p)-security for hash functions will
be provided later in Section 5, but for now we just sketch the intuition. Roughly
speaking, the theorem says that if DES is secure against all attacks using at most
25 chosen plaintexts, and if the password is chosen uniformly at random, then the
Unix construction is secure against password guessing attacks.

Note that our security proofs require only very mild assumptions on the prop-
erties of DES. To break the Unix algorithm, the adversary must have some way to
break DES with only 25 chosen plaintexts, which is likely to be a very difficult task.
Furthermore, even the existence of such an attack on DES is no guarantee of success
at breaking the Unix hash function, since it seems to be very difficult to control the
internal values of the hash computation. Therefore, we expect that the Unix hash
function is likely to be even stronger than our lower bounds would suggest.

AN EXAMPLE. Let us try to estimate the resources needed to reverse the Unix hash
function. We start by estimating the concrete security level afforded by DES. The
best attack reported in the literature for breaking DES with 25 chosen plaintexts is
exhaustive keysearch; differential and linear cryptanalysis do not help with such a
small number of chosen texts. If we mount a partial exhaustive keysearch, searching
over t keys, we obtain an attack with time complexity ¢ and success probability’
e < t/2%5. Therefore, if the cryptanalytic results reported in the literature are rep-
resentative and this is indeed the best available attack, we may conclude that DES
forms a (t,25,t/2%%)-secure block cipher. Theorem 1 then says that the Unix scheme
is (t, p)-secure for p ~ (1+1/255)t/2°, which is only larger than the corresponding
success probability for attacking DES by the small multiplicative factor of 1+1/255.
To summarize:

For an adversary with a given set of resources, the chances of breaking the
Unix password hash are at most only slightly higher—less than 1% higher—
than the chances of breaking DES with the same resources.

This illustrates that the reduction is nearly tight: our analysis requires only very
weak assumptions of security for DES, and as a result, our results will still be
relevant even if DES is found to have some small weakness. In other words, the
Unix construction is robust: any small imperfections that might exist in DES are
guaranteed not to be magnified by the Unix construction into a fatal flaw for a
hashing function.

LiMITATIONS. There are several important technical limitations to our work. First,
we do not analyze the salt, so we do not consider attacks on many passwords in
parallel. Second, although we are for the first time able to show that the iteration
in the Unix hash does not harm security, we were not able to prove that iteration
actually improves security, as one would intuitively expect. Third, our results for
the non-uniform distribution are not as strong as we would like, as is discussed in
more detail elsewhere in this paper.

In practice probably the most significant vulnerabilities in the Unix password
hash function are that real passwords often do not contain enough entropy to resist

! We assume the adversary exploits the DES complementation property, and thus e =
t/2%5, not t/2°¢ as one might naively expect.



dictionary attacks [3,5,9, 11, 15], that the 56-bit keysize of DES is too short to resist
exhaustive keysearch attacks [4], and that cleartext passwords are inappropriate for
use in a networked environment. However, our results show that the Unix password
hashing construction attains about as much cryptographic strength as possible,
given these unavoidable limits on its security.

4 An outline of the analysis

Our analysis of the Unix hash uses essentially only one new idea?: an observation
about close ties between the Unix hash and the CBC-MAC construction. In the
remainder of this section, we give a high-level sketch of these two fundamental
observations.

RELEVANCE OF THE CBC-MAC. First, we show that the Unix password hashing
algorithm is just a special case of the more general and better-studied DES-CBC-
MAC construction [1]. Consequently, we can take advantage of well-known results
on the security of DES-CBC-MAC.

Let f-CBC-MAC(z) denote the CBC-MAC of the message = under the function
f- Recall that the f-CBC-MAC of a n-block message x under function f is defined
as

f-CBC-MAC(z) = f(zn @ - f(z2 ® f(z1))--).

Then it is not hard to see that we get a close relation between n-fold iterated
encryption and the CBC-MAC on a n-block message:

f™(z) = f-CBC-MAC({z,0,0,...,0}).

This observation may be of independent interest, because it gives a simple and
powerful way to analyze iterated encryption.

Using this trick, we observe that the Unix password hashing algorithm can be
related to the DES-CBC-MAC by

Unix-hash(k) = DES-CBC-MAC} ({0, ... ,0)).

This is the basis for our treatment of iteration in the Unix password hash.

5 Definitions

Definitions of concrete security are parametrized by a measure of the resources
needed to break the cryptographic primitive. In general, we say that an attack R-
breaks a crypto primitive if the algorithm succeeds in breaking the primitive with
resources specified by R, and we say that a crypto primitive is R-secure if there is no
algorithm?® to R-break it. In the definitions to follow, we elaborate on the measure
of an adversary’s resources.

First, we formally define the concept of a pseudorandom function (PRF). Let
F : Kx X — Y be a keyed function. We say that the oracle algorithm A is
an adversary which (¢, q,e)-breaks the alleged-PRF F' if A runs in time ¢, makes

2 We also give what we believe to be a simpler presentation of Luby and Rackoff’s proof
that k — E;(0) is a good one-way function if E is a good block cipher, but the result
itself is not new.

% We may assume without loss of generality that all adversarial algorithms behave de-
terministically, since any probabilistic adversary can be de-randomized using standard
techniques.



at most ¢ queries to its oracle, and has advantage Adv A = e. The adversary’s
advantage Adv A is defined to be

Adv A = | Pr[Af = 1] — Pr[A® = 1],

where the probability is taken over the choice of £ and R, and where the random
variable k is drawn from the uniform distribution over £ and R : X — Y is a
random function. We say that F' is a (t, ¢,e)-secure PRF if there is no adversary
which (¢, ¢, e)-breaks F'.

A (t,q,e)-secure “super” pseudorandom permutation (PRP) E : K x )Y — Y
is a family of permutations with the property that Ej is indistinguishable from a
random permutation 7w : J — ) chosen uniformly at random from the set of all
permutations on ), when k is drawn uniformly at random from K. The advantage
of an adversary A is defined as Adv A = ‘Pr[AE’“’E?1 =1] - Pr[A™" ' =1]|. Note
that we typically omit the “super” prefix for brevity.

A pseudorandom generator (PRG) is a function g : £ — Y which stretches
a short seed (from K) into a long, random-looking output. The advantage of an
adversary for g is defined to be Adv A = |Pr[A(g(k)) = 1] — Pr[A(uy) = 1]|, where
the random variables k and uy are chosenly randomly according to the uniform
distributions on K and Y (resp.). In the case of pseudorandom generators, normally
one insists that the output be longer than the seed, i.e., that || > |K].

Also, it is useful to have the concept of a one-way function (OWF). Let h : £ — Y
be an unkeyed function. An adversary B attacking h is an algorithm with input
y € Y which outputs a symbol in KX U {L}, and which is correct; B is correct when
y € V,B(y) # L implies h(B(y)) = y. We say that an adversary B (t, p)-breaks the
alleged-OWF h if B runs in time ¢ and succeeds with probability p = Pr[B(h(k)) #
1], where the probability is taken over the choice of k € K, and the random variable
k is drawn from the uniform distribution. Finally, we say that ¢ is a (¢, p)-secure
OWEF if there is no adversary which (¢, p)-breaks it.

Note that the notion of a one-way function exactly captures the security prop-
erties we need from a password hashing function. In particular, if ¢ is a (¢, p)-secure
OWE, then the success probability of any adversary running in time ¢ is at most p.

6 Analysis

The main result is a proof that any pseudorandom generator is a good one-way
function. This is an version of Luby and Rackoff’s result [12,13], adapted to the
concrete security model.

Theorem 1. Let g : K — Y be a (t,e)-secure pseudorandom generator, with |Y| >
|K|. Then g is a (t',p)-secure one-way function, where p = e/(1 — |K|/|V]) and
t' ~t.

Remark 1. To be more precise, we show that g is (¢, p)-secure, where t' = ¢ — ¢ and
¢ is a universal constant which depends only on the machine model. However, in
practice ¢ is extremely small compared to t, so for simplicity of exposition in this
paper we omit these tiny constants and summarize the situation by writing ¢’ ~ ¢.

Proof. We prove the contrapositive. Let h = g be our alleged one-way function.
Suppose that there is an adversary B which (¢, p)-breaks h (viewed as a one-way
function). We construct an adversary A against g (viewed as a PRG), defined by

_[1 iBG AL
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Our claim is that A (¢, e)-breaks ¢ (the pseudorandom generator), i.e., that Adv A >
(L= 1K]/1Y]) - p- A bit of notation: we let k stand for a random variable uniformly
distributed over K, and uy for a r.v. that is uniform over ). All probabilities are
calculated with respect to k.

Let V.={y € Y : B(y) # L} be the set of outputs of h where B succeeds. Also,
let W = {k € K : h(k) € V} be the set of inputs to h which are not secure against
B. We see that p = Pr[h(k) € V] = Prlk € W].

Next, we observe that |V| < |W|. The argument goes like this. We may view B
as a deterministic function (by standard de-randomization results). We examine B’,
the restriction of B to the domain V. This restriction is well-defined, since when
v € V, B(v) is a well-defined element of K. Moreover, using the correctness of B,
we have g(B(v)) = v € V for all v € V, so that B(v) € W for all v € V. Thus
we may consider B’ as a function with signature V. — W. Also, if v,v' € V and
B(v) = B(v'), we find that v = g(B(v)) = g(B(v')) = v'; therefore, B’ is one-
to-one. In summary, we have exhibited a one-to-one function from V' to W, which
demonstrates that |[V| < |[W].

Finally, we are ready to calculate the advantage of the adversary A. First,

Pr[A(g(k)) = 1] = Pr[B(h(k)) # L] = Pr[h(k) € V] = p.
Also [W| = |K| - Pk € W] = |K]| - p and |V| < |[W], s0
Pr{A(uy) = 1] = Prluy € V] = [V|/[Y| < [W|/|Y| = [K[/|Y] - p.
Plugging into the definition of Adv A gives
AdvA > |p—|K[/IY]-pl= Q= |K|/|Y])-p=e.

To recap, under the assumption that there is an adversary B which (¢, p)-breaks h,
we obtain an adversary A which shows that g is not (¢,e)-secure, and this is the
desired result. m|

Lemma 1. A (t,q,e)-secure PRP E : K x Y — Y is a (t,q,e + ¢*/2|)|)-secure
PRF.

Proof. This lemma is a well-known consequence of the birthday paradox. For a full
proof, see, e.g., [1]. O

Lemma 2. If F: K x Y — Y is a (t,q,e)-secure PRF, then F" is a (t',q/n,¢€')-
secure PRF, where t' =t — qlog, |V| and €' = e+ 1.5¢/|V|.

Proof. Recall that F{*(x) = Fi(--- (Fi(x))---) is a F;-CBC-MAC on the message
(2,0,0,...,0), as noted in Section 4. Now invoke [1, Lemma 4.1] to show that the
F-CBC-MAC is a secure PRF. a

Lemma 3. If F is a (t,1,€)-secure PRF, then g(k) = F}(0) is a (t,e)-secure PRG.
Proof. Immediate from the definitions. O

Theorem 2. If DES is a (t, 25, e)-secure pseudorandom permutation, then the Uniz
construction is a (t',p)-secure password hashing function, where p = (1+1/255)e +
(1+1/255) - 252/253 ~ (1 + 1/255)e and t' ~ t.

Proof. Applying Lemmas 1 and 2, we see that = — DES?°(z) is a (7,1, €)-secure
PRF, where 7 = t — 25 x 64 and € = e + 2¢*/|Y|. Lemma 3 then shows that the
Unix algorithm is a (7, €)-secure PRG. Finally, Theorem 1 assures us that the Unix
construction is a (', p)-secure one-way function, where t’ = 71—¢c = t—25x64—c ¢
and p = ¢/(1 —278) = (1 + 1/255)¢. As discussed above, this is exactly the notion
needed to show that the Unix password hashing algorithm is secure when used with
uniformly-distributed passwords. O



7 Non-uniformly distributed secrets

So far our proofs of security have assumed that all passwords are uniformly dis-
tributed. In practice, though, such an assumption is often far from the mark [3,5,
9,11, 15]. This section tackles the issue of security for non-uniform distributions.

In this section, we introduce a new security model, passphrase-based cryptogra-
phy, where keying material and other cryptographic secrets are derived from human-
entered passphrases and thus are likely to have a highly non-uniform distribution.
This is a significant departure from the standard model, where the very definitions
of security assume a uniform distribution on the keys. A second important difference
is that passphrases are typically relatively short, so the secret entropy in them is a
scarce resource which we must not waste. We show that the standard approaches to
smoothing non-uniform distributions are unsuitable for practical use because they
waste too much entropy. Therefore, new techniques are needed.

Let us start by developing formal definitions of security for passphrase-based
cryptography. We need a small amount of background. Let D be a distribution on
K which assigns the probability D(k) to each k € K, and let D(S) =, ¢ D(k)
for all S C K.

We define the notion of a one-way function secure for D as in Section 5, except
that the success probability is now calculated when inputs are distributed according
to D rather than the uniform distribution. (We assume that the distribution is fixed
in advance, so that the attack algorithm may depend on D.) Let f : K — ) be an
unkeyed function and let B : Y — KU{ L} be an adversary against f that is correct
(i.e., B(y) # L implies f(B(y)) = y). We say that the algorithm B (¢, p)-breaks
f (for D) if B runs in time ¢ and succeeds with probability p = Pr[B(f(k)) # L],
where k is chosen from K according to the distribution D and the probability is
taken with respect to the choice of k. Finally, the one-way function f is (¢, p)-secure
for D if there is no adversary which (¢, p)-breaks f for D.

In this paper, we define

xp(t) = max{D(S): S C K,|S| < t}.

This definition is motivated by the following upper bound on the security of hashing
inputs with distribution D:

Theorem 3. For all one-way hash functions f, all distributions D, and all time
bounds t, there is a generic attack, called the dictionary attack, which (t,xp(t))-
breaks f.

Proof. The dictionary attack proceeds by trying the ¢ elements of D with the ¢
largest probabilities. (Each guess can be easily checked with a single computation

of f.) If we write the D-probabilities in decreasing order, di > dy > d3 > -+, we
can see that the success probability of the dictionary attack is di + do + -+ - + dy;
furthermore, this quantity is precisely xp(t). O

Therefore, xp describes the effectiveness of the optimal dictionary-search attack
against D: no matter what we do, every one-way hash function with inputs chosen
according to D can be broken with probability xp(¢) and time ¢.

There is no way to avoid the dictionary attack. This motivates our definition of
security for a one-way hash function that operates on inputs with a non-uniform
distribution:

Definition 1. We say that the one-way function f is ideally-secure for distribution
D if f is (t,xp(t))-secure (for all t) when its inputs are distributed according to D.



Intuitively speaking, a one-way function is ideally-secure if the dictionary attack is
the best attack.

We are able to show that any one-way function that is sufficiently strong for
uniformly distributed inputs will also be relatively good for other distributions.

Theorem 4. Let f be a one-way function that is (t, p)-secure for uniformly-distributed
inputs. Then, for every distribution D on K, f is a (t,xp(p|K|))-secure one-way
hash function for D.

Proof. Let A be an adversary which (¢, p')-breaks f for D, where p' > xp(p|K|). We
will show that A also (t,p)-breaks f (for uniformly distributed inputs), and then
taking the contrapositive will yield the desired result.

Let S ={k € K: A(f(k)) # L} be the set of f-inputs which are not safe against
A. Note that p' = D(S), and moreover that xp(|S|) > D(S) (by the definition of
XD), so we have

xo(IS]) = D(S) =p' = xp(pIK]).

Since xp(t) is a monotonically increasing function of ¢, we may conclude that |S| >
pIK|.

Now we may prove that A indeed works well, not just for the distribution D,
but also for the uniform distribution. Note that

PrA(f(k)) # 1] = Prlk € 5] = |SI/IK| > p

when k is drawn from the uniform distribution on K. Therefore, A is an adversary
that (t,p)-breaks f (for the uniform distribution), as claimed, and the theorem
follows. O

Corollary 1. If the one-way function f is ideally-secure for the uniform distribu-
tion, then it is also ideally-secure for all other distributions as well.

Proof. For the uniform distribution U on K, we have xy (t) = t/|K], so by assump-
tion f is (¢,t/|K]|)-secure for all . Now Theorem 4 assures us that f is (¢, xp(t))-
secure for all distributions D, since xp((¢/|K]) - |K|) = xp (). O

APPLICATIONS TO UNIX PASSWORD HASHING. We can show that the Unix hash is
good at hashing even non-uniformly distributed passwords, under assumptions on
DES that appear to be reasonable (albeit stronger than one might like).

In Section 3, we argued that DES appears to be (t,25,/2%%)-secure, if the crypt-
analysis results reported in the literature do indeed represent the best attacks on
DES (as many researchers believe). This assumption implies that the Unix hash H
is a (',t/25%)-secure one-way function when its inputs are uniformly distributed,
where t' = (1—-27%)(t/2—252/28) ~ (14278)t/2. Thus, Theorem 4 allows us to con-
clude that the Unix hash is (¥, xp(t))-secure—i.e., nearly (¢/2, xp(t))-secure—for
every distribution D.

This lower bound only differs from Theorem 3’s upper bound by a factor of
about two*. Roughly speaking, this means that the Unix hash appears to be nearly
ideally-secure for all distributions D: no shortcut attack can do much better than
the dictionary attack.

Whether this result is useful in practice will depend on several factors. One dis-
advantage is that the approach requires relatively strong assumptions about DES—
that there are no shortcut attacks on DES that reduce the workfactor of exhaustive

* If we consider that the Unix hash internally iterates DES 25 times and thus costs 25
times as much to compute as does a single DES trial encryption, the gap between the
upper and lower bounds becomes a factor of about 50, which is still quite small.



keysearch by more than a small factor when the key is uniformly distributed—
and as a result, the result is not as robust as we would like. For example, if small
weaknesses are present in DES, our proof techniques cannot rule out the possibility
that these weaknesses might be greatly magnified when one uses DES with pat-
terned passwords, even though such a worst-case scenario is considered unlikely by
practitioners.

However, it is interesting to point out that we obtain a proof of security for
the Unix hash of patterned passwords starting only with the assumption that DES
is secure for uniformly-distributed keys. In particular, we make no assumptions
whatsoever about the behavior of DES when keyed from a non-uniform distribution.
Consequently, we can take advantage of the decades of analysis on DES (which
has all been premised on the assumption of uniformly-distributed keys) to gain
confidence in the security of the Unix algorithm.

APPLICATIONS TO OTHER CRYPTO PRIMITIVES. It is also worth noting that Theo-
rem 4 can also be generalized to many other keyed cryptographic primitives, such
as block ciphers, stream ciphers, and PRF’s, using the same style of proof.

TIGHTNESS. One can show that our lower bound (given in Theorem 4) on the
security of f for non-uniform distributions is essentially tight. In other words, it is
unlikely that one can do much better without either making additional assumptions
on f or finding a better construction.

The following simple example is due to David Zuckerman [16]. Let g : K1 — )
be an ideally-secure one-way function with keyspace Iy and output space );. We
construct f : K — YV as f({z,y)) = (9(x),y), where L = K1 x K3 and Y = Y1 x Ks.
Note that f is (t,t/|K1|)-secure (for all t) for the uniform distribution on K.

Next consider the uniform distribution D on S x Ky for some S C Ky, i.e.,
D({z,y)) = 1/(]S] - |K2|) for all (z,y) € S x Ky and D({z,y)) = 0 for ¢ S.
Theorem 4 implies f is (¢, p)-secure for D, where

t t'|IC2|
= — K = tIIC = —— = —=t/|S|.
p XD(|,Q|| |) Xo(tial) = el = s

At the same time, one may clearly (¢,¢/|S|)-break f using a dictionary attack when
its inputs are distributed according to D (see Theorem 3). This shows that Theo-
rem 4 is tight.

THE POWER OF STRONGER ASSUMPTIONS. One alternative approach is to start
from the assumption that DES is secure (up to the possibility of dictionary attacks)
no matter what distribution the key is drawn from. Then we may attempt to prove
that the Unix hash is secure for passwords with distribution D if DES is secure for
keys with distribution D.

The following theorem, which forms a nice example of this approach, is due to
Bellare (and was stated as a homework problem in [7]):

Theorem 5. If g : K — Y is a (t,e)-secure pseudorandom generator for seeds
distributed according to D, then g is a (t,p)-secure one-way function for D, where

p=e+I|K[/|Y].

Remark 2. Of course, we may take D to be the uniform distribution in the above;
however, this gives strictly weaker bounds than Theorem 1’s dedicated analysis.

Proof. Use the same notation as in the proof of Theorem 1, and define the adversary
A in the same way. Note that Pr[A(uy) = 1] < |{g(k) : k € K}|/|V] < |K|/]|Y|, and
Pr[A(g(k)) = 1] = p as before, so we get

Adv A = [Pr{A(g(k)) = 1] = Pr[A(uy) = 1]| > [p = [K|/|V]| = e



In other words, if there is an adversary B to (¢,p)-break g as a one-way function,
then there is another adversary A to (t,e)-break g as a pseudorandom generator,
and the theorem follows. O

While this result may be useful in some contexts, it doesn’t give terribly useful
lower bounds for the security of the Unix hash. For the Unix algorithm, we have
IK]/|Y] = 278, so we won’t be able to rule out the possibility that there exists an
algorithm that succeeds in breaking 1/256 of all passwords in constant time. Such
a result is not very reassuring.

One could attempt to repair the flaw by defining a new hash construction, e.g.,
New-hash(k) = (DES;(0...00),DES,(0...01)). Such an approach would work—if
one is willing to deploy an updated implementation of the password hashing algo-
rithm on millions of machines around the world!'—but it would still require strong
assumptions about the security of DES when used with non-uniformly distributed
keys. Since DES has not received as much scrutiny in this setting (where the key
is non-uniformly distributed), it becomes harder to gain much confidence that the
necessary assumptions are indeed satisfied.

Therefore, we conclude that this approach does not seem to yield security bounds
that are as meaningful as those that can be achieved with Theorem 4.

COMPARISON TO ENTROPY SMOOTHING. Another alternative approach to dealing
with patterned passwords is to smooth out the non-uniformity in the distribution.
A well-known result called the leftover hash lemma [8,10] shows that universal hash
functions are good at entropy smoothing: if 4 is selected uniformly at random from
a family of universal hash functions with m-bit outputs, and if k£ is drawn from a
distribution with at least 3m bits of Renyi entropy, the random variable (h, h(k))
will be approximately uniformly distributed.

The disadvantage with the leftover hash lemma is that it wastes at least two-
thirds of the entropy of the password k: if we want to feed the smoothed bits
into the Unix hash function (e.g., New-hash(k) = (h, Unix-hash(h(k)))), we need
a passphrase with at least 3 x 56 = 168 bits of entropy. This would require that
passphrases consist of hundreds of characters, which is too difficult for most mere
mortals to memorize. When we consider that, in the real world, one is lucky to find
a password with more than 25-35 bits of entropy [3,5,9,11,15], it becomes clear
that the leftover hash lemma is thoroughly unsuitable for practical use.

The problem is that universal hash functions (and their generalizations, e.g.,
extractors) are designed for use in de-randomization, where the scarce resource
is uniformly-distributed randomness, and where non-uniformly distributed bits are
very cheap. In contrast, for passphrase-based cryptography, secret randomness (e.g.,
passwords, passphrases, etc.) should be considered a very precious resource that
must be conserved at all costs, whereas public randomness (even uniformly-distributed
public randomness) is nearly free. This suggests that new approaches may be re-
quired, and we leave this as an interesting challenge for further study.
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