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rad Rri

P Rn’+R_L

(Dimensionless). (14.62)

Even though the input radiation resistance is a parameter that is measured in the
near zone of an antenna, Equation (14.61) shows that it can be calculated by knowing
only the far-zone radiation pattern. On the other hand, it is not so easy to calculate the
input reactance X;,. This is because X, represents energy stored in the fields close to
the antenna. Hence, X, can only be calculated by first calculating the fields close to
the antenna, which are typically much harder to calculate than the far-zone fields.

Another common resistance parameter used to describe antennas is the radia-
tion resistance

where I, is the maximum current on the antenna. This resistance is related to the
input radiation resistance R,;, but they are equal only when the maximum current on
the antenna appears at the input terminals. In general, R,; and R, are related by

o=t Imax 2
R, = [ 1. ] R,.

n

(14.64)

% 14-5 Simple Antennas

Simple antennas consist of a single radiating element or structure. The major classes
of simple antennas include straight wire antennas, loop antennas, aperture antennas,
and reflector antennas. These antennas are often used individually, but they can also
be used as the basic building blocks of larger antenna structures called arrays. In this
section, we will outline the basic characteristics of the major classes of simple antennas.
Later, we will discuss how these elements can be arranged to form arrays.

14-5-1 DIPOLES

We have already discussed one type of dipole, the infinitesimal (or short) dipole. This
antenna is simple to model, but is not very practical for a number of reasons, the most
important being that its input impedance is undesirable—a small Tesistance in series
with a very large capacitive reactance. Because of this, it is very difficult to design effi-
cient matching networks that allow short dipoles to be driven by amplifying circuits.
However, when the dipole length is on the order of a half wavelength or more, its input
impedance becomes much more attractive. This, along with its mechanical simplicity,
makes the finite-length dipole attractive for a number of applications.

In order to determine the ficlds generated by finite-length dipoles, we must first
determine what kinds of current distributions are excited on these wires by a voltage
feed. Calculating these currents directly from Maxwell’s equations is a difficult prob-
lem, since both the currents and the fields must be found simultaneously. A simpler,
alternative procedure is to consider the wire configurations shown in Figure 14-10.
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Figure 14-10 Sequence of wire
€2 configurations for determining the current
distributions on dipoles: a) A straight
dipole. b) A slightly bent dipole. ¢) An
(a) (b) (c) open-circuited transmission line.

In Figure 14-10a, a dipole antenna of length € is fed at its center by a voltage source.
Figures 14-10b and ¢ show the same geometry, but with the dipole arms bent progres-
sively towards each other until they are parallel. At the end of this progression, the
wires form a uniform, open-circuited transmission line. Even though the properties of
transmission lines and antennas are quite different, the current on the wires remains
remarkably constant throughout the progression. This means that we can use the
transmission-line current as an approximation of the antenna current. Using standard
transmission-line analysis, we find that the current on the upper wire of Figure 14-10c
is of the form

I(z) =1, sin[kg - z)]

where k = w Ve, is the phase constant of a transmission line with an air dielectric
and z = 0 occurs at the terminals. Since the currents on the upper and lower wires
have even symmetry, the preceding expression for /(z) can be used over the entire
length of the dipole in Figure 14-10a by replacing z with |z [, yielding

oy =1, sin[k(§ . lzl)J. (14.65)

This approximation for /(z) is most accurate when the dipole is fed at its center, but
can also be used for off-center-fed dipoles.
Figures 14-11a-c show the current distributions excited on dipoles of three dif-

ferent lengths.

1(z)

Imsin(k€/2)

Figure 14-11 Current distributions on dipole antennas: a) { << A/2. b)t=21/2. ¢)t=A.
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As can be seen, when { << A/2, the shape of the current is roughly triangular. For
longer lengths, /(z) takes on a sinusoidal shape, with more lobes on longer length
wires.  For all lengths, the current /, at the center of the wire is givenby /, =1
sin (k €/2). However, when ¢ is an odd multiple of half wavelengths, J =/

il m*
Having found an expression for the dipole current 1(z), we can calculate the
total radiated field by summing the contributions

from each infinitesimal segment
along the dipole. Referring to Figure 14-12 and usi

ng the field of an infinitesimal cur-
rent segment (Equation (14.41 ). we can write the far-zone contribution from the seg-
mentatz = 7’ as

kl(z')d7' ) —JkR R
dE = /X! gf~)f«5—~ msing' <4, (14.66)
where R is the length of a line from the segment to the observer and ¢’

this line makes with the z-axis. When r > ¢/2, all lines drawn from
observer are nearly parallel, so 8 ~ §' and

is the angle that
the wire to the

R~r—zcos@, (14.67)

where r and 6 are the position coordinates of the observer. Substituting Equation

(14.67) into Equation (14.66) yields
k(e dy
Ir— Y a,e/ke cost (14.68)

Replacing /(z') with 1, sinfk[(€/2) - |z
field along the wire, we obtain

dE =

[1} and integrating all the contributions to the

TOP ; ~jkr 12
JkI,e” N . ¢ o
B = f dE=—~~———fnsm()af sin k(> — |z] |]eks cosg,
BOTTOM dmr 0 S 2
re
€2
i R

Figure 14-12 Geometry for determining
the far-zone radiated field of a finite-
length dipole.
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Using Euler’s identity to expand the exponential term and evaluating the resulting
integral, we get
E = /Mue™

———F(0) 4, [V/m], (14.69)
2y

where F(8) is called the pattern function and is given by

(2 co00) - cos
Ccos b Cos (.052

F(9) =

Sind (14.70)

Since in the far zone E and H behave locally as plane waves, we also have Hy,=E,/n.
Hence,

N 11 e*jkr

27’;' F(G)ad,. (1471)

Figure 14-13 shows the pattern functions for four different-length wire antennas,
each normalized to a maximum amplitude of unity. As can be seen, dipole pattern
functions become more complex as their lengths increase. The reason for this is that
the phase difference between the fields emanating from the endpoints of the dipole
becomes more pronounced as the dipole length increases. At 6 = 90°, all delays are

z AM z
TN
N N/

e g1

0N

(©) €=1.254 ) €=152

Figure 14-13 Pattern functions for dipole antennas oriented along the z-axis: a)l = A/2.
b)t=A ¢)l=125A d)e=1.5A
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> resulting equal, since the current lies along the z-axis. But as 6 approaches 0° or 180°, contribu-
' tions from the different points on the dipole arrive with significant phase differences.
‘ We can find the power radiated by a wire antenna by integrating the radiation
(14.69) . intensity over a large sphere that surrounds the wire. Substituting Equations (14.69)
and (14.70) into Equation (14.51), we see that the radiation intensity is

12
U(o, ¢) =12 F2(p).

8
(14.70) Substituting U (6, ¢) into Equation (14.55), we find that the directivity D is given by
. D " Umax — Fz(a)lmax - Fz(e)lmax
L]‘b:Eﬁ/T). O_U - 1 27 . _1 g . .
-f f F2(0) sin 6 d6 d¢b —f F2(6) sin 0 d6
dmly Jy 2 ),
(14.71) V The integral in this expression cannot be evaluated in closed form, but it can be manip-
ulated into a form that contains well-tabulated functions,? or it can be evaluated
e antennas, numerically. Figure 14-14 show D, as a function of ¢/A. As can be seen, D, =~ 1.5
ole pattern when { << A/2. For (= A/2, the directivity is
E‘Eis 3‘“{ ‘h;“ ] D,=164=215[dB]  (Half wave dipole). (14.72)
[ the dipole
| delays are Remembering that the current at the dipole center is L, = I sin (k £/2), we can

determine the input radiation resistance of a lossless, center-fed dipole using Equa-
tion (14.61):

2P 4 b/ e i
i = rad _ de. Y
Ry = R, == D fo F2(6) sin  d6 (14.73)

The dark curve in Figure 14-15 is a plot of R;, as a function of dipole length. The
values in this curve were obtained using Equation (14.73), except for the lengths in the
range 0.8 to 1.04, where Equation (14.73) predicts unreasonably large values. These
incorrect values occur because the approximate current distribution goes to zero for
this range of dipole lengths, whereas the actual current distribution does not. To

Directivity 4
3.5

3.0 -

Nt

2.5 -

>— 1 20

1.5

V ! ! | I ! T
> 5 1.0 0.5 10 15 20 25 30 Figure 14-14 Dipole directivity vs. length
: Dipole length [wavelengths] in wavelengths.

a){=A/2. *See C. Balanis, Antenna Theory (Harper & Row publishers). New York, 1982.
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3.0 "—
Rin

20k /
<,
8 10}
=
3
o
(]
g 0 ! | | | |
e 0.2 0.4 0.6 0.8 1.0 12 1.4 1.6
a
£
- 10

A Dipole length in wavelengths

-2.0 - Xin

Figure 14-15 Input resistance and reactance of a center-fed dipole vs. length.

account for that behavior, the values of R, plotted in the aforesaid range were obtained
using an advanced numerical technique that calculates the exact current distribution on
the wire. The figure also shows the values of the input reactance X;, . which were
obtained using the same numerical technique throughout the entire range of dipole
lengths.

As can be seen from Figure 14-15, the input impedance of a center-fed dipole is
purely resistive for certain lengths, called resonant lengths. The shortest resonant
length is € =~ A/2 ({ = 0.475A, to be more exact), for which we obtain

Z,=T73+;0 [Q] (Half wave dipole). (14.74)

There are other resonant lengths, but the half-wave dipole is by far the most popular
choice, since it has the shortest length, the simplest radiation pattern, and a relatively
large bandwidth over which Im(Z,,) is small.

Dipole antennas were among the first antennas used in electrical communications
and are still used in a wide range of applications. They are particularly popular at RF
frequencies, where wavelengths are long. This is because it is usually much easier to
mount a long wire between towers and trees than it is to position a large metal surface,
such as a reflector.

There are times when dipoles are formed unintentionally. For instance, coaxial
cables act as dipole radiators when they carry unbalanced currents. As we discussed in
Section 9-3-7, a nonzero magnetic field is generated outside a coaxial cable that has
unbalanced currents. When the currents and fields are time varying, a time-varying
electric field is also produced, since time-varying electric fields always accompany
time-varying magnetic fields. Thus, to an outside observer, the cable appears to be a
thick wire dipole carrying the common-mode current (i.e., the sum of the inner and
outer currents).
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Radiation from cables is a significant problem in digital equipment, since it causes
Interference with communication services (such as radio and television) and can also
interfere with the operation of the digital systems themselves. A common way of sup-
pressing this radiation is to wrap an offending cable around a ferrite core, as shown in
Figure 9-26b, which reduces the common-mode current.

Two types of wire antennas that are closely related to dipoles are monopoles and
folded dipoles, which we will discuss in the paragraphs that follow.

a current which is a mirror image of the monopole current. To ensure that the cur-
rent on the equivalent dipole has the required even Symmetry, a voltage V;_ is

applied symmetrically, just below the 7 = 0 plane. The fields above the 7 = 0 pllane

are unchanged, since the E,., = 0 boundary condition once imposed by the ground
plane is now maintained by the image currents. Asa result, the radiation pattern of
a monopole is identical to a dipole whose length is exactly twice that of the mono-
pole.

We can find the input impedance of a monopole using the equivalent dipole
shown in Figure 14-16b. Starting with Z, = Vin/Iy, We can rewrite this as

(a)

(b)

Figure 14-16 A monopole over a conducting plane and its equivalent dipole.
a) The monopole and ground plane. b) The equivalent dipole in free space.
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mn

e
2

n

V.
mempnlc = .Z;n
Since the two series voltage sources in the equivalent dipole constitute a single voltage
of value 2V, , it follows that 2V,./1,, is the impedance of the equivalent dipole. Thus.
the monopole input impedance is given by

1
= (14.75)

monopole ) dipole*

For a monopole of length ¢ ~ A/4, we have

V4 - X 73 =365 [Q] (A/4 monopole). (14.76)

monopole

N[ —

Because monopole antennas require only half the wire length of dipole antennas,
they are often used in low-frequency systems, where wavelengths are long. They also
have radiation patterns that are ideal for ground-to-ground communication systems,
since the direction of maximum radiation is parallel to the ground. Also, unlike hori-
zontal dipoles, which must be mounted several wavelengths above the ground to be
effective (due to reflections off the ground that tend to cancel the fields), monopoles
work best when mounted directly above the ground.

Folded Dipoles. Another common variation of the dipole wire antenna is the
folded dipole, shown in Figure 14-17a. As can be seen, this antenna consists of two
A/2 dipoles connected in parallel, with the feed point at the center of one of the dipoles.
Although at first glance it may appear that a folded dipole antenna will act more as a
loop antenna than as a dipole, the small area enclosed by the wires prevents it from
acting in the loop mode.

Folded dipoles can be analyzed quite easily by recognizing that, according to the
superposition principle, the single voltage feed can be represented as the sum of the

T ]
|

IOT /eT

+ W Vl o + Vi

e=n2 = VP&P T 2%?8? o
Yo A b

1 L_
(a) (b) (c)

Figure 14-17 A folded dipole and its odd and even components. a) A folded dipole, fed
atasingle port. b) The odd-mode excitation. ¢) The even-mode excitation,




