
Discrete Fourier Transform (DFT)
&

Fast Fourier Transform (FFT)

Lab 9

Last Time

𝑋 𝑘
1

𝑁Δ𝑡
≅ Δ𝑡 𝑥 𝑚Δ𝑡 𝑒−𝑗2𝜋𝑘𝑚 𝑁

𝑁−1

𝑚=0

= Δ𝑡 ∙ 𝒟ℱ𝒯 𝑥 𝑚Δ𝑡

We found that an approximation to the Continuous Time Fourier Transform may
be found by sampling 𝑥 𝑡 at every 𝑚Δ𝑡 and turning the continuous Fourier
integral into a discrete sum.

We gave this a name: Discrete Fourier Transform (DFT).

The DFT Pair

𝑥 𝑛 =
1

𝑁
 𝑋 𝑘 𝑒+𝑗2𝜋𝑘𝑛 𝑁
𝑁−1

𝑘=0

𝒟ℱ𝒯
 𝑋 𝑘 = 𝑥 𝑛 𝑒−𝑗2𝜋𝑘𝑛 𝑁

𝑁−1

𝑛=0

These definitions assume that the first nonzero elements of 𝑥 𝑛 and 𝑋 𝑘 are 𝑥 0
and 𝑋 0 !

If your data (and program) do not follow this convention then there will be a phase shift in
the forward DFT. A similar problem occurs for the reverse DFT.

For DFT 𝑋 𝑘 is periodic!
As it turns out 𝑋 𝑘 is periodic with period 𝑁
regardless of the nature of 𝑥 𝑛 !

Sampling a continuous-time signal is multiplying by a
impulse train in the time domain. This of course has
the result that the Fourier Transform is convolved
with a impulse train resulting in shifted versions
(periodic) in the frequency domain.

𝛿𝑇0
ℱ

1

𝑇0
𝛿𝑓0

 𝑥 𝑡
ℱ
 𝑋 𝑓

∴ 𝑥 𝑡 ∙ 𝛿𝑇0
ℱ

1

𝑇0
𝛿𝑓0
∗ 𝑋 𝑓

DTFS 𝑥 𝑛 = 𝑐𝑘 𝑘 𝑒
𝑗2𝜋𝑘𝑛 𝑁

𝑁−1

𝑘=0

𝑥 𝑛 =
𝑋 𝑘

𝑁
𝑒𝑗2𝜋𝑘𝑛 𝑁

𝑁−1

𝑘=0

 Inverse DFT:

DFT is a misnomer!
It’s actually equivalent to Discrete-Time Fourier Series.

Discrete Continuous

𝑥 𝑡 = 𝑐𝑘 𝑘 𝑒
𝑗2𝜋𝑘𝑛 𝑁

𝑁−1

𝑘=0

 CTFS

Discrete

=

Why do we care?

MATH WORLD

CTFS

𝑥 𝑡 = 𝑐𝑥 𝑘 𝑒
𝑗2𝜋𝑘 𝑇

∞

𝑘=0

𝑐𝑥 𝑘 =
1

𝑇
 𝑥 𝑡 𝑒−𝑗2𝜋𝑘/𝑇𝑑𝑡
𝑇

Real WORLD (MATLAB)

(Approximate CTFS using DFT)

𝑐𝑥 𝑘 ≅
1

𝑁
∙ 𝒟ℱ𝒯 𝑥 𝑛Δ𝑡

You should care!

MATH WORLD

CTFT

𝑥 𝑡 = 𝑋 𝑓 𝑒+𝑗2𝜋𝑓𝑡𝑑𝑓

∞

−∞

𝑋 𝑓 = 𝑥 𝑡 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑓

∞

−∞

Real WORLD (MATLAB)

(Approximate CTFT using DFT)

𝑋
𝑘

Δ𝑡𝑁
≅ Δ𝑡 ⋅ 𝒟ℱ𝒯 𝑥 𝑛Δ𝑡

𝑘 ≪ 𝑁

Mindblown

MATH WORLD

DTFT

𝑋 𝐹 = 𝑥 𝑛 𝑒−𝑗2𝜋𝐹𝑛
∞

𝑛=−∞

𝑥 𝑛 = 𝑋 𝐹 𝑒𝑗2𝜋𝐹𝑛𝑑𝐹
1

Real WORLD (MATLAB)

(Approximate DTFT using DFT)

𝐹 →
𝑘

𝑁
 and 0 < 𝑛 < 𝑁 − 1

𝑋
𝑘

𝑁
≅ 𝒟ℱ𝒯 𝑥 𝑛

𝑥 𝑛 ≅
1

𝑁
⋅ 𝒟ℱ𝒯−1 𝑋

𝑘

𝑁

Fourier Family
Continuous Frequency, 𝑋 𝑓 Discrete Frequency, 𝑋 𝑘

Continuous
Time, 𝑥 𝑡

Discrete
Time, 𝑥 𝑛

Continuous Time Fourier
Transform (CTFT)

Discrete Time Fourier
Transform (DTFT)

Continuous Time Fourier
Series (CTFS)

Discrete Time Fourier
Series (DTFS) -OR-

Discrete Fourier Transform
(DFT)

DFT is the workhorse for Fourier Analysis in MATLAB!

DFT Implementation

Textbook’s code pg. 303 is slow because of the
awkward nested for-loops. The code we built in last
lab is much faster because it has a single for-loo.

Our code

Textbook’s code

𝑋 𝑘 = 𝑥 𝑛 𝑒−𝑗2𝜋𝑘𝑛 𝑁
𝑁−1

𝑛=0

Speed -FFT

An DFT algorithm which decrease the number of
computation (thereby decreasing the computation time) is
called the Fast Fourier Transform (FFT).

BUT!!!! It only is efficient when 𝑁 is a integer power of two,

N={1,2,4,16,32,64,128,256,512,1024,…}

Otherwise there is no reduction in computation complexity!

“Uncle” Gauss

fft() and ifft()

In MATLAB the FFT algorithm is already programmed
in .

fft(x) operates on a vector x (in our case a discrete-
time signal) and gives back the DFT of x. CAREFUL, It
may need to be normalized!

Likewise ifft(y) operates on a vector y (in our case a
discrete-frequency representation of a signal) and
gives back the inverse DFT of y.

DFT Code to Approximate CTFT
deltat=0.01; %time resolution

T=1.28; %period

N=T/deltat; %number of sample points

m=0:N; %time index

a=-1j*2*pi/N; %constant used below

xt=us(m*deltat).*exp(-m.*deltat); %time sampled signal

%preallotcate frequency domain vector

Xf=zeros(1,N);

for k=0:N-1

 temp=xt.*exp(a*k.*m);

 Xf(k+1)=deltat*sum(temp);

end

stem(abs(Xf))

𝑋 𝑘
1

𝑁Δ𝑡
≅ Δ𝑡 ∙ 𝒟ℱ𝒯 𝑥 𝑚Δ𝑡

FFT Code to Approximate CTFT

deltat=0.01; %time resolution

T=1.28; %period

N=T/deltat; %number of sample points

m=0:N; %time index

xt=us(m*deltat).*exp(-m.*deltat);%time sampled signal

Xf=deltat*fft(xt); %FFT to compute CTFT approx.

stem(abs(y))

𝑋 𝑘
1

𝑁Δ𝑡
≅ Δ𝑡 ∙ ℱℱ𝒯 𝑥 𝑚Δ𝑡

fftshift()
Remember I said 𝑋 𝑘 is periodic with period N? We
can use this to our advantage to plot the frequency
“spectrum” by shifting the period to center around
the DC component.

In MATLAB the function that does this is called
fftshift().

Note there is also a function ifftshift() which does the
reverse.

Before fftshift()

After fftshift()

One last thought
When you use fft() you need to normalize the output.

In the case of the this lab where you are finding the DFT of a
sampled rectangle function with amplitude one you should
divide the result of fft() by N.

y=fft(x)/N;

1

𝑁
 𝑥 𝑛 2
𝑃𝑒𝑟𝑖𝑜𝑑

𝑛

=
1

𝑁2
 𝑋 𝑘 2
𝑃𝑒𝑟𝑖𝑜𝑑

𝑘

 Parseval ->

