
Implementing a Distributed Firewall�

Sotiris Ioannidis
Univ. of Pennsylvania

sotiris@dsl.cis.upenn.edu

Angelos D. Keromytis
Univ. of Pennsylvania

adk@adk.gr

Steve M. Bellovin
AT&T Labs — Research

smb@research.att.com

Jonathan M. Smith
Univ. of Pennsylvania

jms@cis.upenn.edu

ABSTRACT
Conventional �rewalls rely on topology restrictions and con-
trolled network entry points to enforce traÆc �ltering. Fur-
thermore, a �rewall cannot �lter traÆc it does not see, so,
e�ectively, everyone on the protected side is trusted. While
this model has worked well for small to medium size net-
works, networking trends such as increased connectivity,
higher line speeds, extranets, and telecommuting threaten
to make it obsolete.
To address the shortcomings of traditional �rewalls, the

concept of a \distributed �rewall" has been proposed. In
this scheme, security policy is still centrally de�ned, but
enforcement is left up to the individual endpoints. IPsec
may be used to distribute credentials that express parts of
the overall network policy. Alternately, these credentials
may be obtained through out-of-band means.
In this paper, we present the design and implementation

of a distributed �rewall using the KeyNote trust manage-
ment system to specify, distribute, and resolve policy, and
OpenBSD, an open source UNIX operating system.

General Terms
Security

Keywords
Firewalls, distributed, access control, IPsec, network secu-
rity, Trust Management, KeyNote, OpenBSD, credentials,
IP, IKE.

1. INTRODUCTION
A �rewall is a collection of components, interposed be-

tween two networks, that �lters traÆc between them accord-
ing to some security policy [8]. Conventional �rewalls rely
on network topology restrictions to perform this �ltering.

�This work was supported by DARPA under Contract
F39502-99-1-0512-MOD P0001.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS ’00, Athens, Greece.
Copyright 2000 ACM 1-58113-203-4/00/0011 ..$5.00

Furthermore, one key assumption under this model is that
everyone on the protected network(s) is trusted (since inter-
nal traÆc is not seen by the �rewall, it cannot be �ltered); if
that is not the case, then additional, internal �rewalls have
to be deployed in the internal network.
While this model worked well for small to medium size

networks, several trends in networking threaten to make it
obsolete:

� Due to the increasing line speeds and the more compu-
tation-intensive protocols that a �rewall must support
(especially IPsec 1 [13]), �rewalls tend to become con-
gestion points. This gap between processing and net-
working speeds is likely to increase, at least for the
foreseeable future; while computers (and hence �re-
walls) are getting faster, the combination of more com-
plex protocols and the tremendous increase in the a-
mount of data that must be passed through the �rewall
has been and likely will continue to outpace Moore's
Law [10].

� There exist protocols, and new protocols are designed,
that are diÆcult to process at the �rewall, because
the latter lacks certain knowledge that is readily avail-
able at the endpoints. FTP and RealAudio are two
such protocols. Although there exist application-level
proxies that handle such protocols, such solutions are
viewed as architecturally \unclean" and in some cases
too invasive.

� The assumption that all insiders are trusted 2 has not
been valid for a long time. Speci�c individuals or re-
mote networks may be allowed access to all or parts of
the protected infrastructure (extranets, telecommut-
ing, etc.). Consequently, the traditional notion of a
security perimeter can no longer hold unmodi�ed; for
example, it is desirable that telecommuters' systems
comply with the corporate security policy.

� Worse yet, it has become trivial for anyone to estab-
lish a new, unauthorized entry point to the network

1IPsec is a protocol suite, recently standardized by the
IETF, that provides network-layer security services such as
packet con�dentiality, authentication, data integrity, replay
protection, and automated key management.
2This is an artifact of �rewall deployment: internal traf-
�c that is not seen by the �rewall cannot be �ltered; as a
result, internal users can mount attacks on other users and
networks without the �rewall being able to intervene. If �re-
walls were placed everywhere, this would not be necessary.

190

without the administrator's knowledge and consent.
Various forms of tunnels, wireless, and dial-up access
methods allow individuals to establish backdoor ac-
cess that bypasses all the security mechanisms pro-
vided by traditional �rewalls. While �rewalls are in
general not intended to guard against misbehavior by
insiders, there is a tension between internal needs for
more connectivity and the diÆculty of satisfying such
needs with a centralized �rewall.

� Large (and even not-so-large) networks today tend to
have a large number of entry points (for performance,
failover, and other reasons). Furthermore, many sites
employ internal �rewalls to provide some form of com-
partmentalization. This makes administration partic-
ularly diÆcult, both from a practical point of view and
with regard to policy consistency, since no uni�ed and
comprehensive management mechanism exists.

� End-to-end encryption can also be a threat to �rewalls
[3], as it prevents them from looking at the packet
�elds necessary to do �ltering. Allowing end-to-end
encryption through a �rewall implies considerable trust
to the users on behalf of the administrators.

� Finally, there is an increasing need for �ner-grained
(and even application-speci�c) access control which
standard �rewalls cannot readily accommodate with-
out greatly increasing their complexity and processing
requirements.

Despite their shortcomings, �rewalls are still useful in pro-
viding some measure of security. The key reason that �re-
walls are still useful is that they provide an obvious, mostly
hassle-free, mechanism for enforcing network security pol-
icy. For legacy applications and networks, they are the
only mechanism for security. While newer protocols typi-
cally have some provisions for security3, older protocols (and
their implementations) are more diÆcult, often impossible,
to secure. Furthermore, �rewalls provide a convenient �rst-
level barrier that allows quick responses to newly-discovered
bugs.
To address the shortcomings of �rewalls while retaining

their advantages, [3] proposed the concept of a distributed

�rewall. In distributed �rewalls, security policy is de�ned
centrally but enforced at each invididual network endpoint
(hosts, routers, etc.). The system propagates the central
policy to all endpoints. Policy distribution may take various
forms. For example, it may be pushed directly to the end
systems that have to enforce it, or it may be provided to the
users in the form of credentials that they use when trying
to communicate with the hosts, or it may be a combination
of both. The extent of mutual trust between endpoints is
speci�ed by the policy.
To implement a distributed �rewall, three components are

necessary:

� A language for expressing policies and resolving re-
quests. In their simplest form, policies in a distributed
�rewall are functionally equivalent to packet �ltering
rules. However, it is desirable to use an extensible sys-
tem (so other types of applications and security checks

3This is by no means a universal trait, and even today there
are protocols designed with no security review.

can be speci�ed and enforced in the future). The lan-
guage and resolution mechanism should also support
credentials, for delegation of rights and authentication
purposes [4].

� A mechanism for safely distributing security policies.
This may be the IPsec key management protocol when
possible, or some other protocol. The integrity of the
policies transfered must be guaranteed, either through
the communication protocol or as part of the policy
object description (e.g., they may be digitally signed).

� Amechanism that applies the security policy to incom-
ing packets or connections, providing the enforcement
part.

Our prototype implementation uses the KeyNote trust-
management system, which provides a single, extensible lan-
guage for expressing policies and credentials. Credentials in
KeyNote are signed, thus simple �le-transfer protocols may
be used for policy distribution. We also make use of the
IPsec stack in the OpenBSD system to authenticate users,
protect traÆc, and distribute credentials. The distribution
of credentials and user authentication occurs are part of
the Internet Key Exchange (IKE) [12] negotiation. Alter-
natively, policies may be distributed from a central location
when a policy update is performed, or they may be fetched
as-needed (from a web server, X.500 directory, or through
some other protocol).
Since KeyNote allows delegation, decentralized adminis-

tration becomes feasible (establishing a hierarchy or web of
administration, for the di�erent departments or even indi-
vidual systems). Users are also able to delegate authority
to access machines or services they themselves have access
to. Although this may initially seem counter-intuitive (after
all, �rewalls embody the concept of centralized control), in
our experience users can almost always 4 bypass a �rewall's
�ltering mechanisms, usually by the most insecure and de-
structive way possible (e.g., giving away their password,
setting up a proxy or login server on some other port, etc.).
Thus, it is better to allow for some
exibility in the system,
as long as the users follow the overall policy. Also note that
it is possible to \turn o�" delegation.
Thus, the overall security policy relevant to a particular

user and a particular end host is the composition of the se-
curity policy \pushed" to the end host, any credentials given
to the user, and any credentials stored in a central location
and retrieved on-demand. Finally, we implement the mech-
anism that enforces the security policy in a TCP-connection
granularity. In our implementation, the mechanism is split
in two parts, one residing in the kernel and the other in a
user-level process.

1.1 Paper Organization
The remainder of the paper is organized as follows: Sec-

tion 2 discusses the distributed �rewall concept and related
issues. Section 3 gives an overview of the KeyNote trust-
management system, which we use for policy speci�cation
and processing. Section 4 discusses the current implemen-
tation of the distributed �rewall, and section 5 describes
future development. Section 6 presents some related work.

4With the possible exception of military-grade systems or
networks.

191

Section 7 summarizes how distributed �rewalls address the
problems of traditional �rewalls, and concludes this paper.

2. THE DISTRIBUTED FIREWALL
A distributed �rewall, of the type described in [3], uses

a central policy, but pushes enforcement towards the edges.
That is, the policy de�nes what connectivity, inbound and
outbound, is permitted; this policy is distributed to all end-
points, which enforce it.
In the full-blown version, endpoints are characterized by

their IPsec identity, typically in the form of a certi�cate.
Rather than relying on the topological notions of \inside"
and \outside", as is done by a traditional �rewall, a dis-
tributed �rewall assigns certain rights to whichever machines
own the private keys corresponding to certain public keys.
Thus, the right to connect to the http port on a company's
internal Web server might be granted to those machines hav-
ing a certi�cate name of the form *.goodfolks.org, rather
than those machines that happen to be connected to an in-
ternal wire. A laptop directly connected to the Internet has
the same level of protection as does a desktop in the or-
ganization's facility. Conversely, a laptop connected to the
corporate net by a visitor would not have the proper cre-
dentials, and hence would be denied access, even though it
is topologically \inside."
To implement a distributed �rewall, we need a security

policy language that can describe which connections are ac-
ceptable, an authentication mechanism, and a policy distri-
bution scheme. As a policy speci�cation language, we use
the KeyNote trust-management system, further described in
Section 3.
As an authentication mechanism, we decided to use IPsec

for traÆc protection and user/host authentication. While
we can, in principle, use application-speci�c security mech-
anisms (e.g., SSL-enabled web-browsing), this would re-
quire extensive modi�cations of all such applications to make
them aware of the �ltering mechanism. Furthermore, we
would then depend on the good behavior of the very appli-
cations we are trying to protect. Finally, it would be im-
possible to secure legacy applications with inadequate pro-
visioning for security.
When it comes to policy distribution, we have a number

of choices:

� We can distribute the KeyNote (or other) credentials
to the various end users. The users can then deliver
their credentials to the end hosts through the IKE pro-
tocol. The users do not have to be online for the policy
update; rather, they can periodically retrieve the cre-
dentials from a repository (such as a web server). Since
the credentials are signed and can be transmitted over
an insecure connection, users could retrieve their new
credentials even when the old ones have expired. This
approach also prevents, or at least mitigates, the ef-
fects of some possible denial of service attacks.

� The credentials can be pushed directly to the end hosts,
where they would be immediately available to the pol-
icy veri�er. Since every host would need a large num-
ber, if not all, of the credentials for every user, the
storage and transmission bandwidth requirements are
higher than in the previous case.

� The credentials can be placed in a repository where

Give response

Verifier Requester

Request, Key, Sig

KeyNote

Gather information
 local policy
 (remote credentials)Pass

information

Evaluate

Figure 1: Application Interactions with KeyNote.
The Requester is typically a user that authenticates
through some application-dependent protocol, and
optionally provides credentials. The Veri�er needs
to determine whether the Requester is allowed to
perform the requested action. It is responsible for
providing to KeyNote all the necessary information,
the local policy, and any credentials. It is also re-
sponsible for acting upon KeyNote's response.

they can be fetched as needed by the hosts. This re-
quires constant availability of the repository, and may
impose some delays in the resolution of request (such
as a TCP connection establishment).

While the �rst case is probably the most attractive from
an engineering point of view, not all IKE implementations
support distribution of KeyNote credentials. Furthermore,
some IPsec implementations do not support connection--
grained security. Finally, since IPsec is not (yet) in wide
use, it is desirable to allow for a policy-based �ltering that
does not depend on IPsec. Thus, it is necessary to provide
a policy resolution mechanism that takes into consideration
the connection parameters, the local policies, and any avail-
able credentials (retrieved through IPsec or other means),
and determines whether the connection should be allowed.
We describe our implementation of such a mechanism for
the OpenBSD system in Section 4.

3. KEYNOTE
Trust Management is a relatively new approach to solv-

ing the authorization and security policy problem, and was
introduced in [6]. Making use of public key cryptography
for authentication, trust management dispenses with unique
names as an indirect means for performing access control.
Instead, it uses a direct binding between a public key and
a set of authorizations, as represented by a safe program-
ming language. This results in an inherently decentralized
authorization system with suÆcient expressibility to guar-
antee
exibility in the face of novel authorization scenarios.
One instance of a trust-management system is KeyNote.

KeyNote provides a simple notation for specifying both local
security policies and credentials that can be sent over an un-
trusted network. Policies and credentials contain predicates
that describe the trusted actions permitted by the holders of
speci�c public keys (otherwise known as principals). Signed
credentials, which serve the role of \certi�cates," have the
same syntax as policy assertions, but are also signed by the
entity delegating the trust. For more details on the KeyNote
language itself, see [5].

192

KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: "rsa-hex:1023abcd"

Comment: Allow Licensee to connect to local port 23 (telnet) from
internal addresses only, or to port 22 (ssh) from anywhere.
Since this is a policy, no signature field is required.

Conditions: (local_port == "23" && protocol == "tcp" &&
remote_address > "158.130.006.000" &&
remote_address < "158.130.007.255) -> "true";

local_port == "22" && protocol == "tcp" -> "true";

KeyNote-Version: 2
Authorizer: "rsa-hex:1023abcd"
Licensees: "dsa-hex:986512a1" || "x509-base64:19abcd02=="
Comment: Authorizer delegates SSH connection access to either

of the Licensees, if coming from a specific address.
Conditions: (remote_address == "139.091.001.001" &&

local_port == "22") -> "true";
Signature: "rsa-md5-hex:f00f5673"

Figure 2: Example KeyNote Policy and Credential. The local policy allows a particular user (as identi�ed
by their public key) connect access to the telnet port by internal addresses, or to the SSH port from any
address. That user then delegates to two other users (keys) the right to connect to SSH from one speci�c
address. Note that the �rst key can e�ectively delegate at most the same rights it possesses. KeyNote does
not allow rights ampli�cation; any delegation acts as re�nement.

Applications communicate with a \KeyNote evaluator"
that interprets KeyNote assertions and returns results to
applications, as shown in Figure 1. However, di�erent hosts
and environments may provide a variety of interfaces to the
KeyNote evaluator (library, UNIX daemon, kernel service,
etc.).
A KeyNote evaluator accepts as input a set of local pol-

icy and credential assertions, and a set of attributes, called
an \action environment," that describes a proposed trusted
action associated with a set of public keys (the request-
ing principals). The KeyNote evaluator determines whether
proposed actions are consistent with local policy by ap-
plying the assertion predicates to the action environment.
The KeyNote evaluator can return values other than simply
true and false, depending on the application and the action-
environment de�nition. An important concept in KeyNote
(and, more generally, in trust management) is \monotonic-

ity". This simply means that given a set of credentials as-
sociated with a request, if there is any subset that would
cause the request to be approved then the complete set
will also cause the request to be approved. This greatly
simpli�es both request resolution (even in the presence of
con
icts) and credential management. Monotonicity is en-
forced by the KeyNote language (it is not possible to write
non-monotonic policies).
It is worth noting here that although KeyNote uses cryp-

tographic keys as principal identi�ers, other types of identi-
�ers may also be used. For example, usernames may be used
to identify principals inside a host. In this environment, del-
egation must be controlled by the operating system (or some
implicitly trusted application), similar to the mechanisms
used for transfering credentials in Unix or in capability-
based systems. Also, in the absence of cryptographic au-
thentication, the identi�er of the principal requesting an ac-
tion must be securely established. In the example of a single
host, the operating system can provide this information.

In our prototype, end hosts (as identi�ed by their IP ad-
dress) are also considered principals when IPsec is not used
to secure communications. This allows local policies or cre-
dentials issued by administrative5 keys to specify policies
similar to current packet �ltering rules. Naturally, such poli-
cies or credentials implicitly trust the validity of an IP ad-
dress as an identi�er. In that respect, they are equivalent to
standard packet �ltering. The only known solution to this
is the use of cryptographic protocols to secure communica-
tions.
Since KeyNote allows multiple policy constraints, poten-

tially for di�erent applications, to be contained in the same
assertion, it is trivial to support application-speci�c cre-
dentials. Credentials that specify, e.g., Java applet per-
missions, could be delivered under any of the distribution
schemes described in Section 2, and made available to the
end application through some OS-speci�c mechanism (e.g.,
getsockopt(2) calls).
In the context of the distributed �rewall, KeyNote allows

us to use the same, simple language for both policy and
credentials. The latter, being signed, may be distributed
over an insecure communication channel. In KeyNote, cre-
dentials may be considered as an extension, or re�nement,
of local policy; the union of all policy and credential as-
sertions is the overall network security policy. Alternately,
credentials may be viewed as parts of a hypothetical access
matrix. End hosts may specify their own security policies,
or they may depend exclusively on credentials from the ad-
ministrator, or do anything in between these two ends of
the spectrum. Perhaps of more interest, it is possible to
\merge" policies from di�erent administrative entities and
process them unambiguously, or to layer them in increasing

5Note that from the point of view of KeyNote, all keys are
\born" equivalent. The distinction between \administra-
tive" and other keys lies only in the amount of trust placed
on them by the local policies of end hosts.

193

KeyNote-Version: 2
Authorizer: "rsa-hex:1023abcd"
Licensees: "IP:158.130.6.141"

Conditions: (@remote_port < 1024 &&
@local_port == 22) -> "true";

Signature: "rsa-sha1-hex:bee11984"

Figure 3: An example credential where an (adminis-
trative) key delegates to an IP address. This would
allow the speci�ed address to connect to the lo-
cal SSH port, if the connection is coming from a
privileged port. Since the remote host has no way
of supplying the credential to the distributed �re-
wall through a security protocol like IPsec, the dis-
tributed �rewall must search for such credentials or
must be provided with them when policy is gener-
ated/updated.

levels of re�nement. This merging can be expressed in the
KeyNote language, in the form of intersection (conjunction)
and union (disjunction) of the component sub-policies.
Although KeyNote uses a human-readable format and it

is indeed possible to write credentials and policies that way,
our ultimate goal is to use it as an interoperability-layer
language that \ties together" the various applications that
need access control services. An administrator would use
a higher-level language (e.g., [2]) or GUI to specify corre-
spondingly higher-level policy and then have this compiled
to a set of KeyNote credentials. This higher-level language
would provide grouping mechanisms and network-speci�c
abstractions (for networks, hosts, services, etc.) that are
not present in KeyNote. Using KeyNote as the middle lan-
guage o�ers a number of bene�ts:

� It can handle a variety of di�erent applications (since it
is application-independent but customizable), allowing
for more comprehensive and mixed-level policies (e.g.,
covering email, active code content, IPsec, etc.).

� Provides built-in delegation, thus allowing for decen-
tralized administration.

� Allows for incremental or localized policy updates (as
only the relevant credentials need to be modi�ed, pro-
duced, or revoked).

Figure 2 shows two sample KeyNote assertions, a pol-
icy and a (signed) credential. Figure 3 shows an example
of a key delegating to an IP address. For more details on
KeyNote, see [5, 7].

4. IMPLEMENTATION
For our development platform we decided to use the Open-

BSD operating system [11]. OpenBSD provides an attrac-
tive platform for developing security applications because of
the well-integrated security features and libraries (an IPsec
stack, SSL, KeyNote, etc.). However, similar implementa-
tions are possible under other operating systems.
Our system is comprised of three components: a set of

kernel extensions, which implement the enforcement mech-
anisms, a user level daemon process, which implements the
distributed �rewall policies, and a device driver, which is
used for two-way communication between the kernel and the

policy daemon. Our prototype implementation totals ap-
proximately 1150 lines of C code; each component is roughly
the same size.

ioctl()

Application

Library

User Space

Modified
System Calls

Kernel Space

accept()/connect()

Policy Daemon

open(), close(),
read(), write(),

/dev/policy
Context Q

Policy

Figure 4: The Figure shows a graphical represen-
tation of the system, with all its components. The
core of the enforcement mechanism lives in kernel
space and is comprised of the two modi�ed sys-
tem calls that interest us, connect(2) and accept(2).
The policy speci�cation and processing unit lives in
user space inside the policy daemon process. The
two units communicate via a loadable pseudo device
driver interface. Messages travel from the system
call layer to the user level daemon and back using
the policy context queue.

Figure 4 shows a graphical representation of the system,
with all its components. In the following three subsections
we describe the various parts of the architecture, their func-
tionality, and how they interact with each other.

4.1 Kernel Extensions
For our working prototype we focused our e�orts on the

control of the TCP connections. Similar principles can be
applied to other protocols; for unreliable protocols, some
form of reply caching is desirable to improve performance.
We discuss a more general approach in Section 5.
In the UNIX operating system users create outgoing and

allow incoming TCP connections using the connect(2) and
accept(2) system calls respectively. Since any user has ac-
cess to these system calls, some \�ltering" mechanism is
needed. This �ltering should be based on a policy that is
set by the administrator.
Filters can be implemented either in user space or inside

the kernel. Each has its advantages and disadvantages.
A user level approach, as depicted in Figure 5, requires

each application of interest to be linked with a library that
provides the required security mechanisms, e.g.,, a mod-
i�ed libc. This has the advantage of operating system-
independence, and thus does not require any changes to the
kernel code. However, such a scheme does not guarantee
that the applications will use the modi�ed library, poten-
tially leading to a major security problem.
A kernel level approach, as shown in the left side of Fig-

ure 4, requires modi�cations to the operating system kernel.

194

Kernel Space

Application

Accept/Connect

Modified
Library

User Space

Figure 5: Wrappers for �ltering the connect(2) and
accept(2) system calls are added to a system library.
While this approach o�ers considerable
exibility, it
su�ers from its inability to guarantee the enforce-
ment of security policies, as applications might not
link with the appropriate library.

This restricts us to open source operating systems like BSD
and Linux. The main advantage of this approach is that
the additional security mechanisms can be enforced trans-
parently on the applications.
As we mentioned previously, the two system calls we need

to �lter are connect(2) and accept(2). When a connect(2)
is issued by a user application and the call traps into the ker-
nel, we create what we call a policy context (see Figure 6),
associated with that connection.
The policy context is a container for all the information

related to that speci�c connection. We associate a sequence
number to each such context and then we start �lling it with
all the information the policy daemon will need to decide
whether to permit it or not. In the case of the connect(2),
this includes the ID of the user that initiated the connec-
tion, the destination address and port, etc. Any credentials
acquired through IPsec may also be added to the context
at this stage. There is no limit as to the kind or amount of
information we can associate with a context. We can, for ex-
ample, include the time of day or the number of other open
connections of that user, if we want them to be considered
by our decision{making strategy.
Once all the information is in place, we commit that

context. The commit operation adds the context to the list
of contexts the policy daemon needs to handle. After this,
the application is blocked waiting for the policy daemon
reply.
Accepting a connection works in a similar fashion. When

accept(2) enters the kernel, it blocks until an incoming con-
nection request arrives. Upon receipt, we allocate a new
context which we �ll in similarly to the connect(2) case.
The only di�erence is that we now also include the source
address and port. The context is then enqueued, and the
process blocks waiting for a reply from the policy daemon.
In the next section we discuss how messages are passed

between the kernel and the policy daemon.

4.2 Policy Device
To maximize the
exibility of our system and allow for

easy experimentation, we decided to make the policy dae-

mon a user level process. To support this architecture, we
implemented a pseudo device driver, /dev/policy, that
serves as a communication path between the user{space pol-
icy daemon, and the modi�ed system calls in the kernel.
Our device driver supports the usual operations (open(2),
close(2), read(2), write(2), and ioctl(2)). Further-
more, we have implemented the device driver as a loadable
module. This increases the functionality of our system even
more, since we can add functionality dynamically, without
needing to recompile the whole kernel.
If no policy daemon has opened /dev/policy, no con-

nection �ltering is done. Opening the device activates the
distributed �rewall and initializes data structures. All sub-
sequent connect(2) and accept(2) calls will go through
the procedure described in the previous section. Closing
the device will free any allocated resources and disable the
distributed �rewall.
When reading from the device the policy daemon blocks

until there are requests to be served. The policy daemon
handles the policy resolution messages from the kernel, and
writes back a reply. The write(2) is responsible for return-
ing the policy daemons decision to the blocked connection
call, and then waking it up. It should be noted that both the
device and the associated messaging protocol are not tied to
any particular type of application, and may in fact be used
without any modi�cations by other kernel components that
require similar security policy handling.
Finally, we have included an ioctl(2) call for \house{

keeping". This allows the kernel and the policy daemon to
re{synchronize in case of any errors in creating or parsing the
request messages, by discarding the current policy context
and dropping the associated connection.

4.3 Policy Daemon
The third and last component of our system is the policy

daemon. It is a user level process responsible for making
decisions, based on policies that are speci�ed by some ad-
ministrator and credentials retrieved remotely or provided
by the kernel, on whether to allow or deny connections.
Policies, as shown in Figure 2, are initially read in from a

�le. It is possible to remove old policies and add new ones
dynamically. In the current implementation, such policy
changes only a�ect new connections. In Section 5 we will
discuss how these changes can potentially be made to a�ect
existing connections, if such functionality is required.
Communication between the policy daemon and the ker-

nel is possible, as we mentioned earlier, using the policy
device. The daemon receives each request (see Figure 7)
from the kernel by reading the device. The request contains
all the information relevant to that connection as described
in Section 4.1. Processing of the request is done by the dae-
mon using the KeyNote library, and a decision to accept
or deny it is reached. Finally the daemon writes the reply
back to the kernel and waits for the next request. While the
information received in a particular message is application-
dependent (in our case, relevant to the distributed �rewall),
the daemon itself has no awareness of the speci�c applica-
tion. Thus, it can be used to provide policy resolution ser-
vices for many di�erent applications, literally without any
modi�cations.
When using a remote repository server, the daemon can

fetch a credential based on the ID of the user associated with
a connection, or with the local or remote IP address (such

195

typedef struct policy_mbuf policy_mbuf;
struct policy_mbuf {

policy_mbuf *next;

int length;
char data[POLICY_DATA_SIZE];

};

typedef struct policy_context policy_context;
struct policy_context {

policy_mbuf *p_mbuf;
u_int32_t sequence;
char *reply;
policy_context *policy_context_next;

};

policy_context *policy_create_context(void);
void policy_destroy_context(policy_context *);
void policy_commit_context(policy_context *);
void policy_add_int(policy_context *, char *, int);
void policy_add_string(policy_context *, char *, char *);
void policy_add_ipv4addr(policy_context *, char *, in_addr_t *);

Figure 6: The connect(2) and accept(2) system calls create contexts which contain information relevant to
that connection. These are appended to a queue from which the policy daemon will receive and process them.
The policy daemon will then return to the kernel a decision on whether to accept or deny the connection.

u_int32_t seq; /* Sequence Number */
u_int32_t uid; /* User Id */

u_int32_t N; /* Number of Fields */
u_int32_t l[N]; /* Lengths of Fields */
char *field[N]; /* Fields */

Figure 7: The request to the policy daemon is com-
prised of the following �elds: a sequence number
uniquely identifying the request, the ID of the user
the connection request belongs to, the number of
information �elds that will be included in the re-
quest, the lengths of those �elds, and �nally the
�elds themselves.

credentials may look like the one in Figure 3). A very simple
approach to that is fetching the credentials via HTTP from
a remote web server. The credentials are stored by user ID
and IP address, and provided to anyone requesting them. If
credential \privacy" is a requirement, one could secure this
connection using IPsec or SSL. To avoid potential deadlocks,
the policy daemon is not subject to the connection �ltering
mechanism.

4.4 Example Scenario
To better explain the interaction of the various compo-

nents in the distributed �rewall, we discuss the course of
events during two incoming TCP connection requests, one
of which is IPsec{protected. The local host where the con-
nection is coming is part of a distributed �rewall, and has a
local policy as shown in Figure 8.
In the case of a connection coming in over IPsec, the re-

mote user or host will have established an IPsec Security
Association with the local host using IKE. As part of the
IKE exchange, a KeyNote credential as shown in Figure 9
is provided to the local host. Once the TCP connection is

KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: ADMINISTRATIVE_KEY

Figure 8: End-host local security policy. In our par-
ticular scenario, the policy simply states that some
administrative key will specify our policy, in the
form of one or more credentials. The lack of a Con-
ditions �eld means that there are no restrictions im-
posed on the policies speci�ed by the administrative
key.

received, the kernel will construct the appropriate context
as discussed in Section 4.1. This context will contain the
local and remote IP addresses and ports for the connection,
the fact that the connection is protected by IPsec, the time
of day, etc. This information along with the credential ac-
quired via IPsec will be passed to the policy daemon. The
policy daemon will perform a KeyNote evaluation using the
local policy and the credential, and will determine whether
the connection is authorized or not. In our case, the posi-
tive response will be sent back to the kernel, which will then
permit the TCP connection to proceed. Note that more cre-
dentials may be provided during the IKE negotiation (for
example, a chain of credentials delegating authority).
If KeyNote does not authorize the connection, the policy

daemon will try to acquire relevant credentials by contacting
a remote server where these are stored. In our current imple-
mentation, we use a web server as the credential repository.
In a large-scale network, a distributed/replicated database
could be used instead. The policy daemon uses the public
key of the remote user (when it is known, i.e., when IPsec is
in use) and the IP address of the remote host as the keys to
lookup credentials with; more speci�cally, credentials where
the user's public key or the remote host's address appears in

196

KeyNote-Version: 2
Authorizer: ADMINISTRATIVE_KEY
Licensees: USER_KEY

Conditions:
(app_domain == "IPsec policy" &&
encryption_algorithm == "3DES" &&
local_address == "158.130.006.141")

-> "true";
(app_domain ==

"Distributed Firewall" &&
@local_port == 23 &&
encrypted == "yes" &&
authenticated == "yes") -> "true";

Signature: ...

Figure 9: A credential from the administrator to
some user, authorizing that user to establish an
IPsec Security Association (SA) with the local host
and to connect to port 23 (telnet) over that SA.
To do this, we use the fact that multiple expres-
sions can be included in a single KeyNote creden-
tial. Since IPsec also enforces some form of access
control on packets, we could simplify the overall ar-
chitecture by skipping the security check for TCP
connections coming over an IPsec tunnel. In that
case, we could simply merge the two clauses (the
IPsec policy clause could specify that the speci�c
user may talk to TCP port 23 only over that SA).

the Licensees �eld are retrieved and cached locally (Figure
3 lists an example credential that refers to an IP address).
These are then used in conjunction with the information
provided by the kernel to re-examine the request. If it is
again denied, the connection is ultimately denied.

5. FUTURE WORK
There are a number of possible extensions that we plan

to work on in the process of building a more general and
complete system.
As part of the STRONGMAN project at the University of

Pennsylvania, we are examining the application of higher-
level security policy languages to large-scale network man-
agement. KeyNote is used as a common language for ex-
pressing policies that can be distributed in di�erent appli-
cations and systems. The distributed �rewall is an impor-
tant component in the STRONGMAN architecture. This is
a subject of ongoing research.
As we described in Section 4.3, the policy daemon runs

as a user level process that communicates with the kernel
via a device driver. This design maximizes the
exibility of
our system and allows for easy experimentation. Unfortu-
nately, it adds the overhead of cross-domain calls between
user space and kernel. An alternate design would be to run
the policy daemon inside the kernel, much like nfssvc(2).
The policy daemon will then have direct access to the policy
context queue, eliminating the system call overhead.
Our current system focuses on controlling TCP connec-

tions. We plan to expand our implementation by adding
an IP �lter-like mechanism for a more �ne grained control
(perhaps based on some existing �ltering package, like IPF).

This will allow per-packet, as opposed to per-connection,
policing. Apart from protecting applications based on UDP,
a packet-based implementation would also limit the types of
\scanning" that an attacker might perform. In order to
avoid the high overhead of such an approach we plan to
use \policy caching." With policy caching, we invoke the
policy daemon only the �rst time we encounter a new type
of packet, e.g., a packet belonging to a new connection.
The decision of the policy daemon may be cached (subject
to policy) in the �ltering mechanism, and any other packets
of the same type will be treated accordingly. In the event
of a policy change, we can simply
ush the cache. Given
the simplicity of the KeyNote language, it is also possible
to statically analyze the policies and credentials and derive
in advance the necessary packet �ltering rules, as a form of
pre-caching. This however imposes greater demands on the
credential-distribution mechanism.
We should note here that in our view most communica-

tions should be secured end-to-end (via IPsec or other simi-
lar mechanism); thus, most hosts would have a minimal set
of �ltering entries established at boot time. The rest of the
rules would be established dynamically through the key ex-
change (or policy discovery) mechanisms in IPsec (or equiv-
alent protocol). This approach can potentially scale much
better than initializing or updating packet �lters at the same
time policy is updated. The cost of always-encrypted com-
munication is less than one might think: PCI cards that
cost less than US$300 retail (year 2000 prices) can eas-
ily achieve 100Mbps sustained throughput while encrypt-
ing/decrypting; there also exist a number of ethernet cards
with built-in support for IPsec, potentially allowing for even
higher throughput and much lower cost.
Another point to address is policy updates. As we men-

tioned in Section 4.3, we can update the policies of the dae-
mon dynamically. However, policy updates do not a�ect
already existing connections in the current implementation.
We would like to add a revocation mechanism that goes
through the list of all the connections and re-applies the
policies. Connections that do not comply with the changes
will be terminated by the kernel. One obvious method of
doing so is by adding an ioctl(2) call that noti�es the ker-
nel of a policy update; the kernel then walks the list of
TCP connections and sends a policy resolution request to
the policy daemon, pretending the connection was just ini-
tiated. This approach requires minimal modi�cations in our
existing system.
We have already mentioned that KeyNote may be used to

express application-speci�c policies, and the relevant creden-
tials may be distributed over the same channels (IPsec, web
server, etc.). The interaction between application-speci�c
and lower-level (such as those equivalent to packet �ltering)
policies is of particular interest, as it is possible to do very
�ne-grained access control by appropriately mixing these.
One �nal point to address is credential discovery. Users

need a way to discover what credentials they (might) need to
supply to the system along with their request for a connec-
tion. The policy daemon can then process these credentials
along with the request. A simple way of adding this capabil-
ity is by using the already existing setsockopt(2) system
call. These credentials will then be added to any policy
context requests associated with the socket.

197

6. RELATED WORK
A lot of work has been done over the previous years in the

area of (traditional) �rewalls[8, 16, 17].
[19] and [15] describe di�erent approaches to host-based

enforcement of security policy. These mechanisms depend
on the IP addresses for access control, although they could
potentially be extended to support some credential-based
policy mechanism similar to what we describe in our paper.
The Napoleon system [18] de�nes a layered group-based

access control scheme that is in some ways similar to the
distributed �rewall concept we have described, although it is
mostly targeted to RMI environments like CORBA. Policies
are compiled to Access Control Lists (ACLs) appropriate for
each application (in our case, that would be each end host)
and pushed out to them at policy creation or update time.
The STRONGMAN project at the University of Pennsyl-

vania is aiming at simplifying security policy management
by providing an application-independent policy speci�ca-
tion language that can be compiled to application-speci�c
KeyNote credentials. These credentials can then be dis-
tributed to applications, hosts, and end users and used in
an integrated policy framework.
The Adage/Pledge system uses SSL and X.509-based au-

thentication to provide applications with a library that al-
lows centralized rights management.
[1] presents an in-depth discussion of the advantages and

disadvantages of credential-based access control.
SnareWork [9] is a DCE-based system that can provide

transparent security services (including access control) to
end-applications, through use of wrapper modules that un-
derstand the application-speci�c protocols. Policies are com-
piled to ACLs and distributed to the various hosts in the
secured network, although a pull-based method can also be
used. Connections to protected ports are reported to a local
security manager which decides whether to drop, allow, or
forward them (using DCE RPC) to a remote host, based on
the ACLs.
Perhaps the most relevant work is that of [2]. The ap-

proach there is use of a \network grouping" language that is
customized for each managed �rewall at that �rewall. The
language used is independent of the �rewalls and routers
used. In our approach, we introduce a three-layer system: a
high-level policy language (equivalent in some sense to that
used in Firmato), an intermediate level language (KeyNote)
used by the mechanisms, and the actual mechanisms enforc-
ing policy. This allows us to:

1. Express multi-application policies, rather than just
packet �ltering rules.

2. Express Mixed-layer policies (e.g., policies of the type
\email has to either be signed in the application layer
or delivered over an IPsec SA that was authenticated
with a credential matching the user in the From �eld
of the email").

3. Permit delegation, which enables decentralized man-
agement (since KeyNote allows building arbitrary hi-
erarchies of trust).

4. Allows incremental and asynchronous policy updates,
since, when policy changes, only the relevant KeyNote
credentials need to be updated and distributed (e.g.,

only those relevant to a speci�c �rewall).

7. CONCLUSION
We have discussed the concept of a distributed �rewall.

Under this scheme, network security policy speci�cation re-
mains under the control of the network administrator. Its
enforcement, however, is left up to the hosts in the protected
network. Security policy is speci�ed using KeyNote policies
and credentials, and is distributed (through IPsec, a web
server, a directory-like mechanism, or some other protocol)
to the users and hosts in the network. Since enforcement
occurs at the endpoints, various shortcomings of traditional
�rewalls are overcome:

� Security is no longer dependent on restricting the net-
work topology. This allows considerable
exibility in
de�ning the \security perimeter," which can easily be
extended to safely include remote hosts and networks
(e.g., telecommuters, extranets).

� Since we no longer solely depend on a single �rewall
for protection, we eliminate a performance bottleneck.
Alternately, the burden placed on the traditional �re-
wall is lessened signi�cantly, since it delegates a lot of
the �ltering to the end hosts.

� Filtering of certain protocols (e.g., FTP) which was
diÆcult when done on a traditional �rewall, becomes
signi�cantly easier, since all the relevant information
is present at the decision point, i.e., the end host.

� The number of outside connections the protected net-
work is no longer a cause for administration night-
mares. Adding or removing links has no impact on
the security of the network. \Backdoor" connections
set up by users, either intentionally or inadvertently,
also do not create windows of vulnerability.

� Insiders may no longer be treated as unconditionally
trusted. Network compartmentalization becomes sig-
ni�cantly easier.

� End-to-end encryption is made possible without sac-
ri�cing security, as was the case with traditional �re-
walls. In fact, end-to-end encryption greatly improves
the security of the distributed �rewall.

� Application-speci�c policies may be made available to
end-applications over the same distribution channel.

� Filtering (and other policy) rules are distributed and
established on an as-needed basis; that is, only the
hosts that actually need to communicate need to de-
termine what the relevant policy with regard to each
other is. This signi�cantly eases the task of policy
updating, and does not require each host/�rewall to
maintain the complete set of policies, which may be
very large for large networks (e.g., the AT&T phone
network). Furthermore, policies and their distribution
scales much better with respect to the network size and
user base than a more tighly-coupled and synchronized
approach would.

On the other hand, a distributed �rewall architecture re-
quires high quality administration tools, and de facto places
high con�dence in them. We believe that this is an inevitable

198

trend however, even if traditional �rewalls are utilized; al-
ready, large networks with a modest number of perimeter
�rewalls are becoming diÆcult to manage manually.
Also, note that the introduction of a distributed �rewall

infrastructure in a network does not completely eliminate
the need for a traditional �rewall. The latter is still useful
in certain tasks:

� It is easier to counter infrastructure attacks that oper-
ate at a level lower than the distributed �rewall. Note
that this is mostly an implementation issue; there is no
reason why a distributed �rewall cannot operate at ar-
bitrarily low layers, other than potential performance
degradation.

� Denial-of-service attack mitigation is more e�ective at
the network ingress points (depending on the particu-
lar kind of attack).

� Intrusion detection systems are more e�ective when
located at a traditional �rewall, where complete traÆc
information is available.

� The traditional �rewall may protect end hosts that do
not (or cannot) support the distributed �rewall mech-
anisms. Integration with the policy speci�cation and
distribution mechanisms is especially important here,
to avoid duplicated �lters and windows of vulnerabil-
ity.

� Finally, a traditional �rewall may simply act as a fail-
safe security mechanism.

Since most of the security enforcement has been moved
to the end hosts, the task of a traditional �rewall operating
in a distributed �rewall infrastructure is signi�cantly eased.
The interactions between traditional (and, even more inter-
esting, transparent) and distributed �rewalls are a subject
for future research.
A �nal point is that, from an administrative point of

view, a fully-distributed �rewall architecture is very simi-
lar to a network with a large number of internal �rewalls.
The mechanism we have already described may be used in
both environments. The two main di�erences between the
two approaches lie in the granularity of \internal" protection
(which also depends on the protected subnet topology, e.g.,

switched or broadcast) and the end-to-end security guaran-
tees (better infrastructure support is needed to make IPsec
work through a �rewall; alternately, transparent �rewalls
may be used [14]).
We have demonstrated the feasibility of the distributed

�rewall by building a working prototype. Further experi-
mentation is needed to determine the robustness, eÆciency,
and scalability of this architecture. We hope that our work
will stimulate further research in this area.

8. ACKNOWLEDGEMENTS
We would like to thank the CCS 2000 anonymous review-

ers and Avishai Wool for their comments and suggestions
on improving this paper.

9. REFERENCES
[1] T. Aura. Distributed access rights management with

delegation certi�cates. In Secure Internet Programming
[20], pages 211{235.

[2] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: a
novel �rewall management toolkit. In Proceedings of the
1999 IEEE Symposium on Security and Privacy, pages
17{31, May 1999.

[3] S. M. Bellovin. Distributed Firewalls. ;login: magazine,
special issue on security, November 1999.

[4] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The role of trust management in distributed systems
security. In Secure Internet Programming [20], pages
185{210.

[5] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D.
Keromytis. The keynote trust management system version
2. Internet RFC 2704, September 1999.

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust
Management. In Proc. of the 17th Symposium on Security
and Privacy, pages 164{173. IEEE Computer Society
Press, Los Alamitos, 1996.

[7] M. Blaze, J. Ioannidis, and A. Keromytis. Trust
Management and Network Layer Security Protocols. In
Proceedings of the 1999 Cambridge Security Protocols
International Workshop, 1999.

[8] W. R. Cheswick and S. M. Bellovin. Firewalls and Internet
Security: Repelling the Wily Hacker. Addison-Wesley, 1994.

[9] J. Chinitz and S. Sonnenberg. A Transparent Security
Framework For TCP/IP and Legacy Applications.
Technical report, Intellisoft Corp., August 1996.

[10] M. Dahlin. Serverless Network File Systems. PhD thesis,
University of California, Berkeley, Dec. 1995.

[11] T. de Raadt, N. Hallqvist, A. Grabowski, A. D. Keromytis,
and N. Provos. Cryptography in OpenBSD: An Overview.
In Proc. of the 1999 USENIX Annual Technical
Conference, Freenix Track, pages 93 { 101, June 1999.

[12] D. Harkins and D. Carrel. The internet key exchange
(IKE). Request for Comments (Proposed Standard) 2409,
Internet Engineering Task Force, Nov. 1998.

[13] S. Kent and R. Atkinson. Security architecture for the
internet protocol. Request for Comments (Proposed
Standard) 2401, Internet Engineering Task Force, Nov.
1998.

[14] A. D. Keromytis and J. L. Wright. Transparent Network
Security Policy Enforcement. In Proceedings of the Annual
USENIX Technical Conference, pages 215{226, June 2000.

[15] W. LeFebvre. Restricting network access to system
daemons under SunOS. In Proceedings of the Third
USENIX UNIX Security Symposium, pages 93{103, 1992.

[16] J. Mogul, R. Rashid, and M. Accetta. The Packet Filter:
An EÆcient Mechanism for User-level Network Code. In
Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles, pages 39{51, November 1987.

[17] J. C. Mogul. Simple and
exible datagram access controls
for UNIX-based gateways. In Proceedings of the USENIX
Summer 1989 Conference, pages 203{221, 1989.

[18] D. Thomsen, D. O'Brien, and J. Bogle. Role Based Access
Control Framework for Network Enterprises. In Proceedings
of the 14th Annual Computer Security Applications
Conference, December 1998.

[19] W. Venema. TCP WRAPPER: Network monitoring, access
control and booby traps. In Proceedings of the Third
USENIX UNIX Security Symposium, pages 85{92, 1992.

[20] J. Vitek and C. Jensen. Secure Internet Programming:
Security Issues for Mobile and Distributed Objects, volume
1603 of Lecture Notes in Computer Science.
Springer-Verlag Inc., New York, NY, USA, 1999.

199

