
Comparing 
Simple Role Based Access 

Control Models 
and Access Control Lists 

John Barkley 
National Institute of Standards and 

Technology 
Gait hersburg MD 20899 

(301) 975-3346 
j barkleyanist .gov 

August 11, 1997 

Abstract 

The RBAC metaphor is powerful in its ability to ex- 
press access control policy in terms of the way in which 
administrators view organizations. The functionality of 
simple Role Based Access Control (RBAC) models are 
compared to access control lists (ACL). A very simple 
RBAC model is shown to be no different from a group 
ACL mechanism from the point of view of its ability 
to express access control policy. RBAC is often distin- 
guished from ACLs by the inclusion of a feature which 
allows a session to be associated with a proper subset 
of the roles (i.e., groups in ACL terms) authorized for 
a user. Two possible semantics for this feature are de- 
scribed: one which requires a similar amount of pro- 
cessing as that required by ACLs, and another which 
requires significantly more processing than that required 
by ACLs. In addition, the capability to define role hier- 
archies is compared to an equivalent feature in ACLs. 

1 Introduction 

This paper compares simple Role Based Access Control 
(RBAC) models and access control lists (ACL). RBAC 
has several advantages over ACLs. Even a very sim- 
ple RBAC model affords an administrator the oppor- 
tunity to express an access control policy in terms of 
the way that the organization is viewed, i.e., in terms 
of the roles that individuals play within the organiza- 
tion. With RBAC, it is not necessary to translate a 
natural organizational view into another view in order 
to accommodate an access control mechanism. 

In addition, most RBAC models have features 
which most ACLs do not. In particular, some 
RBAC models[5][2][3] h ave role hierarchies where one 
role can inherit another. Much of this paper has 
been derived from the experiences of the NIST team 
which implemented RBAC on the World Wide Web 
(RBAC/Web)[l] for U nix and Windows NT servers’. 

This Introduction describes some concepts needed to 
discuss access control mechanism implementation. Sec- 
tion 2 briefly describes simple RBAC models and com- 
pares them to ACLs. Section 2.2 describes how a very 
simple RBAC model is no different from an ACL mech- 
anism which supports groups from the point of view of 
its ability to express access control policy. Section 2.3 
discusses the implementation implications of associat- 
ing sessions with a proper subset of a user’s authorized 
roles. Section 2.4 describes how hierarchies are some- 
times implemented in ACLs. 

1.1 Implementation Environment 

RBAC models are typically independent of the envi- 
ronment in which they may be implemented. For ex- 
ample, RBAC can be embedded in operating systems 
or database systems, or implemented at the applica- 
tion level. RBAC implementations discussed in this pa- 
per assume a network environment. All of the objects 
which are controlled by RBAC are spread among several 
servers connected by a network. 

Access control mechanisms require that security at- 
tributes be kept about users and about objects. User 
security attributes consist of things like the groups to 
which the user belongs and the roles authorized for the 
user. Object security attributes generally consist of the 
permissions required to perform operations on the ob- 
ject. Access control mechanisms compare user security 
attributes and object security attributes in order to de- 
termine access. 

Usually (although not always), object security at- 
tributes are kept with the object (e.g., in the header 
of a file) and the object resides on a single server. Con- 
sequently, when an object is accessed, its security at- 
tributes are quickly obtained once the object has been 
located. Changes in object security attributes need only 
be made at a single location. 

Bowever, in a network environment, the up-to-date 
values of user security attributes must be available to 
all servers. If user security attributes are kept on a 
single server, then that single server must be accessed 
across the network whenever user security attributes are 

‘Because of the nature of this report, it is necessary to men- 
tion vendors and commercial products. The presence or absence 
of a particular trade name product does not imply criticism or 
endorsement by the National Institute of Standards and Technol- 
ogy, nor does it imply that the products identified are necessarily 
the best available. 

127 



required by another server. If a copy of user security 
attributes is kept on each server, then when user security 
attributes change, those changes must be made on each 
server. 

1.2 Processing Phases 

This paper compares the processing required for simple 
RBAC models and ACLs from the perspective of the 
processing phases associated with most access control 
mechanisms: 

Administration The Administration phase consists of 
creating and maintaining user and object security 
attributes. Administration tools are usually priv- 
ileged applications. Administration usually occurs 
the least often of the three phases. 

Session The Session phase consists of establishing, 
changing the characteristics of, and removing ses- 
sions. A session is a set of processes, called sub- 
jects, which act on behalf of a user. Session estab- 
lishment involves authenticating the user, creating 
one or more subjects, and associating user security 
attributes with each subject. The Session phase 
usually occurs more often than the Administration 
phase and less often than the Enforcement phase. 

Enforcement The Enforcement phase consists of com- 
paring the user security attributes associated with 
the subject (i.e., the subject security attributes) to 
object security attributes in order to grant or deny 
access. The Enforcement phase occurs every time a 
subject attempts to access an object and is usually 
the most frequently occurring phase of the three. 

1.3 Sessions and Up-to-date User Infor- 
mation 

The Administration phase defines the rules under which 
subjects access objects so that when a user is authenti- 
cated to a system during the Session phase, a subject is 
created which accesses objects in the name of the user 
during the Enforcement phase. Up-to-date values of 
user security attributes defined during the Administra- 
tion phase must be available in order for subject secu- 
rity attributes to be created or modified during Session 
processing. In a network environment, implementations 
ensure that the Session phase has up-to-date values of 
user security attributes by one of the following basic 
approaches: 

Uncached User Information User information in- 
cluding security attributes is kept on a single server 
and that server is accessed during Session process- 
ing. 

Cached User Information User information includ- 
ing security attributes is kept on each server and 
Session processing takes place on each server with- 
out having to access any other server. 

Uncached User Information guarantees that user se- 
curity attributes used for Session processing are always 
up-to-date but requires a network communication when- 
ever a session is established. In addition, when a failure 
occurs on the network or on the server where user at- 
tributes are located, no sessions can be processed. On 
the other hand, Cached User Information does not, re- 
quire network communication when a session is estab- 
lished but does require that the cache be kept consis- 
tent with up-to-date user information whenever user in- 
formation, including user security attributes, changes. 
Most implementations use Cached User Information on 
the assumption that the Administration phase occurs 
much less frequently than the Session phase. Con- 
sequently, network use is reduced and servers’ overall 
throughput increased. 

2 Implementing Simple RBAC 
Models 

This section briefly describes simple RBAC models and 
compares their functionality to ACL mechanisms. The 
ACL mechanism of Windows NT[4] is used as an exam- 
ple to illustrate the comparison. 

In general, RBAC and ACL mechanisms require ap- 
proximately the same amount of processing during the 
Enforcement phase. However, because of its increased 
functionality, RBAC can require more processing dur- 
ing the Administration and Session phases. Processing 
during the Administration phase is usually limited by 
the ability of an administration tool to respond in a 
timely manner to requests from the administrator. Sig- 
nificant additional processing during the Session phase 
and especially during the Enforcement phase can seri- 
ously impact the throughput of the entire network of 
servers. 

2.1 Minimal RBAC Model 

Sandhu et a1.[5] define the RBACo Model as the mini- 
mal set of characteristics required for an access control 
mechanism to be considered an RBAC mechanism. The 
RBACo Model has the following components: 

1. users, roles, operations, and sessions; 

2. role/operation association (many to many); 

3. user/role association (many to many); 

4. user/session association (one to many, i.e., users 
may have multiple sessions but a session is only 
associated with a single user); 

128 



5. session/role set association (one to one, i.e., a user 
session is associated with a subset of the roles au- 
thorized for the user and this subset, often referred 
to as the active role se2 (ARS), may change during 
the session’s lifetime). 

During a session, the user may successfully perform any 
operations permitted by the roles in the current ARS. 
The ARS may or may not be a proper subset of the set 
of authorized roles. 

Some would require an access control mechanism to 
have only the first four components of the RBACo 
Model in order to be considered RBAC[G]. In this paper, 
the RBACM (“M” for “Minimal”) Model is defined as 
having the first four components of the RBACo Model. 
In addition, any feature of an RBAC model which pro- 
vides the capability for the ARS to be a proper subset of 
the set of authorized roles is referred to as an Authorized 
Role Subsetting feature. 

2.2 RBACM vs. ACLs 

ACLs typically associate an object with a list of users 
and groups. Associated with each user or group in an 
ACL for an object is a set of operations which may be 
performed on that object. An operation on the object 
may be performed by a user if that user or a group to 
which that user belongs is listed in the ACL associated 
with the object and that operation is associated with 
that user or that group. PASC P1003.le[7] (formerly 
know as POSIX.6) and Windows NT[4] are examples of 
specifications which define ACL mechanisms. 

Consider an ACL mechanism, ACLG, where only 
groups are permitted as entries in the ACL. ACLG may 
have an arbitrary number of groups and there are no 
restrictions on a user’s membership in any group or sev- 
eral groups. To describe an access control policy using 
ACLG, an administrator: 

1. Creates groups of individuals according to their re- 
sponsibilities (i.e., every member of a group has the 
same responsibilities). 

2. Associates with these groups the permissions nec- 
essary for the individuals in the group to carry out 
their responsibilities. 

To describe an access control policy using RBACM, an 
administrat,or: 

1. Creates roles based on the responsibilities necessary 
to meet the goals of the organization. 

2. Associates these roles with the permissions neces- 
sary to carry out these roles. 

3. Associates these roles to individuals. 

ACLG is equivalent to RBACM from the point of 
view that any access control policy described using 
ACLG can be described by RBACM and any access 
control policy described by RBACM can be described 
by ACLG. This equivalence can be shown by creating a 
one-to-one correspondence between the groups in the ac- 
cess control policy described using ACLG and the roles 
in the access control policy described using RBACM. 
Given an access control policy described using ACLG, 
the equivalent access control policy can be constructed 
using RBACM by associating a role with the user if that 
user is a member of the group which maps to that role. 
Conversely, given an access control policy described us- 
ing RBACM, the equivalent access control policy can be 
constructed using ACLG by making the user a member 
of the group which maps to the role if that user is as- 
sociated with that role. Appendix A provides a more 
precise description of how these constructions can be 
accomplished. Note that: 

l The functions in Appendix A used to define an ac- 
cess control policy based on RBACM or ACLG ex- 
press the capability of RBACM and ACLG as a 
means to represent access control policy. Moreover, 
these functions mirror the actions taken by an ad- 
ministrator to create the access control policy using 
RBACM or ACLG. 

l The constructions used to show the equiva- 
lence only depend on user/role, role/permission, 
user/group, and group/permission associations in 
the access control policy representations. How the 
permissions are represented is immaterial to the 
constructions as long as the permission represen- 
tations are the same in both RBACM and ACLG. 

Windows NT is an example of a network operating 
system which supports a group ACL mechanism that 
includes the functionality of ACLG. It is possible to 
implement RBACM in such an environment by simply 
creating tools to administer the RBAC metaphor using 
the ACL mechanism provided. To accomplish this, the 
groups of ACLG become the roles of RBACM. Such 
tools can usually be implemented as privileged applica- 
tions that: 

l only require processing during the Administration 
phase (see section 1.2), and 

l require no change to existing privileged system or 
kernel processes which provide processing during 
the Session and Enforcement phases. 

Not only is it usually possible to implement RBACM in 
such a manner given an ACL mechanism which supports 
ACLG, it is also usually possible to implement the role 
hierarchy, Static Separation of Duty, and Cardinality 
features of the NIST Mode1[212. 

2POSIX.1[8] has a Supplemenlary Groups feature. RBACM 

129 



2.3 Authorized Role Subsetting 

With an ACL mechanism, if a user is a member of a 
group, then that user is a member of that group for ev- 
ery and all sessions established. In other words, a user 
is a rnember of a group at all times and in all circum- 
stances. With the RBACo Model[5], each session may 
be associated with a different ARS. In addition, since an 
ARS may be a proper subset of a user’s authorized roles, 
a user may not be able to act in all authorized roles in 
a given session. In other words, a user may not be a 
member of a role at all times and in all circumstances. 

If the choice of roles to be used in a session is com- 
pletely at the discretion of the user, then the concept 
that each session may be associated with a different ARS 
is probably acceptable to most security administrators. 
For example, a user who is also an administrator ben- 
efits from having a window open for the user role and, 
on the same display, a window open for the administra- 
tor role. This may help reduce the possibility of user 
error, e.g., an illegal user action attempted in the ad- 
ministration window is likely carried out without error, 
whereas, the same illegal user action attempted in the 
user window causes an error. 

However, if the choice of ARS for a session is con- 
strained, as is the case with the Dynamic Separation of 
Duty feature of the NIST Model[2], the idea that users 
on their displays may have one window open with one 
ARS and another window open with a different ARS 
may not be consistent with a security administrator’s 
idea of “constrained choice.” For example, a bank teller 
is also an account holder at the bank where employed. 
Bank policy is to constrain employees who are also ac- 
count holders from being active simultaneously in both 
their employee and account holder roles. The bank does 
not consider the situation where two windows, one open 
for the role teller and one open for the role account 
holder, are simultaneously open on the same display to 
be consistent with this policy. 

One solution is to restrict a user to a single session at 
a time. This approach does not increase the processing 
required during the Session phase. The indication that 
a user has a session active becomes part of user security 
attributes which must be referenced during the Session 
phase anyway. 

Another solution is to restrict a user to a single session 
on a given workstation or to a single session on several 
workstations at a given location. These approaches are 
variations of the requirement that a single unique ARS 
is associated with a given set of sessions rather than 
just a single session. In particular, a session set could 

and the role hierarchy, Static Separationof Duty, and Cardinality 
features of the NIST Model[2] can also be implemented as a priv- 
ileged administration tool in a system that supports POSIX.1. 
However, POSIX.l does not support ACLG and has limited flex- 
ibility in associating groups with file permissions. 

consist of all sessions in which case there would be a 
single unique ARS associated with the user at all times. 

From an implementation point of view, this require- 
ment for a single ARS for a session set is significant. It 
means that: 

the single unique ARS for each user’s session set 
must be available as part of the user’s security at- 
tributes when a new session for that user is estab- 
lished, and 

whenever a user’s ARS changes for any session in 
a session set, that change must be reflected in all 
sessions within the session set. 

Compare the actions necessary during Session process- 
ing for a system implementing the semantic where there 
can be a different ARS for each session to the actions 
necessary during Session processing for a system imple- 
menting the semantic where the ARS must be the same 
for all sessions in a session set. First, consider the se- 
mantic where there can be a different ARS for each ses- 
sion. When a session is created for a given user or when 
an ARS is changed for a given user’s existing session: 

the given user’s security attributes are obtained, 

an ARS is created based on constraints and/or user 
choice, and 

each subject in the new or existing session is up- 
dated with the ARS created. 

Now, consider the semantic where there must be the 
same ARS for all sessions within a session set. When 
a session is created for a given user or when an ARS is 
changed for a given user’s existing session, in addition 
to the three actions listed above: 

4. the user’s session set to which the new or existing 
session belongs is identified. 

5. each subject in each session of the identified session 
set is updated with the ARS created, and 

6. the identified session set in the given user’s security 
attributes is updated with the ARS created. 

Thus, to support the semantic where there must be 
the same ARS for all sessions within a session set, in 
addition to updating user attributes during Adminis- 
tration processing and updating the ARS for each sub- 
ject in the current session during Session processing, 
the user security attributes and the subject security at- 
tributes for all subjects in a session set must be updated 
during the Session phase. An ACL mechanism usually 
only requires that user security attributes be updated 
during Administration processing and that subject se- 
curity attributes for the subjects in the current session 
be updated during Session processing. 

130 



For example, in Windows NT, when a different ARS 
is permitted for each Session, there is no significant dif- 
ference between the processing required during the Ses- 
sion phase for RBACo and for ACLs. To implement 
authorized role (i.e., group) subsetting in Windows NT 
where each session can have a different ARS, the logon 
process (Net Logon) must be modified. Subject security 
attributes (called an access token) for the subject asso- 
ciated with the user must be created indicating that the 
user is a member of only those groups in the ARS. 

IIowever, when the same ARS is required for all ses- 
sions in a session set, the processing required by RBACo 
during Session processing is significantly greater as com- 
pared to ACLs. On Windows NT, a Domain consists 
of several servers one of which is distinguished as the 
Primary Domain Controller (PDC) and the others are 
known as Backup Domain Controllers (BDC). A user 
logs into any server and subjects (processes) are initi- 
ated which act on behalf of that user. In order for each 
subject in a session set to be updated with a newly cre- 
ated or modified ARS, every subject in the session set 
in which the new ARS is created or modified must be 
located on each of the servers in the Domain and the 
ARS in the subject security attributes of each of those 
subjects must be updated to reflect the new ARS. 

In addition to updating the ARS (i.e., the access to- 
ken) in all subjects of a session set, the session set’s 
ARS in the user security attributes must be updated as 
well. Windows NT is an example of the Cached User 
Information approach to ensuring that user security at- 
tributes are kept up-to-date. User security attributes 
are changed on the PDC and the PDC communicates 
changes to each of the BDCs. When the ARS is the 
same for all sessions in a session set, the ARS for the 
session set in user security attributes must be kept up- 
to-date throughout the domain. Thus, when an ARS 
changes for any session in a session set, that ARS must 
be updated for that session set on the PDC and then 
communicated to each of BDCs. For anything but a 
small domain, such activity can seriously impact net- 
work throughput and PDC/BDC performance. 

2.4 Role Hierarchies 

The capability for one role to inherit another role is 
a common feature of RBAC models, e.g., the Sandhu 
RBACl Model[S], the NIST Model[2], the SQL3 RBAC 
Model[3]. A role hierarchy is a strict partial ordering[9] 
(i.e., like ‘I<“, asymmetric and transitive) on the set of 
roles. One can think of role inheritance as the capabil- 
ity for one role to be authorized for (or “included in”) 
another role. SQL3 implements role hierarchies in this 
manner. 

The equivalent concept with ACLs is the capability 

for one group to be a member of another group3. In 
other words, “role a inherits role b” is equivalent to 
“role a is authorized to perform role b” or “group a is 
a member of group b.” The processing required for role 
hierarchies during the Session phase is approximately 
the same for the equivalent feature in ACLs. However, 
during the Administration phase, the processing may 
be greater for RBAC since some RBAC Administration 
tools permit role hierarchies to be managed graphically. 

3 Summary 

The ability to express access control policy using the 
very simple RBAC Model RBACM is no different from 
ACLG which is supported by many ACL mechanisms, 
e.g., PASC P1003.le[7] and Windows NT[4]. An RBAC 
mechanism consisting of RBACM and the role hierar- 
chy, Static Separation of Duty, and Cardinality features 
of the NIST Model[2] can usually be implemented on a 
system that supports ACLG. Such an implementation 
only requires the development of administration tools 
that only require processing during the Administration 
phase. An implementation of a simple RBAC model, 
i.e., RBACM, RBACo[5], RBAC1[5], can require ap- 
proximately the same amount of processing as that re- 
quired by an ACL implementation. The only significant 
difference occurs when the RBAC model includes an Au- 
thorized Role Subsetting feature with the semantic that 
all sessions within a set of sessions must have the same 
ARS. 

References 

PI 

PI 

[31 

141 

[51 

J. Barkley, A. Cincotta, D. Ferraiolo, S. Gavrilla, 
and D.R. Kuhn. Role Based Access Control for the 
World Wide Web. In 20th National Information Sys- 
tem Security Conference. NIST/NSA, 1997. 

D. Ferraiolo, J. Cugini, and D.R. Kuhn. Role Based 
Access Control: Features and Motivations. In An- 
nual Computer Security Applications Conference. 
IEEE Computer Society Press, 1995. 

ISO/IEC 9075, (Working Draft) Database Language 
SQL - Part 2: Foundation. Document ISO/IEC 
JTCl/SC21 N10489, July 1996. 

Karanjit S. Siyan. Windows NT Server ,$ Pro- 
fessional Reference. New Riders Publishing, Indi- 
anapolis, Indiana, 1996. 

R. Sandhu, E.J. Coyne, II.L. Feinstein, and C.E. 
Youman. Role Based Access Control Models. IEEE 
Computer, 29(a), February 1996. 

3Windows NT Local Groups can contain Domain Groups as 
members. However, Windows NT Domain Groups cannot have 
Local Groups or other Domain Groups as members. 

131 



PI 

171 

P31 

PI 

Schumann Software Systems Inc. World Wide Web 
URL - http://www.schumannsoftware.com/. 

Draft Standard for Information Technology - 
Portable Operating System Interface (POSIX) - 
Part 1: System Application Program Interface: 
Protection, Audit, and Control Interfaces [C Lan- 
guage]. Portable Applications Standards Committee 
(PASC), IEEE Computer Society. 

IEEE Standard for Information Technology - 
Portable Operating System Interface (POSIX) - 
Part 1: System Application Program Interface 
(API) Amendment 1: Realtime Extension [C Lan- 
guage]. IEEE Std 1003.1b-1993. 

Patrick Suppes. Axiomatic Set Theory. Van Nos- 
trand, Princeton, New Jersey, 1960. 

A Equivalence of RBACM and 
ACLG in Specifying Access 
Control Policy 

Definitions: 

Let: 

u = {Ul, 212,. . . ,21,,} - a finite set of users 
p= {Pl,P2,... ,pnp} - a finite set of permissions defin- 
ing permitted operations on objects 

roleE p(P) - a role is an element in the power set of P, 
i.e., the set of all subsets of P 

RBACMP{(I,~} - an RBACM access control policy on 
U and P, is a function fR{u,p} on u x &v(P)) (fR{u,p} 
is a function which maps ‘Eli E U to a set of roles) 

groupc p(U) - a group is an element in the power set 
of u 

GP{cr,p} - an ACLG access control policy on U and P, 
is a function f~{u,pl on p(V) x p(P) (f~Iu,pl is a func- 
tion which maps a set of users, i.e., a group, to a set of 
operations) 

Equivalence: 

Any access control policy which can be specified us- 
ing ACLG (GP{“,p)) can be specified using RBACM 
(RBACMP{U,P)), i.e., 

VU, P, fc{cr,vj, ~R{u,PJ 3 (G E du), KS’ = 

{J’S I u E G, fqu,~)(G) = PS} 3 

fR{C’,P}(u) = RS) 

The equivalent RBACM access control policy spec- 
ification may be constructed from the ACLG access 
control policy specification by initializing the function 
fR(u,p) to the empty set and repeating the following 
procedure for each user u E U: 

Initialize the role set RS to the empty set. 

For each group G, if the user u is a member of 
group G, add the set of operations PS, where PS = 
f~j~,p}(G), to the role set RS. 

Add the mapping u ----+ RS to fR{u,p}. 

Any access control policy which can be specified us- 
ing RBACM (RBACMP{“,P)) can be specified using 
ACLG (G+,P)), i.e., 

vu, p, fR{U,P), gfG{U,P) 3 (ps E {ps 1 u E u, 

ps E fR(U,P}(u)) - GPS = 

{U 1 PS E ~R{u,P}(u)}, .~G{u,P)(GPs) = PS) 

The equivalent ACLG access control policy specifi- 
cation may be constructed from the RBACM access 
control policy specification by initializing the function 
f~Iu,pl to the empty set and repeating the following 
procedure for each role PS such that PS is a role 
for some user u, i.e., PS is an element of the set 
{Ps ) u E u, ps E fR{&p}(u)}: 

1. Initialize the group GPS to the empty set. 

2. For each user u, if u has the role PS, i.e., PS E 
fR{u,p}(u), add the user to the group Gps. 

3. Add the mapping GPS - PS to the function 
fG{U,P}. 

132 


