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2. Vector Analysis

2-1 Introduction

Vector analysis is the branch of mathematics that was developed to describe quantities
that are both directional in nature and distributed over regions of space.  The reason for starting
our study of electromagnetics with vector analysis is simple; vector analysis is the language best
suited for describing electromagnetic effects.

In this chapter, we will discuss the elements of vector analysis that are directly applicable
to electromagnetic phenomena.  Our discussion will start by defining the concept of a physical
quantity, and then identifying the properties of scalar and vector fields.  The remainder of our
discussion will be devoted to development of the algebra and calculus of vector fields.

2-2  Physical Quantities and Units

Electromagnetics deals with phenomena and entities that can be perceived and measured.
We call entities that can be measuredphysical quantities .  In physics, physical quantities are
always defnined in terms of the measurment proceedure use to percieve them:

The definition of a physical quantity is the description of the operational procedure used
to measure the quantity1.

This kind of definition is callen an operational definition, since it defines a physical quantity in
terms of the process used to measure it.

To help us understand this definition, let us consider a common physical quantity,
distance.  We can define the distance between two points as the total number of measuring
objects that can be laid end-to-end on a straight line between the points.  The measuring object
can be anything, such as a rock, a twig, or a meter stick.  Since we have defined distance by
telling how to measure it, any number of people can measure the distance between two points
and obtain the same answer.  Obviously, the accuracy to which a physical quantity can be
measured depends upon how carefully one follows the measurement procedure.

Any measurement is a comparison of what is being measured and some standard.  These
standards are called units.  In the case of the distance example just presented, the unit is the
object whose size is used as the measurement standard, i.e., the rock, twig, or meter stick.  In
order for the specification  of a physical quantity to have meaning the unit must be well defined.
For instance, if a rock is used as the unit, the particular rock must be clearly identified, along
with how it is oriented during the measurement process.

Because they are defined in terms of  how they are measured, physical quantities are
always specified by one or more numbers, each with its associated unit.  The number of
numbers needed to specify a particular physical quantity depends on the way the quantity is
defined.  For instance, only one number is required to specify a distance.  On the other hand,
three numbers (called coordinates) are necessary to specify a position in three-dimensional
space.  All naturally occurring physical quantities can be represented by real numbers.
However, we sometimes find it convenient to create complex-valued physical quantities from
naturally occurring physical quantities.  A common example is in circuit analysis, where
complex phasors are used to represent sinusoidal steady state voltages and currents.  In these
cases, complex-valued quantities can be considered to represent two quantities - one real, and
the other imaginary.

The unit of a physical quantity can be any well defined standard, but it is usually

1See Elements of Physics by Shortley and Williams, 4th edition, Prentice-Hall, 1965, pp. 4.
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desirable to limit the number of units used in a measurement to as few as possible.  Certain sets
of quantities are, by convention, regarded as fundamental quantities, specified in
internationally accepted fundamental units.  All other units can be derived in terms of these
fundamental units.  By far the most accepted unit system among electrical engineers is the
MKSA system2.  The fundamental quantities in this system are length, mass, time, and current,
specified in meters, kilograms, seconds, and amperes, respectively.  The MKSA system is a
subset of the International System of Units (SI), which also includes the candela (a unit of
luminous intensity) and the degree Kelvin (a unit of temperature).

Derived units are units that are specified in terms of the fundamental units.  The

newton, for example, is a derived unit of force, defined as 1.0 [kg•m/sec2].  The most common
derived units used in electromagnetic analysis are summarized in Appendix A.

The dimensions of a physical quantity are specified by the powers of the fundamental
physical quantities that occur in its definition.

For example, since the unit of speed is a length unit divided by a time unit, its dimensions are

(length)/(time).  Similarly, the dimensions of the newton are (mass)x(length)/(time)2.  The
dimensions of physical quantities are important, because two physical quantities can be added
or subtracted if, and only if, they have the same dimensions.  Thus, apples can be equated with
apples, but not oranges.  Any equation in which the units of the left and right hand sides do not
agree is simply wrong.

2-2.1  Discrete and Field Quantities

The physical quantities used in electromagnetics can be either discrete or field
quantities.  The simplest are discrete quantities.

Discrete quantities are defined over regions of space or at single points, but not on a
point-by-point basis throughout a region.

The definition of the average temperature of a room has nothing to do with the position of the
observer, so it is a discrete quantity.  Similarly, the distance from Kansas City to New York is a
quantity that is independent of the position of an observer.

Most of the physical quantities encountered in electromagnetics are field quantities.

Field quantities are defined on a point-by-point basis throughout a region of space.

The temperature in a room is a field quantity, since it is defined uniquely for each point in the
room.  Another field quantity is wind speed, which is also a function of the position at which it
is measured.

The distinction between discrete and field quantities is important, because the
procedures used to describe them are different.  One needs only ordinary algebra to balance a

2For a complete discussion of the unit systems used in electromagnetics see Handbook of Chemistry and
Physics,  The Chemical Rubber Co., Baca Raton, Fla., 1991
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checkbook or to compare the weights of two objects, since these operations involve only
discrete quantities.  Analyzing the characteristics of the temperature distribution inside a room is
more difficult.  This is because the temperature is a continuous function of position, and
requires vector analysis to describe it fully.

2-2.2  Scalars and Vectors

We have just seen that physical quantities can be classified as either discrete or field
quantities.  They can also be classified according to the number of digits needed to specify
them.  The simplest are scalars.

A Scalar is a quantity that can be specified by a single number and its associated
unit.

Temperature, altitude, and weight are all scalar quantities, since each can be specified by a single
number.  Throughout this text, scalar quantities are represented as non-boldface symbols in
italics, such as D and ρ.   Also, the units of all scalars will be written in brackets, such as
[kg/m].

There are also physical quantities that have both a size and a direction associated with
them.  These are called vectors and are defined as follows.

A Vector  is a quantity that can be specified by a magnitude and a direction.

Examples of vector quantities are velocity and force.  Throughout this text, boldface alphabetic
characters, such as A, E, and h, are used to denote vector quantities3.

The magnitude and direction of a vector are very different entities.  The magnitude is a
positive-valued scalar, which includes its associated unit.  We will represent the magnitude of a
vector A as either |A| or A.  The direction, as its name implies, is a spatial orientation.  For
instance, the wind velocity at a point may be specified as 2.5 [m/s] in the south east direction.

A

head

tail

|A| Figure 2-1

A graphical
representation
 of a vector.

By convention, any vector can be
represented graphically by a line extending from a
tail to a head.  An arrow is placed at the head and
points in the direction of the vector.  The distance
from the tail to the head represents the vector's
magnitude.  The graphical representation of a vector
A is shown in Figure 2-1.

Discrete vectors are associated with regions of space, but not a specific point.  An
important example is the directed distance between two points.

The directed distance Rab between the points a and b is a vector whose magnitude
equals the distance between these points and whose direction is parallel to the line
directed from a to b.

Even though this definition of Rab involves the points a and b, this vector is not defined to exist

3In handwritten work, vectors are typically written as A
_

  or A
→

, since boldface characters are difficult to draw by
hand.
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at any particular point.  As a result, its representation can be translated freely to any point, as
long as its magnitude and direction are not changed.  This is depicted in Figure 2-2.

a

b

(translated
representation)

Rab

Rab
Figure 2-2

A discrete vector, shown at two different
locations in space.

Figure 2-3a shows the graphical representation of a vector field. Here, the vector is
represented at equally spaced points in a quiver plot (sometimes called a needle plot).  This
type of diagram is helpful in that it conveys both the magnitude and direction of the vector at a
number of points.  On the other hand, this type of diagram does not easily convey the sense of
the vector's "flow".  By flow, we mean the path that a particle would take if it were pushed by
the vector (assuming that the vector represented a force field).  This flow is best represented by
the streamline plot shown in Figure 2-3b.  Here, continuous lines called streamlines are drawn
that are tangent to the vector's direction at each point.  These streamlines are the paths that the
vector would "push" a particle.  Magnitude information is not directly conveyed by the
streamlines.  Nevertheless, one can usually infer this information by measuring the spacings
between the streamlines, since vector magnitudes are usually strongest when the streamlines are
the closest.  This can be seen by comparing Figures 2-3a&b.

AA

(a) (b)

Figure 2.3

Graphical representations of a
vector field: a) quiver plot, b)
streamlines.

2-3 Vector Algebra

Having defined scalars and vectors, we will now define several operations involving
them.  These operations are essential, for without them we would have no way to formulate the
mathematical equations that describe the physical processes found in electromagnetics.  Three
classes of operations are possible in vector algebra: scalar-scalar, scalar-vector, and vector-
vector.  Since the operations from the first class are already known from ordinary algebra, our
discussion will be limited to operations involving vectors.
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2-3.1  Addition and Subtraction of Vectors

The sum of any two vectors, A and B, is itself a vector, defined by the graphical process
depicted in Figure 2-4a.  Here, the vector sum A+B is defined as the vector that completes the
parallelogram formed by A and B.

A A

B

B

C=A+B

C=A+B

(a) (b)

Figure 2-4
Vector Addition:
a) Completing the
parallelogram, b) the
head-to-tail rule.

An equivalent definition of the sum A+B, called the addition tail-to-head rule, is depicted in
Figure 2-4b, where the representation of B has been translated so that its tail lies at the head of
A.  The sum A+B is then defined as the vector whose representation extends from the tail of A
to the head of the translated B.  This definition is, in some ways, more visually descriptive than
the first, but it can also be somewhat misleading for field vectors, since it implies that the
representations of a vector field can be moved to any point in space as if they were discrete
vectors.  To counter this illusion, one must remember that this sliding process is only a tool
used to define A+B.  In reality, A, B, and A+B are all defined at exactly the same point.

Vector addition satisfies the associative and commutative laws,

Associative law: A +(B + C) = (A + B)+ C 2.1a

Commutative law: A + B  =  B + A    . 2.1b

Both proofs are straightforward from the definition of vector addition and are left as an exercise
for the reader.

Vector subtraction is defined in terms of vector addition by

 C = A - B ≡ A +(-B)  , 2.2

where the symbol "≡" means "equal by definition."  The vector -B is called the negative of B;  it
has the same magnitude as B, but opposite direction.  Figure 2-5a shows the graphical
representation of C=A+(-B).  Figure 2-5b shows that C=A-B can also be represented using
the subtraction tail-to-head rule,  where the representation of A - B extends from the tip of B
to the tip of A.  When using this rule for vector fields, however, it must be remembered that A,
B, and C all exist at the same point, even though C has been translated by the graphical
procedure.

A
A

B B
C=A- B

(a) (b)-B

C=A- B

Figure 2-5:Vector Subtraction: a) Completing the parallelogram, b) head-to-tail rule
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2-3.2 Multiplication of a Vector by a Scalar

The product aB is defined as a vector with the same direction as B, and magnitude equal
to |a||B|.  If the sign of a is negative, the direction of the vector aB is opposite to that of B.
Figure 2-6 depicts a scalar product aB.

B
aB

Figure 2-6:
Multiplication of a scalar and a vector

The product of a scalar and a vector obeys both the commutative and distributive laws,

Commutative law: aB  =  Ba 2.3

Distributive law: a( B + C)  =  aB + aC  . 2.4

The quotient 
B
a  can be defined in terms of the scalar-vector product

 
B
a   ≡  a-1B = 

1
a B . 2.5

We can use the scalar-vector product to represent an arbitrary vector A in the form

A =  |A| â
A
 = A â

A
    , 2.6

where |A| and A are the magnitude of A, and â
A
 is a unit vector that has the same direction as A

and a magnitude of unity (i.e., 1.0).  Multiplying both sides of equation 2.6 by  |A|-1, we obtain
the following expression for the unit vector â

A
,

â
A

 =  
 A  
|A |    . 2.7

As its name implies, a unit vector has unit magnitude.

2-3.3 The Scalar (or Dot) Product of Two Vectors

There are two multiplication operators that involve two vectors.  The first is called the
scalar product, because it produces a scalar.  The scalar product of two vectors is defined as a
scalar whose value is given by

 
A•B  ≡ |A||B|cosθ

AB
  . 2.8

Here, the angle θ
AB

 is defined as the smaller angle between A and B  (i.e. , θ
AB

 ≤ 180°), and |A|
and |B| are the magnitudes of A and B, respectively.  The expression A•B is read as "A dot B",
and the terms "scalar product" and "dot product" are used interchangeably.
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When we take the dot product of a vector with itself, we obtain

A•A  =  |A||A|cosθ
AA

 = |A||A| = |A|2  . 2.9

Thus, the magnitude of any vector can be written in terms of its dot product,

|A| = √⎯⎯A••••A   . 2.10

The dot product satisfies the commutative and distributive laws,

Commutative Law A••••B  = B••••A  2.11

Distributive Law A••••(B + C) = A••••B + A••••C . 2.12

The commutative law follows directly from the symmetry of the dot product.  The proof of the
distributive law is straightforward and is left as an exercise.

The definitions of perpendicular and collinear vectors are derived from the dot product.

Two vectors, A and B, are perpendicular (or orthogonal) if A•B=0.  Vectors are
collinear if |A•B|=|A||B|.  Collinear vectors are parallel if A•B=|A||B|  and are
antiparallel if A•B = -|A||B|.

The dot product is a convenient tool for finding the component of a vector along an
particular direction.  Figure 2-7 shows a vector A and reference line that is parallel to the
direction of the unit vector âB.

A

A B

âB

reference line

AB

Figure 2-7:
The projection of a
vector along a
reference line.

Also shown is the right triangle
formed by the reference line, the
vector A, and the line that
extends from the tip of A and
intersects the reference line at a
right angle.  When θ

AB
≤90°, the

component AB of the vector A

along the direction âB is defined as the length of the side of the right triangle that lies along the

reference line.  If  θ
AB

>90°, then the component AB is the negative of this distance.  From this

definition and Figure 2-7, it follows that the component AB of A in the direction âB is given by

AB  = |A|cosθ
AB

  .

But from equation 2.8, we find that |A|cosθ
AB

 can be written as the dot product A•âB.  Hence,
we can write

AB  = A•âB = |A|cosθ
AB

  . 2.13

The dot product can be used to expand any vector as the sum of perpendicular component
vectors.  Consider the vector A, shown in Figure 2-8, which exists in 3-dimensional space.
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A1 A1
â 1=

A3 A3 â 3
=

A2 A2 â 2
=

A

â 1

â 2
â 3 Figure 2-8

An arbitrary vector A, shown as
the sum of three,
mutually-orthogonal component
vectors.

If the unit vectors â1, â2, and â3 are mutually orthogonal (perpendicular), we can express A as

A = A1 â1 + A2 â2 + A3 â3 . 2.14

The scalars A1, A2, and A3 are the components of A along the directions â1, â2, and â3,
respectively.  Remembering that the dot-products of perpendicular vectors are zero, we can find
the components A1, A2, and A3  simply by taking the dot products of A with â1, â2, and â3,
respectively, obtaining

 Ai = A•â i  ,      i = 1, 2, or 3   . 2.15

2-3.4  The Vector (or Cross) Product of Two Vectors

The second product of vectors is the vector (or cross) product.  Unlike the scalar product,
which produces a scalar from two vectors, the vector product of two vectors produces another
vector, defined by

A xxxx B  ≡  ân|A||B|sin(θ
AB

)   , 2.16

where θ
AB

 is defined as the smallest angle between A and B.  The expression AxxxxB is read as
"A cross B", and the terms "vector product" and "cross product" are used interchangeably.
Figure 2-9 shows the relationship between A, B, and A xxxx B.  The unit vector ân is specified by

a convention called the right-hand rule.  This rule states that ân is perpendicular to both A and

B and points in the direction of a right hand thumb when the other fingers point along the arc
that A would follow if it were rotated into B through the smallest angle between them.
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A Bxxxx

ân

A

B

direction of
rotation

Note to artist:

draw a right hand
as discussed in text

Figure 2-9:
The cross product of two vectors

The cross product obeys the distributive law,

Distributive law:   Axxxx(B+C) = AxxxxB + AxxxxC  . 2.17

This can be proved directly from the definition of the cross product.  On the other hand, the
cross product obeys neither the commutative nor the associative laws, which can be seen from
the following inequalities,

AxxxxB = -BxxxxA ≠  BxxxxA  . 2.18
and

Axxxx(BxxxxC) ≠  (AxxxxB)xxxxC  . 2.19

Equation 2.18 is a direct result of the right-hand rule.  Equation 2.19 is most easily proved by
observing that the vector Axxxx(BxxxxC) lies in the plane formed by B and C (since BxxxxC lies
perpendicular to that plane), whereas the vector (AxxxxB)xxxxC lies in the plane containing A and B.

2-3.5  Products of Three Vectors

There are two combinations of products that involve three vectors.  These are the scalar
triple product and the vector triple product, so named because they produce a scalar and a
vector, respectively.  The simplest of the two is the scalar triple product.  For three vectors, A, B,
and C, the scalar triple product A•BxxxxC has the following cyclic property:

A•BxxxxC = B•CxxxxA = C•AxxxxB  . 2.20

This identity is easily proved by referring to Figure 2-10, which shows a parallelepiped formed
by the vectors A, B, and C.

Figure 2-10
A graphical depiction
of the scalar triple
product.

volume = |A||B ||C |sinθ 1 cosθ 2
 = A•(BxxxxC)

θ1
area = |B||C |sinθ 1  = | Bxxxx C|

A

B

C

BxxxxC

θ2

From solid geometry, the volume of the parallelepiped is |A||B||C|sinθ1cosθ2, which can be



Chapter 2: Vector Analysis - 10

expressed as A•BxxxxC.  Similar reasoning yields the other two expressions in equation 2.20.
In addition, the vector triple product Axxxx(BxxxxC) satisfies the following identity:

Axxxx(BxxxxC) = B(A•C) - C(A•B)  . 2.21

This identity can be proven by expanding the vectors in the Cartesian coordinate (which will be
discussed shortly).

2-4 Orthogonal Coordinate Systems

Our discussion of vectors has been hindered thus far by our inability to specify
positions and directions, except through graphical representations.  We will now introduce the
concept of a coordinate system, which provides the framework necessary to describe these
quantities without graphical representations.

Coordinate systems provide two attractive features that aid in vector operations.  The
first is the ability to specify positions in space by a sequence of scalars, called coordinates.
Coordinates identify the position of the point with respect to a coordinate center (or origin).
The minimum number of scalars needed to uniquely specify a point in a particular domain (or
space) determines the dimension of the space.  Lines are one-dimensional, surfaces are two-
dimensional, and volumes are three-dimensional.

Coordinate systems also provide a convenient way to specify vectors at any point.  This
is accomplished through the use of an orthogonal set of vectors, called base vectors, which are
defined at each point.  Any vector can be uniquely defined in terms of its components in the
base vector directions.  The number of base vectors defined by a coordinate system equals the
dimension of the space.  Each base vector is defined at a point in space in terms of the position
coordinates used to identify the point:

In a coordinate system in which a point P is described by the coordinates P(u1,u2,u3),

the i th base unit vector âi at P has a direction parallel to a line through P along which
only ui varies, and points towards increasing values of ui .

Three coordinate systems are discussed in this section:  Cartesian (or rectangular),
cylindrical, and spherical.  Although there are many others, these three are sufficient to model
all of the electromagnetic configurations discussed in this text.  Why do we need more than
one?  The reason is that no one coordinate system is best suited for all situations.

2-4.1 The Cartesian Coordinate System

In the Cartesian coordinate system, three mutually perpendicular axes are used that
intersect at a point, called the origin.  These axes are typically called the x, y, and z axes,
respectively, and are oriented according to the right-hand rule: the rotation of the positive x axis
into the positive y axis would cause a right-handed screw at the origin to thread along the
positive z axis.
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z 1

x  = x 1 plane

y  = y 1 plane

z  = z 1 plane

x

y

z

x 1

P

âx

ây

y 1

âz

Figure 2-11
Position coordinates and
base vectors in the
Cartesian coordinate
system.

In this coordinate system a point is identified by its three position coordinates: u1=x,
u2=y, and u3=z, each  defined as the perpendicular distance from the point to the x, y, and z axes,
respectively.  As shown in Figure 2-11, any point can be envisioned as the point of intersection
of three planes: x =constant, y=constant, and z=constant, where any of the three position
coordinates can have any real value between -∞ and +∞.

The base vectors of the Cartesian coordinate system are particularly simple.  At any
point P, the unit vector âx is directed towards points having increasing values of x and
perpendicular to the y=constant and z=constant planes.  This direction is always parallel to the x
axis, regardless of the location of P.  The definitions of ây and âz are similar, and are shown in
Figure 2-11.  From these definitions it follows that the base vectors have the following product
relationships:

âx•        â x  = ây•        â y  = âz•        â z  =  1 2.22a

âx•        â y  = âx•        â z  = ây•        â z  =  0 2.22b

âxxxxx        â x  = âyxxxx    ây  = âzxxxx        â z  =  0 2.22c

âxxxxx        â y =  âz 2.22d

âyxxxx    âz  =  âx 2.22e

âzxxxx        â x  =  ây    . 2.22f

These product relations are simple to derive, but the cross products are somewhat difficult to
remember.  Fortunately, there is a simple way to remember them.  Looking closely at these three
relationships, we notice a sequence between the unit vectors that can be represented by the circle
shown in Figure 2-12.
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z

x

y

Figure 2-12
Circle diagram for cross
products in Cartesian
coordinates.

To determine the cross product between any
two base vectors, start on the circle at the
coordinate symbol of the first vector in the
product and progress past the coordinate
symbol of the second vector by the shortest
route. The next symbol encountered along that
route is the coordinate symbol of the resulting unit vector.  The sign of this unit vector is
positive if the progression is clockwise (i.e., along the arrows) and negative if it is
counterclockwise.

Any vector can be expanded at any point in terms of its components in the base vectors:
 A  =  Ax â x +  Ay â y +  Az â z       , 2.23

where the scalars Ax , Ay , and  Az  are the x, y, and z components of the vector A, respectively.

Using equation 2.15, we can find these components by taking the dot product of both sides of
equation 2.23 with each of the base vectors, yielding

 Ai  =  A••••â i      i = x , y, or z     . 2.24
Once the Cartesian components of two vectors are known, their scalar and vector

products can be found without graphical representations.  To accomplish this, we first express
the dot product of A and B as

A••••B = ( Ax â x +  Ay ây +  Az â z)•(Bx âx + By â y + Bz â z)  .

Using the orthogonality properties of the base vectors, this becomes

       A••••B =   Ax Bx + Ay By + Az Bz    . 2.25

From equation 2.10,  |A| can be expressed as

 |A| =  √⎯⎯⎯⎯A•A   =  √⎯⎯⎯⎯⎯⎯Ax
2 + Ay

2 + Az
2   , 2.26

which  can also be derived from the Pythagorean Theorem.
Similarly, the cross product of A and B can be expressed in terms of components

A xxxx    B = ( Ax â x + Ay â y + Az âz )xxxx(Bx â x + By ây + Bz â z)

Using the cross product relations of the base vectors, this becomes

A xxxx    B = (AyBz-AzBy)âx + (AzBx-AxBz)ây + (AxBy-AyBx)âz . 2.27

Each term in this formula can be evaluated using the circle aid in Figure 2-12.  For instance, the
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term AyBz is positive because ây crossed into âz yields +âx.  Similarly, âz crossed into ây
yields -âx, so the sign of the term AzBy is negative.  Equation 2.27 can also be written as a
determinant,

         A xxxx    B = 
 ⎪
⎪
⎪

 ⎪
⎪
⎪ âx     ây     âz  

 Ax     Ay     Az  
 Bx     By     Bz  

 . 2.28

Expanding this determinant by minors yields

A xxxx    B = 
 ⎪
⎪
⎪

 ⎪
⎪
⎪Ay  Az

By  Bz
âx  -  ⎪

⎪
⎪

 ⎪
⎪
⎪Ax  Az

Bx  Bz
ây  + 

 ⎪
⎪
⎪

 ⎪
⎪
⎪Ax  Ay

Bx  By
âz   . 2.29

Another attractive feature of coordinate systems is that they provide simple expressions
for the differential quantities needed to evaluate integrals of vector and scalar fields.  Figure
2-13 shows the differential volume traced about a point when its position coordinates of x, y,
and z are varied by the differential amounts dx, dy, and dz, respectively.

dsx  = dy dz

dsy  = dx dz
dsz  = dx dy

dx

dy

dz

x
y

z

ds x

ds y

dsz

Figure 2-13
Differential volume and surface
elements in the Cartesian coordinate
system.

 The enclosed volume dv is given by

dv = dx dy dz   . 2.30

Figure 2-13 also shows three differential surfaces traced when two coordinates at a point
are varied by differential amounts and the third is held constant.  Each of the surfaces is named
according to the direction of its normal (i.e., perpendicular) direction, which is defined as the
unit vector that is perpendicular to each vector (or line) that lies on that surface.  From Figure 2-
13 we see that the normal to each of these surfaces is the base vector corresponding to the
coordinate that is constant on the surface.  The area of each differential surface is

dsx  = dy dz     (when dx =0) 2.31a

dsy  = dx dz     (when dy =0) 2.31b

dsz  = dx dy     (when dz =0) . 2.31c

We can also define differential surface vectors for each of these differential surfaces.  The
magnitude of each differential surface vector equals the differential surface area, and its
direction is normal to the surface.  The three differential surface vectors shown in Figure 2-13
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can be expressed as

dsx  = dsx  âx  = dy dz âx    (when dx =0) 2.32a

dsy  = dsy  ây  =dx dz ây    (when dy =0) 2.32b

dsz  = dsz  âz  =dx dy âz    (when dz =0). 2.32c
Notice in these expressions that of the two possible normal directions for each surface, the
direction outward from the enclosed volume is chosen in each case.  This convention is always
followed whenever a differential surface is part of a larger surface that completely encloses a
volume.  Such surfaces are called closed surfaces.

When integrating along a line of points, it is necessary to define a differential vector that
represents the magnitude and direction of each segment of the path.  Consider the path shown
in Figure 2-14.

Figure 2-14
A differential displacement
vector dl along an arbitrary
path (line).

d l P´ (x +dx ,y + dy , z  + dz )

P (x , y , z ) 

x

y

z

line

We define the differential displacement vector dl at point P(x,y,z) to be the directed distance
from P(x,y,z) to P´(x +dx,y +dy,z +dz).  Along any path, the differential displacement vector can
be represented as

dl =  dx âx  + dy â y  + dz â z    . 2.33

Here, it is important to note that dx, dy, and dz are not independent quantities, since each is a
measure of how rapidly the x, y, and z coordinates are varying at the point, respectively.

A frequently used method of finding dx, dy, and dz is to write the position coordinates of
the line using a single, common variable, called a parametric variable.  Thus, when a line can be
represented by P[x(s),y(s),z(s)]), where x(s), y(s), and z(s) are functions of the parametric
variable s, the differentials dx, dy, and dz can be obtained from the relations

dx = 
dx(s)
ds  ds 2.34a

dy =  
dy(s)
ds  ds 2.34b

dz =  
dz(s)
ds  ds  . 2.34c
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Example 2-1

For the vectors A = -âx - 2â y  + 4â z  and B = -â x + 3â y  - 2âz , find the smallest angle

θ
AB

 between A and B and the unit vector ân that points along the direction of AxxxxB.

Solution:

We can find θAB by using the dot product.  Solving equation 2.8 for θ
AB

 , we have:

θ
AB

  = cos-1 
A•B

|A ||B |   .

Using equations 2.25 and 2.26, we have

A•B = (-1)(-1) + (-2)(3) + (4)(-2) = -13

|A| = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(-1)2+ (-2)2 + (4)2 = √⎯⎯21

|B| = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(-1)2+ (3)2 + (-2)2 = √⎯⎯14  .

Substituting, we find

θ
AB

  = cos-1 
-13

 √⎯⎯21 √⎯⎯14
   =  139.3° .

To find ân, we first solve equation 2.16 for ân, yielding

ân  = 
AxxxxB

|A||B|sinθAB

   .

We can find AxxxxB by using equation 2.27:

AxxxxB = (4-12)â x + (-4-2)â y + (-3-2)â z  = -8âx - 6ây - 5âz  .

Substituting this into the expression for ân, we obtain

ân  = 
-8âx - 6ây - 5âz  

√⎯⎯21√⎯⎯14 sin(139.3°)
   =  -0.716 âx  - 0.537 ây - 0.447 âz  .
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Example 2-2

Find an expression for the differential displacement vector dl at any point on the
half-circle path shown in Figure 2-15.  Assume that the direction along the circle is
counterclockwise.

x y

z

radius = ρ

φ

o

90

dl180

dl

dl

Figure 2-15
Differential displacement
vectors along a
counterclockwise, semicircular
path of radius a.

Solution:

Since the half circle has a unit radius, the position coordinates (x,y) can be written in
terms of the parametric variable φ,

x = ρ cosφ
y = ρ sinφ  .

Using equations 2.34a and 2.34b, we find

dx = 
dx
dφ

 dφ  = -ρ sinφ dφ

and

dy = 
dy
dφ

 dφ  = ρ cosφ dφ  .

Hence, the differential displacement vector at any point can be written as

dl = ρ (-sinφ â x + cosφ ây)dφ   .

To see if this result makes any sense, let us evaluate dl at the points φ = 0, 90°, and 180°.
Substituting, we obtain

dlo =  âyρ dφ   at φ = 0 ,

dl90 = - âxρ dφ   at φ = 90°  ,

dl180 = - âyρ dφ   at φ = 180°  .

These vectors are shown with amplified lengths (so that they can be seen) in Figure 2-15.
Notice that each vector is tangent to the circle and has magnitude ρ dφ .
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2-4.2 The Cylindrical Coordinate System

The cylindrical coordinate system is a three-dimensional version of the polar coordinate
system used in two-dimensional analysis4.  Referring to Figure 2-16, the position coordinates
of a point P in this system are u1=ρ, u2=φ, and u3=z.  Here, ρ is defined as the perpendicular

projection from the point to the z axis and φ is the angle that this projection makes with respect
to the x axis.  The z coordinate is the same as in Cartesian coordinates.  All points are uniquely
specified by the intersection of ρ=constant, φ=constant, and z=constant surfaces, where 0 <ρ

<∞, 0 <φ < 2π, and -∞ <z <∞.

x y

z

φ =φ1 half plane

φ1

ρ 1

z = z1 plane

z1

ρ = ρ1 cylinder
âρ
âφ

âz

P

Figure 2-16
Position coordinates and
base vectors in the
cylindrical coordinate
system.

Using Figure 2-16, it is simple for one to show that cylindrical and Cartesian coordinates are
related by

ρ = √⎯⎯⎯⎯⎯ x2 + y2     2.35a

φ  = tan
-1

 ⎩
⎨
⎧

 ⎭
⎬
⎫ y 

x         2.35b

z  =  z        2.35c

and

x = ρ cosφ 2.36a

y = ρ sinφ 2.36b

z  = z        . 2.36c

4There are many different cylindrical coordinate systems, such as circular cylindrical coordinates, elliptical
cylindrical coordinates, and parabolic cylindrical coordinates.  Throughout this text, however, we will refer to the
circular cylindrical coordinate system as simply the cylindrical coordinate system.
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Care must be taken when using equation 2.35b since 0<φ<2π, and the tan-1 function has a

principal-value range of - 
π
2 <φ < 

π
2 .  Because of this, π must be added5 to the value of φ

specified by equation 2.35b when a point lies in the second or third quadrants (i.e., x<0).
The base unit vectors of the cylindrical coordinate system, âρ, âφ, and âz, are depicted in

Figure 2-16.  These vectors are directed towards increasing values of ρ, φ, and z, respectively,
and are perpendicular to the constant-coordinate surfaces of the other coordinates.  Unlike the
Cartesian coordinate system, where all three base vectors maintain the same orientations at all
points, two of the base vectors in the cylindrical coordinate system vary with the coordinate φ ;
one must first define the φ coordinate of a point before the âρ and âφ directions can be

specified.
From basic trigonometry, the following relationships can be derived,

âρ•    â ρ  =  âφ•        â φ  =  âz•    â z   =  1 2.37a

âρ•        â φ  =  âρ•    âz  =  âφ•    â z   =  0 2.37b

âρxxxx        â ρ  =  âφxxxx    âφ  =  âzxxxx        â z  =  0 2.37c

âρxxxx        â φ =  âz 2.37d

âφxxxx        â z =  âρ 2.37e

âzxxxx        â ρ =  âφ   . 2.37f

z

ρ

φ

Figure 2-17
Circle diagram for cross
products in cylindrical
coordinates

The cross products between the cylindrical
base vectors can be symbolized using the aid
shown in Figure 2-17.  A vector A at any point
can be represented by its components in the base
vectors at that point:

 A   =   Aρ a
^

ρ  +  Aφ â φ  +  Az âz       , 2.38

where the scalars Aρ , Aφ , Az  are the ρ, φ, and z components of A, respectively.  Using equation

2.15, these components can be found by taking the dot product of A with each of the base
vectors:

5Most calculators have a polar-to-rectangular function that automatically performs this function when x and y
are specified separately.
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A
i
  =  A    • â

i
       i = ρ, φ, or z     . 2.39

The dot product of two vectors, A and B, can be expressed in terms of their components,
A••••B = ( Aρ âρ  +  Aφ â φ +  Az âz)•(Bρ âρ +  Bφ â φ +  Bz â z) .

Using the orthogonality properties of the base vectors, this becomes

A••••B =   Aρ Bρ  + Aφ Bφ  + Az Bz    . 2.40

Since |A| = √⎯⎯⎯⎯A•A , it follows that

 |A|  =  √⎯⎯⎯⎯⎯⎯Aρ
2  + Aφ

2 + Az
2     , 2.41

which can also be derived from the Pythagorean Theorem.
Similarly, the cross product of two vectors can be expressed as

A xxxx    B = ( Aρ â ρ + Aφ âφ + Az âz)xxxx(Bρ âρ+ Bφ â φ + Bz â z) ,

which, using the properties of the base vectors, can be simplified to read

AxxxxB =(AφBz- AzBφ )âρ +(AzBρ- AρBz )âφ +(AρBφ - AφBρ )âz .  2.42

This can also be written in shorthand as the determinant

 AxxxxB = 

 ⎪⎪
⎪⎪

 ⎪⎪
⎪⎪

 âρ     âφ     âz  

 Aρ     Aφ     Az  

 Bρ     Bφ     Bz  
 . 2.43

As shown in Figure 2-18, a differential volume dv is traced about a point when its
coordinates are varied by the amounts dρ, dφ, and dz, respectively.
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z

φ

ρ

ρ dφ

dρ

dz

dφ

dsρ

dsφ

dsz   

x
y

Figure 2-18
Differential volume and surface
elements in the cylindrical
coordinate system.

In the limit as dρ, dφ, and dz approach zero, the enclosed volume dv can be written as

dv = ρ dρ dφ dz   . 2.44

Notice that the factor ρ  is necessary because the distance traced as the angular coordinate varies

from φ to φ +dφ  equals ρ dφ .  This factor also makes the equation dimensionally correct since,

strictly speaking, dφ is unitless6.
As can be deduced from Figure 2-18, the surface areas traced when two of the three

coordinates at a point vary by differential amounts are

dsρ  = ρdφ dz   (when dρ =0) 2.45a

dsφ  = dρ dz    (when dφ =0) 2.45b

dsz  =ρ dρ dφ   (when dz =0)  . 2.45c

The differential surface vectors associated with these surfaces are found from these by adding
the appropriate unit vectors,

dsρ  = dsρ âρ  = ρ dφ dz â ρ   (when dρ =0) 2.46a

dsφ  = dsφ âφ  = dρ dz âφ     (when dφ =0) 2.46b

dsz  = dsz â z  = ρ dρ dφ âz   (when dz =0)  .  2.46c

Finally, the differential displacement vector that represents the directed distance from P(ρ,φ,z)

6The units of φ and dφ  are radians (or degrees), but the radian is defined as the ratio of arc length to the

circumference of a circle, so it is actually unitless.  The same is true for the degree.
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to P´(ρ+dρ,φ+dφ ,z+dz) along a line contour is

dl = dρ âρ + ρ dφ âφ + dz âz    . 2.47

If the coordinates along the line are defined by ρ(s), φ(s), and z(s), then dρ,  dφ, and dz can be
found from the relations

dρ = 
dρ(s)

ds  ds 2.48a

dφ  = 
dφ(s)

ds  ds 2.48b

dz  = 
dz(s)
ds  ds      . 2.48c
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2-4.3 The Spherical Coordinate System
The spherical coordinate system identifies points by the coordinates u1=r, u2=θ, and u3=φ,

where r is the length of the line extending from the origin to the point, θ is the angle that this line

makes with the z axis, and φ has the same definition as in cylindrical coordinates.  As shown in
Figure 2-19, any point is uniquely defined as the point of intersection of the r=constant,

θ=constant, and φ=constant surfaces, where 0 <r < ∞,  0 <θ < π, and 0 <φ < 2π.

âθ

φ1

θ 1

x y

z

r  = r
1 sphere

θ = θ 1
cone

φ = φ
1

half plane

r 1

P

âr ^
φa

Figure 2-19
Position coordinates and base
vectors in the spherical coordinate
system.

The spherical and Cartesian coordinates of a point are related by:

r = √⎯⎯⎯⎯⎯⎯⎯⎯ x 2 + y 2 + z 2    2.49a

θ   =  cos-1

 ⎩
⎨
⎧

 ⎭
⎬
⎫ z 

√⎯⎯⎯⎯⎯⎯⎯⎯ x 2 + y 2 + z 2 
   2.49b

 φ  =  tan-1

 ⎩
⎨
⎧

 ⎭
⎬
⎫ y 

x                     2.49c

and
x  =  r sinθ cosφ 2.50a

y  =  r sinθ sinφ 2.50b

z  =  r cosθ      . 2.50c
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As in the case of cylindrical coordinates, care must be exercised when using equation 2.49c to
ensure that the calculated angle φ lies in the correct quadrant.

The base unit vectors in the cylindrical coordinate system, âr, âθ, and âφ, are directed

towards increasing values of r, θ, and φ, respectively.  As can be seen from Figure 2-19, all three

of these vectors are functions of the coordinates θ and φ.  Thus, the coordinates of a point must
be specified before the base unit vectors can be specified.

At any point, a vector A can be expressed in terms of its components in the base vector
directions:

 A   =   Ar  a
^

r  +  Aθ  â θ +  Aφ â φ       , 2.51

where Ar , Aθ , and Aφ  are the r, θ, and φ components of A, respectively.  These components can

be found via the dot product

Ai  =  A    •••• â i       i = r ,θ, or φ     . 2.52

The base vectors of the spherical coordinate system satisfy the following relationships:

âr•    â r  =  âθ•    â θ  =  âφ•    âφ   =  1 2.53a

âr•    â θ  =  âr•    â φ  =  âθ•    â φ   =  0 2.53b

ârxxxx        â r  =  âθxxxx    â θ  =  âφxxxx        â φ  =  0 2.53c

ârxxxx        â θ = âφ 2.53d

âθxxxx        â φ =  âr 2.53e

âφ xxxx        â r = âθ  . 2.53f

   

r

φ θ

Figure 2-20

Circle diagram for
cross products in
spherical coordinates

The cross product relationships between the
spherical base vectors can be symbolized using
the aid shown in Figure 2-20.  The dot product of
any two vectors can be expressed as:

A••••B = ( Ar â r +  Aθ â θ + Aφ âφ)•(Br âr+ Bθ âθ + Bφ âφ)

        =   Ar Br  + Aθ Bθ  + Aφ Bφ   . 2.54

Also, since |A| = √⎯⎯⎯⎯A•A , it follows that

 |A|  =  √⎯⎯⎯⎯⎯⎯Ar
2 + Aθ

2 + Aφ
2    , 2.55
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which can also be derived from the Pythagorean Theorem.
Similarly, the cross product of two vectors can be expressed as

A xxxx    B = ( Ar â r +  Aθ âθ + Aφ âφ)xxxx(Br âr + Bθ â θ +  Bφ â φ) ,

which reduces to

A xxxx    B =(Aθ Bφ - Aφ Bθ )âr+(Aφ Br - ArBφ )âθ+(Ar Bθ - AθBr )âφ 2.56

This expression can be written in shorthand form as the determinant

 A xxxx    B = 

 ⎪
⎪
⎪

 ⎪
⎪
⎪ âr     âθ     âφ  

 Ar     Aθ     Aφ  

 Br     Bθ     Bφ  
 . 2.57

As shown in Figure 2-21, a differential volume dv is traced about a point P(r,θ,φ) when

its coordinates are varied by the amounts dr, dθ, and dφ, respectively.

dθ

θ

dφ

dr

r sinθ

r  sinθ dφ

r dθ

x

y

z dsr

dsθ

dsφ

r

φ
Figure 2-21
Differential volume and surface elements in
the spherical coordinate system.

In the limit as dr, dφ, and dz approach zero, the enclosed volume is

dv = r2sinθ dr dθ dφ  . 2.58

In this expression, the multiplier r 2sin θ  is necessary because the lengths traced by differential

changes in θ and φ  are rdθ  and r sinθ dφ , respectively.  Also, the r 2  makes the expression
dimensionally correct.
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The surfaces traced when two of the three coordinates are varied by differential amounts
are also shown in Figure 2-21.  They have areas given by

dsr  = r 2sinθ dθ dφ   (when dr  = 0) 2.59a

dsθ  = r sinθ dr dφ     (when dθ  = 0) 2.59b

dsφ  = r dr dθ             (when dφ = 0)  , 2.59c

and their associated differential surface vectors are

dsr  = dsr â r  = r 2sinθ dθ dφ  âr   (when dr  = 0) 2.60a

dsθ  = dsθ âθ  = r sinθ dr dφ  âθ   (when dθ  = 0) 2.60b

dsφ  = dsφ âφ  = r dr dθ âφ      (when dφ = 0)  . 2.60c

Finally, the differential displacement vector that represents the directed distance from
P(r,θ,φ) to P´(r +dr,θ +dθ,φ +dφ) along a line contour is

dl = dr â r + r dθ âθ + r sinθ dφ â φ   . 2.61

If the coordinates along the line are given by r(s), θ(s), and φ(s), then dr,  dθ, and dφ can be
found from

dr  =  
dr(s)
ds ds 2.62a

dθ  =  
dθ(s)

ds ds 2.62b

dφ  =  
dφ(s)

ds ds   . 2.62c

2-4.4 Conversions between coordinate systems

There are many times when it is necessary to change the representation of a vector from
one coordinate system to another.  Typically, this is done when different aspects of a problem
are most easily described using different coordinate representations.

Changing a vector's representation from one coordinate system to another requires two
steps:

• Convert the coordinates
• Convert the components

The position coordinates in the new system are found simply by applying the appropriate
coordinate transformations.  The components in the new system are found by taking the dot
product of the vector with each of the base vectors in the new system,
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 Ai  =  A•••• â i   , 2.63

where i is set equal to each of the coordinate variables in the new system.
Appendix B contains a number of tables that are helpful when converting the

representation of a vector from one coordinate system to another.  Table B-1 contains the
relationships between the coordinate variables of the three coordinate systems.  Table B-2
contains the dot products of the base vectors of the three coordinate systems.  Finally, Table
B-3 summarizes the relationships between vector components in these coordinate systems.

Example 2-3

Find the representation of C = ρ âφ in Cartesian coordinates.

Solution:

Using equation 2.63 in conjunction with the values in Table B-2, the Cartesian components
of C are

Cx  = C•••• âx = ρ  âφ • âx = -ρ sinφ

Cy  = C•••• ây = ρ  âφ • ây =  ρ cosφ

Cz  = C•••• âz  = ρ  âφ • âz  = 0  .

Next, using x = ρ cosφ  and y =ρ sinφ, we obtain

C  = Cx â x + Cy â y + Cz â z =  -ρ sinφ  âx + ρ cosφ  â y

=  - y âx + x ây   .

Example 2-4

Find the representation of A = 3 y  âx  in the spherical coordinate system.

Solution:

Knowing that y = r sinθ sin φ , we can write A as

A =  3 r sinθ sinφ  â x    .

Thus, Ax = 3 r sinθ sinφ ,  Ay= Az = 0.

Using table B-3, the spherical components of A are

Ar = Axsinθ cosφ = 3r sin2θ sin φ cos φ
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Aθ = Axcosθ cosφ = 3r sinθ cosθ sin φ cos φ

=  34 r sin 2θ sin 2φ

Aφ = - Ax sinφ = -3 r sinθ sin2 φ  .
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  Thus, the representation of A in spherical coordinates is

A = 3r sin2θ sinφ  cosφ  â r + 
3
4 r sin 2θ sin2φ  â θ

 -3r sinθ sin2φ  â φ  .

2-4.5 The Position Vector

We have already seen that any point is uniquely defined by its position coordinates.
We can also identify a point by its position vector.

The position vector of a point is defined as the directed distance from the origin to the
point and is represented by the symbol r.

P

r

x y

z

Figure 2-22

The position vector

Every point has a unique position
vector that identifies it.  This vector is
denoted by the symbol r and is depicted
in Figure 2-22 for an arbitrary point P.
The position vector of an arbitrary point
has the following representations in the
Cartesian, cylindrical, and spherical
coordinate systems:

r = 
 ⎩
⎨
⎧ x âx + y â y + z â z     Cartesian      2.64a

 ρ âρ + z âz           cylindrical     2.64b

 r âr                 spherical       2.64c

The spherical representation follows directly from the definition of r.  The other two
representations can be found through coordinate transformations.

P
r

x y

z

r´

P´ R = r - r´
Figure 2-23

The directed distance R
between two arbitrary
points

The directed distance
between two points can be
expressed in terms of their
position vectors.  Referring to
Figure 2-23, consider the points
P and P´, represented in Figure
2-22 by the position vectors r
and r´, respectively.  If we let R
denote the directed distance from
P´ to P, it follows from Figure 2-23 that

 R = r - r´.

We can also write R as:
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R = R âR , 2.65

where,

R   = |r-r´| 2.66

and

âR =  
r-r´
|r-r´|  . 2.67

In Cartesian coordinates, R is represented by:

R = r - r´ =  (x-x´)âx + (y-y´)â y + (z-z´)â z   . 2.68

In coordinate systems other than Cartesian coordinates, it is important to remember that
the base unit vectors at r and r´ are not, in general, the same.  This is demonstrated in the
following example.

Example 2-5

Find the directed distance from P´(3,30°,1) to P(1,90°,2).  Write the representation of this
vector at both points using the Cylindrical coordinate system.

Solution:

Since the values of φ at these two points are different, it is best to start by finding
R = r - r´ in the Cartesian coordinate system.  Converting P and P´  to Cartesian coordinates

P(1,90°,2) = P(cos 90°, sin 90°, 2) = P(0,1,2)

P´(3,30°,1) = P´(3cos 30°,3sin30°,1) = P´( 2.66,1.5,1)  .
The corresponding position vectors are

r =  ây + 2â z
r´ = 2.66âx  + 1.5 â y + âz  ,

so the directed distance from P´ to P is

R =  r - r´ =  -2.66âx - 0.5â y + â z  .
Using Table B-3, we can express R in cylindrical coordinates at any point as

R = Rρ âρ + Rφ âφ  + Rz âz   ,

where
Rρ = -2.66 cosφ  - 0.5 sinφ

Rφ =   2.66 sinφ  - 0.5 cosφ
Rz =   1   ,

and φ is the position coordinate at the point.  Substituting, φ = 90° at P and φ = 30° at P´ , we
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find
R =  - 0.5 âρ   +  2.66 âφ  - âz       at P

and
R =  -2.56 âρ´  + 0.9 âφ´  - âz       at P´   ,

where  âρ and âφ are base unit vectors at P, and âρ´ and âφ´ are the base vectors at P´.  Notice

that although R is the same vector at P and P´, its representations at these two points are
different.

2-5  The Calculus of Scalar and Vector Fields

Most of the physical quantities of interest in electromagnetics are field quantities.
Because they are functions of position, it is important that we be able to characterize the
functional behaviors of field quantities over both large and small regions of space.  This is
accomplished through various integral and differential operators.

2-5.1 Integrals of Scalar and Vector Fields

Electromagnetic phenomena are often described in terms of integrals of vector or scalar
quantities over a volume, a surface, or a line.  Examples of the kinds of integrals encountered in
electromagnetic analysis are

∫
 V

 Qdv 2.69

∫
 V

 Jdv 2.70

∫
S
 D•ds 2.71

∫
C

 E•dl  . 2.72

The first two integrals above are called volume integrals, because they take place throughout a
specified volume.  Likewise, the third and fourth integrals are called surface and line (or
contour) integrals , respectively, because they are evaluated over a surface or a line,
respectively.

In spite of the obvious differences between the integrals given in equations 2.69-2.72,
each is simply the summation of a differential quantity (either  scalar or vector) over a range of
points.  The basic steps for evaluating any of these integrals are:

1)  Choose the coordinate system that will be used during the integration process.
2)  Determine which position coordinates vary during the integration process.
3)  Select the appropriate differential quantity.
4)  If the integrand is a vector, make sure that all unit vectors are constants with respect to

the variable(s) of integration.
5)  Integrate over the appropriate limits of the position coordinates.

The three examples that follow demonstrate the general procedure for evaluating integrals of
field quantities.
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Example 2-6
Evaluate the integral ∫

V
 Pdv, where P = r cosφ â r and V is a sphere of unit radius,

centered at the origin.

Solution:

The spherical coordinate variables are the most convenient for this problem.  To cover
all points within this volume, the range of the coordinates must be: 0<r < 1, 0 < θ < π , 0<

φ < 2π .  Also, dv = r2sinθ drdθdφ at all points within the volume.  Substituting into the
integral, we have:

∫
V

 Pdv  =  ⌡
⌠

0

2π

  ⌡
⌠

0

π

  ⌡
⌠

0

1

 r3cosφ sinθ ârdrdθdφ    .

This integral is not as easy to evaluate as it may first appear because of the presence of the
unit vector âr, which varies with the position variables θ and φ .  Using Table B-3, however,

we can represent  âr in Cartesian components,

âr = sinθ cosφ âx + sinθ sinφ ây + cosθ âz  .

Substituting, we obtain

∫
V

 Pdv  =  âx  ⌡
⌠

0

2π

  ⌡
⌠

0

π

  ⌡
⌠

0

1

 r3sin2θ cos2φ drdθdφ   + a^
y  ⌡

⌠

0

2π

  ⌡
⌠

0

π

  ⌡
⌠

0

1

 r3sin2θ sinφ cosφ drdθdφ

+  â z  ⌡
⌠

0

2π

  ⌡
⌠

0

π

  ⌡
⌠

0

1

 r3sinθ cosθ cosφ drdθdφ  .

The second and third integrals on the right-hand side of this expression are zero since

∫
0

2π

sinφ cosφ dφ = 0 and ∫
0

2π

cosφ dφ = 0, respectively, leaving

∫
V

 Pdv =  â x  ⌡
⌠

0

2π

  ⌡
⌠

0

π

  ⌡
⌠

0

1

 r3sin2θ cos2φ drdθdφ    =  
âx
4  ⌡

⌠

0

2π

  ⌡
⌠

0

π

 sin2θ cos2φ dθdφ

                   =  
π a ^

x
8  ∫

0

2π

cos2φ dφ  =  
π2

8  âx .
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Example 2-7

Evaluate the integral  o∫
S

 F•ds, where F = x âx  and S  is the closed circular cylinder

shown in Figure 2-24.

x
y

z

radius = 2

5

Figure 2-24

A circular cylinder.

Solution:

From Figure 2-24, we see that S  consists of two discs at z=  0  and z = 5, respectively,
and an open cylinder ρ = 2 for 0 < φ < 2π.  On the discs, ds = ±ρdρdφ â z , where the upper
and lower signs correspond to the upper and lower discs, respectively.  Since F has no z
component, F•ds = 0 everywhere on both discs.

On the open cylinder, ds = ρdφdz âρ = 2dφdz âρ .  Remembering that x = ρ cosφ, we

can write F•ds as

F•ds =  x âx •2dφdz âρ =  4 cos2φ dφdz  ,

where the value of âx•âρ = cosφ and x = ρ cosφ  were obtained from Tables B-2 and B-1,

respectively.  Substituting into the integral yields

o∫
S

 F•ds  =  ∫
0

5

 ∫
0

2π

 4 cos2φ dφ dz  =  ∫
0

5

 4π dz   =  20π    .

Example 2-8

For  F = y âx - x ây, evaluate the line integral ∫
 C

 F•dl  along two paths shown in Figure

2-25, each starting at (0,0,0) and ending at (1,2,4).



Chapter 2: Vector Analysis - 33

(1,0,0)

(1,2,0)

(1,2,4)

x
y

z

C
1 C

2
= Cx + +Cy Cz

Cx

Cy

Cz

(dark path) Figure 2-25
Two paths connecting the points (0,0,0)
and (1,2,4).

Solution:

For either path, the differential displacement vector can be written in the form  dl = dx âx
+ dy ây + dz âz.  For the vector F given in this problem, the dot product F•dl is

F•dl =  ydx - xdy   .

  a) The path C1 is a straight line, which can be described by the equations

y = 2x

z = 4x  .

Since both y and z can be written as functions of x, we can consider x as the parametric
variable for use in equations 2.34a through 2.34c.  Using these equations, we obtain

dx = 
∂x

∂x
 dx  = dx

dy = 
∂y(x)

∂x
dx  = 2dx

dz = 
∂z(x)

∂x
dx  = 4dx  .

Using these expressions for dx, dy, and dz, we obtain

F•dl = ydx - xdy  = 2xdx - 2xdx  = 0dx  .

This means that F is perpendicular to dl at every point along the path C1.  Integrating, we
obtain the result

  ∫
  C1

 F•dl = ∫
0

1

 0dx  = 0   .

b) Path C2 is actually a collection of three straight line paths:  Ca from (0,0,0) to (1,0,0),
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Cb from (1,0,0) to (1,2,0), and  Cc from (1,2,0) to (1,2,4) .

 ∫
 C2

 F•dl  = ∫
 Cx

 F•dl + ∫
 Cy

 F•dl + ∫
 Cz

 F•dl .

These line integrals are simple to evaluate since, only one position variable varies along each
path.  Thus, along the paths Ca, Cb and Cc, we have dl =dx âx,  dl =dy ây, and dl =dz âz,
respectively.  Substituting these into the integrals and taking the dot products with F, we
obtain

 ∫
 C2

 F•dl  = ∫
0

1

 y dx 
|
|
|
y =0

-  ∫
0

2

 x dy 
|
|
|
x =1 

- ∫
0

4

 0dz  =  -2   .

Since different answers were obtained when integrating F•dl  along two different paths
that connect the same endpoints, F is called a non-conservative vector field.  This name

comes from mechanics, where, if F represents a force, the integral ∫
 C

 F•dl equals the work

done on an object as it moves along the path C.  For the vector F in this problem, the net
work done in moving the object from the origin to the point (1,2,4) along C2 and back to the

origin along path C1 would be -2 - 0 = -2 ≠ 0, which means that the net work done along
this closed path is nonzero.  Since work is not conserved, the vector F is called a

nonconservative vector.  On the other hand, vectors for which o∫
C

 F•dl =0 for all possible

closed paths C are called conservative vectors.

2-5.2 The Gradient of a Scalar Field

Up to this point we have described scalar fields in terms of the rules that determine their
values at each point in space.  Often, however, the rate at which a scalar changes close to a point
is more important than its value at the point itself.  When walking up an incline, for example,
one is usually more concerned about the change in altitude encountered with each step than with
the altitude of each point relative to sea level.  The gradient operation provides this kind of
information.

To start our discussion, let us consider the change in the value of an arbitrary scalar field
f as we move from (x,y,z) to (x+dx, y+dy, z+dz ).  We will denote this change as df.  From
ordinary multivariable calculus, df is given by

df  =  
∂f

∂x
 dx  + 

∂f

∂y
 dy  + 

∂f

∂z
 dz     . 2.73

This expression can be written as the following dot product between two vectors,

df  = 
 ⎝
⎜
⎛

 ⎠
⎟
⎞∂f

∂x
 â x + 

∂f

∂y
 â y + 

∂f

∂z
 âz  •( )dx âx+dy â y+dz â z 2.74
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The vector on far right is simply the differential displacement vector dl  along the path of
movement (see equation 2.64a), so we can write equation 2.74 in the form

df  =  
 ⎝
⎜
⎛

 ⎠
⎟
⎞

 
∂f

∂x
 â x + 

∂f

∂y
 â y + 

∂f

∂z
 âz  • dl  . 2.75

The vector quantity in parentheses is called the gradient of f and is denoted symbolically by
grad f .  Hence

df  =  gradf •dl   , 2.76

where, in the Cartesian coordinate system,

gradf  =   
∂f

∂x
 â x + 

∂f

∂y
 â y + 

∂f

∂z
 âz  .   Cartesian Coordinates 2.77

We can also write equation 2.77 in the shorthand form,

gradf  =  
 ⎝
⎜
⎛

 ⎠
⎟
⎞

 
∂f

∂x
 â x + 

∂f

∂y
 â y + 

∂f

∂z
 âz  =  ∇∇∇∇f   , 2.78

where ∇∇∇∇ is called the del operator and is defined by

∇∇∇∇ ≡ 
∂
∂x

 â x + 
∂
∂y

 â y + 
∂
∂z

 âz.   Cartesian Coordinates  . 2.79

Strictly speaking, the del (∇∇∇∇) operator is not a true vector, since its components are operators,
rather than numbers.  Nevertheless, it is convenient to treat it like a vector in product equations
like equation 2.79 and several others in this chapter.  Throughout the remainder of this text, we
always represent the vector gradf as ∇∇∇∇f.

Before we derive the representations of ∇∇∇∇f in the other coordinate systems, let us determine
general properties of the gradient operation.  Using the definition of the dot product (equation
2.8), we can write equation 2.76 in the form

df  =  ∇∇∇∇f •dl  =  |∇∇∇∇f|dl cosθ    , 2.80

where θ is the angle between ∇∇∇∇f and dl .  Dividing both sides by dl  yields
df
dl

  =  |∇∇∇∇f | cosθ     . 2.81

When the direction of the path is parallel to ∇∇∇∇f, cosθ = 1.  Along such a path,  
df
dl

  attains its

maximum value.  Thus,
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df
dl

   
|
|
|
max

= |∇∇∇∇f  |  . 2.82

Using equation 2.82, we can now define ∇∇∇∇f as

∇∇∇∇f  ≡  
∂f

∂l
  
|
|
|
max

ân  , 2.83

where ân points in the direction of maximum increase in f.  This definition is valid in all

coordinate systems.  Thus, the gradient ∇∇∇∇f is a vector that points in the direction of maximum
rate of increase of the function f.

From equation 2.80 we see that df = 0 whenever dl is perpendicular to ∇∇∇∇f.  Thus, ∇∇∇∇f is
always perpendicular to surfaces over which f is constant.  This can be seen from Figure 2-26,
which shows several surfaces of constant value for a scalar function f.  As can be seen in this
figure, ∇∇∇∇f is perpendicular to each of these surfaces and points towards increasing values of f.

f  = f 1

f  = f 2
f  = f 3

∇∇∇∇f

∇∇∇∇f
∇∇∇∇f

f 3>f 2>f 1

f  = f 1

f  = f 2
f  = f 3

∇∇∇∇f

∇∇∇∇f
∇∇∇∇f

Figure 2-26

Equi-value surfaces and gradient vectors for
an arbitrary function f

Representations of ∇∇∇∇f  can also be found in the cylindrical and spherical coordinate
systems.  In cylindrical coordinates, the total differential of a scalar function f is

df  =  
∂f

∂ρ
 dρ  + 

∂f

∂φ
 dφ  + 

∂f

∂z
 dz   ,

which can be re-written as the dot product

df = 
 ⎝
⎜
⎛

 ⎠
⎟
⎞

 
∂f

∂ρ
 âρ + 

1
ρ

 
∂f

∂φ
 âφ + 

∂f

∂z
 âz  •( )dρ âρ+ ρ dφ âφ+ dz â z .

Since the second vector on the right side of this equation is the differential displacement vector
dl in cylindrical coordinates (see equation 2.47), df can be in the form

df  =  
 ⎝
⎜
⎛

 ⎠
⎟
⎞

 
∂f

∂ρ
 âρ + 

1
ρ

 
∂f

∂φ
 âφ + 

∂f

∂z
 âz  • dl    .

Comparing this to equation 2.80, we see that the vector in the parenthesis must be ∇∇∇∇f.  Thus, we
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have

   ∇∇∇∇f  = 
∂f

∂ρ
 âρ + 

1
ρ

 
∂f

∂φ
 âφ + 

∂f

∂z
 âz .       Cylindrical  Coordinates 2.84

Similarly, in spherical coordinates we can write

df  =  
∂f

∂r
 dr  + 

∂f

∂θ
 dθ  + 

∂f

∂φ
 dφ   ,

or

df  =  
 ⎝
⎜
⎛

 ⎠
⎟
⎞∂f

∂r
 âr + 

1
r  

∂f

∂θ
 âθ + 

1
r sinθ

 
∂f

∂φ
 âφ •( )dr âr + r dθ âθ + r sinθ dφ âφ .

The second vector on the right side of this expression is dl  (see equation 2.61), so this
expression can be written as

df = 
 ⎝
⎜
⎛

 ⎠
⎟
⎞

 
∂f

∂r
 âr+ 

1
r  

∂f

∂θ
 âθ + 

1
r sinθ

 
∂f

∂φ
 âφ  • dl   .

Comparing this with equation 2.80, we can finally write

∇∇∇∇f  =  
∂f

∂r
  âr + 

1
r  

∂f

∂θ
  âθ + 

1
r sinθ

 
∂f

∂φ
  âφ .    Spherical Coordinates 2.85

Example 2-9

Find the gradient of the scalar field f = x2 + y2  in   a) Cartesian and  b) cylindrical
coordinates.

Solution:

a)  The necessary partial derivatives dictated by equation 2.79 are

∂f

∂x
  = 2x 

∂f

∂y
  = 2y

∂f

∂z
  = 0     .

Therefore,

∇∇∇∇f  =  2x âx + 2y ây  .

b)The representation of ∇∇∇∇f in cylindrical coordinates can be obtained either by
transforming the above expression by the normal rules of vector transformations, or by



Chapter 2: Vector Analysis - 38

using the cylindrical coordinate expression for ∇∇∇∇f  directly.  Choosing the latter, we must
first express f in cylindrical coordinates:

f  = x2 + y2  = ρ2cos2φ  + ρ2sin2φ  = ρ2  .

Next, the necessary partial derivatives of f are

∂f

∂ρ
  = 2ρ

∂f

∂φ
  = 0

∂f

∂z
  = 0    .

Substituting these into equation 2.84, we obtain

 ∇∇∇∇f  = 2ρ âρ  .

It is left as an exercise for the reader to show that the two expressions for ∇∇∇∇f  found in
parts a and b are indeed the same vector.
2-5.3 The Divergence of a vector field

As with scalars, a knowledge of how a vector field changes about a point is often more
important than its value at that point.  When piloting an airplane, for instance, it is necessary to
know whether the air flow at a point is smooth or swirling than it is to know its velocity at a
particular point.  For vectors, two different indications of their rates of change are necessary to
completely characterize these changes.  The first of these, called divergence, is discussed in this
section.  The second, called curl, will be discussed in the section that follows.

The divergence of a vector A at a point P is as a scalar quantity, defined as

     div A  ≡  
 lim
Δv→0 

o∫
S

 A•ds

Δv 
     . 2.86

According to this definition, S is the surface that bounds the volume Δv, and ds always points

outward from Δv.  The value of surface integral o∫
S

 A•ds indicates whether or not there is a net

tendency for A to point outward from P.  Integrals of this type are called flux integrals.
Figures 2-27a&b show two vectors that have nonzero divergence.  In the case of Figure

2-27a, the positive divergence of the vector at the origin is easy to see, since all the vector
streamlines are directed away from the origin.  For this case,  A•ds is positive at all points on a
surface that surrounds the origin, resulting in a net positive flux.
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A

(a) (b)

B
PP Figure 2-27

Two vector fields
that have nonzero
divergence at a
point P.

The negative
divergence of the
vector shown in
Figure 2-27b is
less obvious to
the eye, however,
since this vector
maintains a
general left-to-
right direction on
both sides of the point P.  Nevertheless, the flux entering7 a surface surrounding P from the left
is greater than that which leaves on the right, resulting in a negative divergence at P.

Even though the divergence of a vector is defined in terms of a surface integral, we will
now show that it can be represented in terms of derivatives of the components of the vector.  We

will start by evaluating the flux integral  o∫
S

 A•ds about the rectangular surface shown in Figure

2-28.

x
y

z

Δx
Δy

Δz

P( x o, y o, z o)
Figure 2-28

A small rectangular
surface surrounding a
point P.

Here, a small rectangular volume
of dimensions Δx, Δy, and Δz
surrounds the point P(xo,yo,zo),

which is shown in the center of
the volume.  The integral over
this closed surface can be written
as the sum of six open surface
integrals

o∫
S

  A•ds =∫
front
face

 A•ds +∫
 back
face

 A•ds +∫
 right
face

 A•ds +∫
 left
face

 A•ds +∫
 top
face

 A•ds +∫
 bottom
face

 A•ds.  2.87

On the front face, x = xo + 
Δx
2 ,  ds = dydz âx , and A•ds = Ax dydz .  Substituting, the

integral over this face becomes

∫
front
face

 A•ds  = ∫
yo-Δy/2

yo+Δy/2

             ⌡
⎮
⌠

zo-Δz/2

zo+Δz/2

Ax (xo+
Δx
2 ,y,z) dy dz  . 2.88

Since Δx, Δy, and Δz are all assumed to be small, we can use Taylor's theorem to expand

Ax(xo+
Δx
2 ,y,z) about the point P(xo,yo,zo).  Using the first two terms of the Taylor's expansion

for each coordinate, we obtain:

7It is common to speak of flux as if it is something that moves through the surface, even if the vector in
question does not represent a quantity of motion (such as a force).
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Ax (xo+
Δx
2 ,y,z) ≅ Ax (xo,yo,zo) + 

Δx
2  

∂Ax

∂x
   
|
|
|
P

+ (y - yo) 
∂Ax

∂y
   
|
|
|
P

+ (z - zo) 
∂Ax

∂z
   
|
|
|
P

  , 2.89

where the notation   
|
|
|
P

 indicates that the derivatives are evaluated at P(xo,yo,zo).  Substituting

equation 2.89 into 2.88 and integrating, we obtain

∫
front
face

 A•ds ≅ Δy Δz Ax (xo,yo,zo) + 
Δx
2  Δy Δz 

∂Ax

∂x
   
|
|
|
P

 . 2.90

Similarly, on the back face we have x = xo - 
Δx
2 ,  ds = -dydz âx, A•ds = -Axdydz, and

Ax (xo- 
Δx
2 ,y,z) ≅ Ax (xo,yo,zo) -  

Δx
2   

∂Ax

∂x
   
|
|
|
P

 + (y-yo) 
∂Ax

∂y
   
|
|
|
P

  + (z-zo) 
∂Ax

∂z
   
|
|
|
P

    .

Integrating this the back face, we obtain

∫
back
face

 A•ds ≅ - Δy Δz Ax (xo,yo,zo) + 
Δx
2  Δy Δz 

∂Ax

∂x
   
|
|
|
P

   . 2.91

The sum of the flux contributions from the front and back faces is found by adding
equations 2.90 and 2.91,

∫
front
face

 A•ds  + ∫
back
face

 A•ds ≅  Δx Δy Δz  
∂Ax

∂x
   
|
|
|
P

   . 2.92

Using similar steps, it can also be shown that

∫
right
face

 A•ds  + ∫
left
face

 A•ds ≅  Δx Δy Δz 
∂Ay

∂y
   
|
|
|
P

   . 2.93

and

∫
top
face

 A•ds  + ∫
bottom
face

 A•ds  ≅  Δx Δy Δz 
∂Az

∂z
   
|
|
|
P

   . 2.94

Summing all the contributions to o∫
S

 A•ds and noting that Δx Δy Δz = Δv, we find

o∫
S

  A•ds  ≅  
 ⎩⎪
⎨
⎪⎧

 ⎭⎪
⎬
⎪⎫

 
∂Ax

∂x
  
|
|
|
P

 +  
∂Ay

∂y
  
|
|
|
P

 + 
∂Az

∂z
  
|
|
|
P

  Δv     .
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This expression becomes exact in the limit Δv → 0.  Comparing this expression with the
definition of divergence (equation 2.86), we find

div A =  
∂Ax

∂x
  +  

∂Ay

∂y
 +  

∂Az

∂z
    , 2.95

where we have dropped the notation  
|
|
|
P

  , since the volume Δv collapses to the point P as

Δv → 0.  This equation can also be written as a dot product,

div A  = 
 ⎝
⎜
⎛

 ⎠
⎟
⎞

 
∂
∂x

 â x + 
∂
∂y

 â y + 
∂
∂z

 âz •( Ax â x+ Ay â y + Az â z)  =  ∇∇∇∇•A  ,

where ∇∇∇∇ is the del operator, defined by equation 2.79.  Thus, the notation ∇∇∇∇•A has the same
meaning as div A. In the Cartesian coordinate system, can write

∇∇∇∇•A = 
∂Ax

∂x
 + 

∂Ay

∂y
 + 

∂Az

∂z
      Cartesian Coordinates 2.96

Expressions for ∇∇∇∇•A also can also be derived in the cylindrical and spherical coordinate
systems.  This can be accomplished in either of two ways.  The first is to transform the
Cartesian coordinate expression into these coordinate systems by the standard transformation
rules outlined in section 2-4.4.  This procedure is straightforward but tedious, since the chain
rule must be used repeatedly to transform the variables in the partial derivatives.  The second

method is to evaluate o∫
S

 A•ds directly in the cylindrical and spherical coordinates systems using

a procedure similar to what we used in Cartesian coordinates8.  By either technique, it can be
shown that

∇∇∇∇•A = 
1
ρ

 
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂

∂ρ
(ρAρ)  + 

1
ρ

 
∂Aφ
∂φ

 + 
∂Az
∂z

    Cylindrical Coordinates 2.97

and

∇∇∇∇•A = 
1

r 2 
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂

∂r
(r 2Ar) + 

1
r sinθ

  
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂

∂θ
(Aθ sinθ ) + 

1
r sinθ

  
∂Aφ

∂φ
 .     

Spherical
Coordinates 2.98

8 See Plonsey and Collin, Principles and Applications of Electromagnetic Fields, McGraw-Hill, New York
1961
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Example 2-10

Find the divergence of A = x âx  at any point using a) Cartesian coordinates and b)
Cylindrical coordinates.

Solution:

a) From equation 2.96,

                                            ∇∇∇∇    •A = 
∂Ax

∂x
  + 

∂Ay

∂y
  + 

∂Az

∂z
 = 

∂
∂x

(x) = 1   (at all points)  .

b) Transforming A into cylindrical coordinates, we find that

A = ρ cos2φ  â ρ -ρ cosφ sinφ  a^φ  .

Using equation 2.97,

∇∇∇∇    •A =  
1
ρ

 
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂

∂ρ
 (ρ2cos2φ )   -  

1
ρ

 
∂
∂φ

 (ρ cosφ  sinφ )

=  2 cos2φ  - (- sin2φ + cos2φ )= 1 .

As expected, this result is the same as was obtained using the Cartesian coordinate system.

Before leaving the subject of divergence, we will derive an important theorem involving
divergence, called the divergence theorem.  Consider the volume integral

∫
V

 ∇∇∇∇•Adv.  Using the definition of divergence, we can write this integral as

∫
V

 ∇∇∇∇•Adv    =
 ⌡
⎮
⌠

  V

 
 lim
Δv→0 

o∫
S

 A•ds

Δv 
 dv        .

Expressing the right hand integral as an infinite sum of infinitesimal volumes, we obtain

∫
  V

 ∇∇∇∇•A dv  = ∑
k
 limΔv

k
→0 

o∫
Sk

 A•ds

Δv
k
 

  Δv
k
   ,

where Δv
k
 is the kth differential subvolume, which is surrounded by the closed surface Sk .
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The right hand side of the above expression allows us to interpret ∫
V

 ∇∇∇∇•Adv  as the sum

of the fluxes emanating from each point within V.

S

V
Δvk

Figure 2-29

Geometry for deriving the
divergence theorem.

But as can be seen from
Figure 2-29, flux
contributions from adjacent
points within V cancel, since
the outward flux from one
volume is at the same time
inward flux to its neighbor.
All flux contributions in the
integral cancel, except those at
points on the surface
bounding V.  Thus,

∫
V

  ∇∇∇∇•Adv =   ∑
k
 lim

Δv
k
→0 o∫

Sk

 A•ds  =  o∫
S

 A•ds  .

The sum on the right-hand side is the integral  o∫
S

 A•ds,where S is the closed surface that bounds

the volume V.   Hence, we obtain the divergence theorem,

∫
V

 ∇∇∇∇•Adv =  o∫
S

 A•ds  .     Divergence Theorem  2.99

This theorem is useful for transforming equations involving vector integrals into simpler forms.

Example 2-11

Given A = r âr + sinθ  âθ , verify the divergence theorem over the spherical volume of

radius r = 1, centered about the origin.

Solution:
For the surface integral,

  ds = dsr  = r 2sinθ dθ dφ âr
and

 A•ds = r 3 sinθ dθ dφ .

Substituting, the surface integral becomes

 o∫
S

  A•ds = ∫
0

2π

  ∫
0

π

 r 3 sinθ dθ dφ  
|
|
|
r=1

= 2π ∫
0

π

sinθ dθ = 4π  .

To evaluate the volume integral, we must first evaluate the divergence of A,
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∇∇∇∇•A =   
1

r 2 
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂

∂r
 (r 3)   +  

1
r sinθ

  
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂

∂θ
 (sin2θ )

=  3 +  
2 cosθ

r   .

Substituting, the volume integral becomes

∫
 V

 ∇∇∇∇•Adv   = ∫
0

2π

  ∫
0

π

   ⌡
⎮
⌠

0

1

  ⎝⎜
⎛

 ⎠⎟
⎞

3 + 
2cosθ

r   r 2sinθ dr dθ dφ

= ∫
0

2π

 ∫
0

π

 ∫
0

1

3 r3sinθ drdθdφ   + ∫
0

π

 ∫
0

2π

 ∫
0

1

2r sinθ cosθ drdθdφ

  = 4π + 0  = 4π  .

The two integrals are indeed equal, just as predicted by the divergence theorem.
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2-5.4 The Curl of a Vector Field

The curl of a vector A is an indication of its tendency to "push" or "pull" along a closed
path that encircles a point.  By this we mean that a vector A has curl at a point if the line integral

o∫
C

 A•dl is nonzero and C is a differential path that encircles the point.  This tendency to push or

pull around a path is called circulation.  There are three perpendicular planes that such a path
can lie in about a point, so the curl is defined as a vector quantity, denoted by the symbols "curl
A" or "∇xxxxA".  Referring to Figure 2-30, we define the component of ∇xxxxA in the direction â i
by

(curl A)i  ≡ (∇xxxxA)i  ≡  
 lim
Δ s  i→0  

o∫
Ci

 A•dl

Δsi 
          , 2.100

where Δsi is a small surface that is bounded by the contour (i.e., path) Ci and has unit normal âi  .

Ci

âi

Δs i
Figure 2-30
A surface Δsi with unit normal âi ,
bounded by the contour Ci

The direction of Ci is

governed by the right-hand
rule, which says that when the
right-hand thumb is placed
along the path, the remaining
fingers "poke" through the
surface Δsi in the direction of

âi  .

Since ∇xxxxA is a vector, we can represent it by its magnitude and direction, which we will

denote as |∇xxxxA| and ân, respectively.  To find |∇xxxxA|, we notice from equation 2.100 that the

values of the components of ∇xxxxA vary with the orientations of the integration paths Ci .  Since the
maximum value that any component of a vector can attain equals the vector's magnitude, we can
conclude that

|∇xxxxA|  =  

 ⎣
⎢
⎡

 ⎦
⎥
⎤

 lim
Δs →0 

o∫
 C

 A•dl

Δs 

 

max

   , 2.101

where C is the differential path that maximizes the circulation integral.  Thus, we can write curl
A as

∇xxxxA   ≡   ân 

 ⎣
⎢
⎡

 ⎦
⎥
⎤

 lim
Δs →0 

o∫
 C

 A•dl

Δs 

 

max

  , 2.102

where ân is perpendicular to the surface bounded by C and points in the direction determined
by the right-hand rule.
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∇xxxx A

rotation

A

paddle
wheel

Figure 2-31
"Paddle wheel" analogy
of the curl of a vector.

Figure 2-31 is
helpful in understanding
the meaning of the vector
∇∇∇∇xxxxA.  Here, a paddle
wheel is placed in a fluid
whose velocity is
represented by the vector
A.  A torque will be exerted
on the paddle wheel
whenever there is a nonzero
circulation of A about the paddle wheel axis.  According to
equation 2.102, maximum torque is produced when the axis of the wheel is in the direction of
∇xxxxA.  If no torque is produced at a point for any orientation of the wheel, A has no curl there.

Figure 2-32
A contour Cx  in the yz plane,
about an arbitrary point P

x
y

z

Δy

Δz

P( x o, y o, z o)

Cx

The curl of a
vector can be calculated
by evaluating partial
derivatives of the
components of A with
respect to the
coordinate variables.
To show this, let us first
find the x component of
∇xxxxA, which requires

that we evaluate o∫
Cx

  A•dl

along the contour Cx, shown in Figure 2-32. This integral can be written as the sum of four line
integrals

o∫
 Cx

 A•dl = ∫
right

 A•dl   + ∫
 top

 A•dl   + ∫
 left

 A•dl   + ∫
bottom

 A•dl . 2.103

Along the right and left contours, dl = dz âz.  Similarly, dl = dy ây along the top and bottom
contours.  Substituting these into the contour integrals, we find

o∫
Cx

 A•dl =  ⌡
⎮
⌠

zo-  Δz

2

zo+  Δz

2

 Az (xo , yo+
Δy
2  , z) dz  +  ⌡

⎮
⌠

yo+  Δy

2

yo-  Δy

2

 Ay (xo , y , zo+
Δz
2  ) dy

+  ⌡
⎮
⌠

zo+  Δz

2

zo-  Δz

2

 Az (xo , yo-
Δy
2  , z) dz  +  ⌡

⎮
⌠

yo-  Δy

2

yo+  Δy

2

 Ay (xo , y , zo-
Δz
2  ) dy . 2.104
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Note that the limits of integration are such that the path of integration is counter-clockwise,
which is consistent with the right-hand rule.

Since both Δx and Δy  are small, each of the integrands on the right-hand side of equation
2.104 can be expanded in a Taylor's series about P(xo,yo,zo).  For the first integral, we can write

Az(xo ,yo+
Δy
2 ,z) ≅ Az(xo,yo,zo) + 

Δy
2  

∂Az
∂y

  
|
|
|
P

+ (z -zo)
∂Az
∂z

  
|
|
|
P

. 2.105

Integrating, we obtain

 ∫
right

 A•dl  ≅   Δz Az (xo,yo,zo) + 
Δy

2  Δz  
∂Az
∂y

  
|
|
|
P

 . 2.106

Similarly, for integral over the left segment of Cx , we can express the integrand as

Az(xo  ,yo-
Δy
2 ,z) ≅ Az(xo,yo,zo)- 

Δy
2  

∂Az
∂y

  
|
|
|
P

+(z-zo)
∂Az
∂z

  
|
|
|
P

, 2.107

which yields

 ∫
left

 A•dl  ≅   −Δz Az (xo,yo,zo) + 
Δy

2  Δz  
∂Az
∂y

   
|
|
|
P

   . 2.108

Summing the contributions of from the "right" and "left" portions of the contour yields

 ∫
right

 A•dl  + ∫
left

 A•dl  ≅   Δy Δz 
∂Az

∂y
  
|
|
|
P

    . 2.109

Similar analysis of the "top" and "bottom" portions of the contour yields

∫
 top

 A•dl  + ∫
 bottom

 A•dl  ≅    −Δy Δz  
∂Ay

∂z
   

|
|
|
P

    . 2.110

Substituting equations 2.109 and 2.110 into equation 2.103, we have

o∫
Cx

  A•dl  ≅  Δy Δz 
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤ 

∂Az
∂y

  
|
|
|
P

 -  
∂Ay
∂z

  
|
|
|
P

     . 2.111

which becomes exact in the limit as Δsx = Δy Δz → 0.  Comparing this expression with
equation 2.100, we can conclude

(∇xxxxA)x  =  
 lim
Δ s  x→0   

o∫
Cx

  A•dl 

Δs x 
  =  

∂Az
∂y

  -  
∂Ay
∂z

    , 2.112
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where the notation  
|
|
|
P

  has been dropped from the partial derivatives since the surface has

collapsed to a point.
The y and z components of ∇∇∇∇xxxxA can be found by evaluating equation 2.100 around the

contours Cy and Cz, which lie in the y=yo and z=zo planes, respectively.  Evaluating the resulting

circulation integrals using the same procedure as used for (∇xxxxA)x, we finally obtain

   ∇∇∇∇xxxxA=
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂Az

∂y
 - 

∂Ay
∂z

 âx +  
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂Ax

∂z
 - 

∂Az
∂x

 ây + 
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂Ay

∂x
 - 

∂Ax
∂y

 âz

Cartesian
Coordinates 2.113

This formula can also be written in shorthand form as a determinant,

∇∇∇∇xxxxA  = 

 ⎪
⎪
⎪
⎪

 ⎪
⎪
⎪
⎪ âx     ây     âz  

 
∂
∂x

     
∂
∂y

      
∂
∂z

  

 Ax     Ay     Az  

  , 2.114

which shows why the symbol "∇∇∇∇xxxxA" and  "curl A" are used interchangeably..

Corresponding expressions for ∇∇∇∇xxxxA exist in the cylindrical and spherical coordinate
systems

∇xxxxA = 
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤1

ρ
 
∂Az

∂φ
 - 

∂Aφ

∂z
 âρ + 

 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂Aρ

∂z
 - 

∂Az

∂ρ
 âφ + 

1
ρ

 
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂

∂ρ
(ρAφ) - 

∂Aρ

∂φ
 âz

  Cylindrical Coordinates 2.115

and

   ∇xxxxA  = 
1

r sinθ
 
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂

∂θ
 (Aφ sinθ)- 

∂Aθ

∂φ
 âr

+ 
1
r  

 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤1

sinθ
 
∂Ar

∂φ
 - 

∂
∂r

(rAφ)  âθ  + 
1
r  

 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂

∂r
 (rAθ) - 

∂Ar

∂θ
  âφ .

  Spherical Coordinates 2.116



Chapter 2: Vector Analysis - 49

These expressions can be derived either by transforming the components and coordinates of
equation 2.113 into the new coordinate system, or by evaluating the circulation integrals of
equation 2.100 directly in the new coordinate systems9.

Example 2-12

Calculate the curl of A = y âx at all points using a) Cartesian coordinates and
b) spherical coordinates.

Solution:

a)  Of the six partial derivatives present in the expression for ∇∇∇∇xxxxA, only one is nonzero,
since Ay = Az = 0 and Ax  is a function only of y.  Thus,

∇∇∇∇    xxxxA =  - 
∂Ax
∂y

  âz = - âz  .

b)  Transforming A into spherical coordinates, we find

A = r sin2θ sinφ cosφ  â r  + r sinθ cosθ sinφ cosφ  â θ   - r sinθ sinφ  â φ  .

From equation 2.116, we have

(∇∇∇∇xxxxA)r =  
1

r sinθ
 
 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂

∂θ
 [sinθ (-r sin2θ sin2φ)]

- 
∂
∂φ

(r sinθ cosθ sinφ cosφ))  = - cosθ

(∇∇∇∇xxxxA)θ =  
1
r  

 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤1

sinθ
 
∂
∂φ

(r sin2θ sinφ cosφ) - 
∂
∂r

(-r 2sinθ sin2φ)  =  sinθ

(∇xxxxA)φ = 
1
r  

 ⎣⎢
⎢⎡

 ⎦⎥
⎥⎤∂

∂r
(r2sinθ cosθ sinφ cosφ) - 

∂
∂θ

 (r sin2 sinφ cosφ)   = 0  .

Thus, ∇∇∇∇    xxxxA = -cosθ  â r + sinθ  â θ .  It is left as an exercise to the reader to show that this result

is equivalent to the one found in part a).

9 See Plonsey and Collin, Principles and Applications of Electromagnetic Fields, McGraw-Hill, New York,
1961
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A useful theorem that involves the curl operation is Stokes Theorem.  To derive this

theorem, consider the integral ∫
 S

(∇∇∇∇xxxxA)•ds over an open surface S.  From the properties of the dot

product, we can write the integrand as

(∇∇∇∇xxxxA)•ds = (∇∇∇∇xxxxA)•ds ân  =  (∇∇∇∇xxxxA)n ds  , 2.117

where ân is the outward normal to the differential surface and (∇∇∇∇xxxxA)n is the component of

∇∇∇∇xxxxA in the ân direction.  Using this, we can write ∫
S

(∇∇∇∇xxxxA)•ds in the form

∫
 S

(∇∇∇∇xxxxA)•ds = ∫
 S

(∇∇∇∇xxxxA)n ds   .

Substituting equation 2.100 into the right-hand side of this expression, we obtain

∫
 S

 (∇∇∇∇xxxxA)•ds=  ⌡
⎮
⌠

 S

 
 lim
Δs→0  ⎣

⎢
⎡

 ⎦
⎥
⎤

 

o∫
 ΔC

 A•dl

Δs
  ds  ,

where the contour ΔC bounds the surface ΔΔΔΔs=Δs ân in a right-handed sense.  Expressing the
right-hand integral as an infinite sum of differential surface elements, we obtain

∫
S

 (∇∇∇∇xxxxA)•ds  = ∑
k
 lim

Δsk→0 

o∫
Ck

 A•dl

Δsk
 Δs k   .

Canceling the Δs k terms, we find

∫
 S

 (∇∇∇∇xxxxA)•ds  = ∑
k
  limΔsk→0 o∫

 Ck

 A•dl     .

S

Δsk
Figure 2-33
Geometry for deriving Stoke's
theorem.

As can be seen from Figure
2-33, the line integral
contributions from adjacent
cells cancel, since the
directions of integration
along these paths are
opposite.  As a result, all line
integral contributions cancel,
except those along the contour that bounds S.  Thus,
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∫
S

(∇∇∇∇xxxxA)•ds  =  o∫
 C

 A•dl      Stokes Theorem , 2.118

where C is the contour that bounds S in a right-handed sense.  If S is a closed surface, it has no
bounding contour, so

o∫
S

 ∇∇∇∇xxxxA•ds = 0  . 2.119

S 1

ds
1

ds 2

S 2

C

Figure 2-34
Two surfaces
bounded by the
same contour C.

An important consequence of
Stokes Theorem is that there is more
than one surface that corresponds to a
particular contour C.  This is depicted in
Figure 2-34, where the surfaces S1 and
S2 both have the same bounding contour
C.  Since both surfaces are bounded by
the closed contour C, it follows from
Stoke's theorem that both surface integrals have the same value

∫
 S1

(∇∇∇∇xxxxA)•ds1  = ∫
 S2

(∇∇∇∇xxxxA)•ds2  . 2.120

The appropriate orientation of the differential surface vector ds1 on S1 is easy to visualize from
the right-hand rule, since S1 is flat.  Because S2 is curved, however, the correct orientation of
ds2 is not as obvious.  An aid that is helpful here is to imagine that S1 is an elastic membrane
that, when stretched, assumes the shape of S2.  During this process, we simply allow ds at each
point to remain perpendicular to the surface as the membrane transforms from S1 to S2.

Example 2-13

For A = ρ z âφ, evaluate both sides of Stoke's theorem for the contour C and the

surfaces S1 and S2, shown in Figure 2-35.

Sa

S1

C

h

x
y

z

ρ 

Sb

S2 Sa Sb
= +

Figure 2-35
Circular contour C  that bounds two open
surfaces: S1 and S2.
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Solution:

Both S1 and S2 are bounded by the contour C, which is described by ρ = 2, 0 <φ < 2π
, and z = 0.  Along this contour,

dl =ρ dφ  âφ   
|
|
|ρ=2

= 2 dφ  â φ .

  Substituting this dl into the contour integral, we obtain

o∫
 C

 A•dl  =  o∫
 C

 2ρz âφ•âφdφ   
|
|
|ρ=2
z=0

 =  ∫
0

2π

0dφ =  0  .

To evaluate the surface integrals, we must first calculate ∇∇∇∇    xxxxA.  Since A has only a φ
component, we have

∇∇∇∇    xxxxA  = - 
∂Aφ

∂z
 âρ + 

1
ρ

 
∂
∂ρ

 (ρAφ) âz = -ρ  â ρ + 2z âz  .

For ∫
 S1

 (∇∇∇∇xxxxA)•ds , we note that S1  is a circle of radius ρ =2.  Since the direction of C  is

counterclockwise, the right-hand rule requires that ds = ρ d ρ dφ  â z .  But, since the surface

is in the z=0 plane, (∇∇∇∇xxxxA)•ds  
|
|
|
z =0

=  0 , yielding

∫
 S1

 (∇∇∇∇xxxxA)•ds  = ∫
 S1

 0 d ρ d φ   = 0    .

The surface S2 consists of two simple surfaces - a cylinder Sa and its endcap Sb.

From the right-hand rule, the differential surface vectors on Sa and Sb are dsa = ρ d φ d z âρ

and dsb = ρ d ρ d φ âz, respectively.  Given these, the surface integral over S2 becomes:

∫
 S2

 (∇∇∇∇xxxxA)•ds = ∫
0

h

    ∫
0

2π

-ρ2d φ d z 
|
|
|
ρ=2

 + ∫
0

2π

   ∫
0

2

 2zρ d ρ d φ  
|
|
|
z =h

= -8πh  + 8πh  = 0 .
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2-5.5 The Laplacian Operator

There are many occasions in vector analysis where a gradient operation is followed by a
divergence operation.  This combined operation is called the Laplacian and is denoted by the

symbol ∇∇∇∇2,

∇∇∇∇2  ≡  ∇∇∇∇•∇∇∇∇     . 2.121

The application of the Laplacian to scalar fields is straightforward. In Cartesian
coordinates, we have

∇∇∇∇2f = ∇∇∇∇•∇∇∇∇f = ∇∇∇∇•
 ⎝
⎜
⎛

 ⎠
⎟
⎞

 
∂f

∂x
 â x + 

∂f

∂y
 â y + 

∂f

∂z
 âz    , 2.122

which yields

∇∇∇∇2f  =  
∂2f

∂x 2 + 
∂2f

∂y 2 + 
∂2f

∂z 2     Cartesian Coordinates  . 2.123

Similarly, the Laplacian of a scalar field can be expanded in cylindrical and spherical
coordinates to yield:

∇∇∇∇2f = 
1
ρ

 
∂
∂ρ

 
 ⎝
⎜
⎛

 ⎠
⎟
⎞

ρ 
∂f

∂ρ
 + 

1

ρ2
 
∂2f

∂φ 2 + 
∂2f

∂z 2   ,  Cylindrical Coordinates 2.124

and

∇∇∇∇2f = 
1

r 2
 
∂
∂r

 
 ⎝
⎜
⎛

 ⎠
⎟
⎞

r 2 
∂f

∂r
  + 

1

r 2 sinθ
 
∂
∂θ

 
 ⎝
⎜
⎛

 ⎠
⎟
⎞

sinθ 
∂f

∂θ
   + 

1

r 2 sin2θ
  
∂2f

∂φ 2  .

Spherical Coordinates 2.125

The Laplacian operator can also be applied to vector fields.  To see how this is possible,
let us consider the Laplacian of a vector A that is represented in Cartesian coordinates,

∇∇∇∇2A= ∇∇∇∇2( )Ax â x + Ay â y + Az â z    .

Since the unit vectors âx, ây, and âz are not functions of position, they are constants with

respect to the ∇∇∇∇2 operator.  Thus, we can conclude that the Laplacian of a vector is also a vector,
with Cartesian components given by
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∇∇∇∇2A ≡  â x ∇∇∇∇
2Ax + ây ∇∇∇∇

2Ay + âz ∇∇∇∇
2Az   . Cartesian  Components 2.126

If a vector is expressed in non-Cartesian components, its Laplacian cannot be evaluated so

simply.  To derive a general expression for ∇∇∇∇2A , we note that the right hand side of equation
2.126 can be written as

 ∇∇∇∇2A = âx ∇∇∇∇
2Ax + ây ∇∇∇∇

2Ay + âz ∇∇∇∇
2Az = ∇∇∇∇(∇∇∇∇•A) - ∇∇∇∇xxxx∇∇∇∇xxxxA . 2.127

The proof of this identity is straightforward in Cartesian coordinates and is left as an exercise
for the reader.  Since the divergence and curl operations are well defined in all coordinate
systems, the right side of equation 2.127 can be evaluated in any coordinate system.  Thus, the
Laplacian of a vector can be expressed in all coordinate systems as

∇∇∇∇2A ≡ ∇∇∇∇(∇∇∇∇•A) - ∇∇∇∇xxxx∇∇∇∇xxxxA   . 2.128

2-5.6 Helmholtz's Theorem

An important question in vector analysis is, "What kind of information is necessary to
completely characterize a vector field over some region of space?".  The answer to this question
is important for two reasons.  First, it allows us to judge whether a particular set of
specifications uniquely defines a vector within some region.  Second, a knowledge of the
minimum information necessary to uniquely specify a vector quantity can simplify the work
necessary to solve a given problem.

The key to determining the behavior of any quantity over a region is knowing how it
changes from point to point.  For scalars, the gradient operation supplies all of the information
necessary.  The following theorems make it clear that for vectors, two operations are needed:
divergence and curl.

Theorem I: Any vector field that is continuously differentiable in some volume V can
be uniquely determined if its divergence and curl are known throughout
the volume and its value is known on the surface S that bounds the
volume:

A(r)   =   - ∇∇∇∇ 

 ⎣
⎢
⎡

 ⎦
⎥
⎤

 ⌡⎮
⎮⌠

 V

 
∇∇∇∇′′′′•A(r′)
4π|r-r′|

 dv′  - o
 ⌡⎮
⎮⌠

 S

 
A(r′)•ân′
4π|r-r′|

 ds′ 

 +  ∇∇∇∇xxxx
 ⎣
⎢
⎡

 ⎦
⎥
⎤

 ⌡⎮
⎮⌠

 V

 
∇∇∇∇′′′′xxxxA(r′)
4π|r-r′|

 dv′  - o
 ⌡⎮
⎮⌠

 S

 
A(r′)xxxxân′

4π|r-r′|
 ds′   . 2.129

In this expression, the unit vector ân´ points outward from S.  Also, inside

the integrals, the dummy integration position variable is
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r´=x´ âx + y´ â y + z´ âz  and the del operator ∇∇∇∇´ is  given by ∇∇∇∇´ = 
∂

∂x´

â x + 
∂

∂y´
 â y + 

∂
∂z´

 âz  .  This is relationship is called Helmholtz's

Theorem and is proved in a number of advanced electromagnetics and
mathematics texts10.

For most vectors found in electromagnetics, the surface integrals in this
expression vanish when the volume V  is chosen to be all of space.  This
means that these vectors can be uniquely specified when their curl and
divergences are known at all points in space.

Theorem II: Any vector field that is continuously differentiable in some region can be
expressed at every point in this volume as the sum of an irrotational vector
and a solenoidal vector.  Thus,

A = ∇∇∇∇f + ∇∇∇∇    xxxxG  , 2.130

where f is a scalar field and G is a vector field.  This identity follows
directly from Helmholtz's theorem.

Theorem III: If ∇∇∇∇    xxxxA = 0 throughout a region, then A can be represented as

A = ∇∇∇∇f     2.131

throughout this region, where f is a scalar field.  Vectors for which
∇∇∇∇xxxxA= 0 are called irrotational vectors.  This theorem follows from

Helmholtz's theorem and the identity ∇∇∇∇    xxxx∇∇∇∇f  = 0 (equation B.9).

Theorem IV: If ∇∇∇∇•A= 0 throughout a region, then A can be represented as

A = ∇∇∇∇xxxxG   2.132

throughout this region, where G is a vector field.  Vectors for which
∇∇∇∇    •A= 0 are called solenoidal vectors.  This theorem follows from

Helmholtz's theorem and the identity ∇∇∇∇•∇∇∇∇xxxxG = 0 (equation B.8).

2-6 Summation

In this chapter, we have presented the basic concepts of vector analysis.  While these
concepts are firmly rooted in mathematics, our interest in them is solely in their ability to
describe physical processes that involve scalar and vector quantities.  In the chapters to follow,
we will use these concepts freely as we develop the basic equations that define electromagnetics.
Vector analysis will also form the basic framework of our analysis and design of
electromagnetic systems.

10  For instance, see Principles and Applications of Electromagnetic Fields, by Robert Plonsey and Robert
Collin, McGraw-Hill, New York, 1961
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Problems

2-1 If A = 3â x + 2â y - 4âz and B = -2â x + â y + 2âz, find:
a) |A|
b) |B|
c) âB
d) A+B
e) A•B
f) The minimum angle θ between A and B.

2-2 If A = -â x + 3â y - 2âz and B = 2â x + 3â y - 2âz, find:
a) |A|
b) |B|
c) A-B
d) AxxxxB
e) The minimum angle θ between A and B.

2-3 If A = 2âρ - âφ - 2âz, B = 3âρ + 2âφ + 4âz, and C = âρ +2âφ + âz, find:

a) A•B
b) minimum angle θ ABbetween A and B

c) AxxxxB
d) the unit vector ân that points in the direction of AxxxxB

e) C•AxxxxB
f) Cxxxx(AxxxxB)

2-4 Using the Cartestin coordinate system, prove that the following properties of vector
addition are true for all vectors:

A +(B + C) = (A + B)+ C     (Associative law)

A + B  =  B + A                 (Commutative law)

A••••(B + C) = A••••B + A••••C    (Distributive Law)

2-5 If A = 2âx - 3â y + 2âz at all points P,
a) find the expression for A in the cylindrical coordinate system.
b) evaluate this expression at the points P1(1,60°,2) and P2(2,30°,4).

2-6 If A = 2r âr - 3r sinφ âθ ,  find the representation of A in the Cartesian coordinate

system.

2-7 The representation of a vector C using the Cartesian coordinate system base vectors is
C = 3â x + â y - 3âz .  Find its representation using the following base vectors:
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â1 = 
1

√⎯ 2
 [ ]â x + â z 

â2 =  
1

√⎯ 2
 [ ]âx - â z 

â3 =  ây   .

2-8 A force F =10 âx - 8 ây [N] is applied to an object that constrained to travel towards

increasing values of x along the path defined by y = x2, z = 0.  Find the component of F
that is tangent to this path at the point (2,4,0).

2-9 Using integration, calculate the area of the triangular are shown in Figure P2-9.

h

b x

y

Figure P2-9

2-10 Using integration, find the volume of the right pyramid shown in Figure P2-10.

h

a

b

x

y

z

Figure P2-10

2-11 Evaluate the integral ∫
S

 D•ds when D = r sinθ â r + r sinθ â θ  and S is a unit sphere,

centered at the origin.

2-12 Consider the integral ∫
C

 F•dl, where  F = ρ âρ + z 2 âφ .

a) Calculate this integral from P(1,0°,0) to P(1,90°,2) along the path C1 shown in Figure

P2-12 , which consists of the arc ρ  = 1, 0<φ <π/2, z = 0 , followed by the straight line ρ =

1, φ = π/2, 0<z < 1 .
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b) Calculate this integral from P(1,0°,0) to P(1,90°,2) along the path C2 shown in Figure

P2-12 that is defined by the arc: ρ = 1, 0<φ <π/2, z =4φ /π

°,2)P(1,90

x

C2

y

z

C1P(1,0°,0)

h =2

Figure P2-12

2-13 Consider the line integral ∫
C

 E•dl, where E=x âx + 2xy â y + 3â z.

a) Calculate this integral along the path C1 that extents from the origin to the point P(1,1,1)
along the straight line segments that sequentially passes through the points P(0,0,0),
P(1,0,0), and P(1,1,0), and P(1,1,1).

b) Calculate this integral along the path C2  that extents from the origin to the point P(1,1,1)
along a single, straight line.

2-14 Evaluate the volume integral ∫
V

 Qdv, where Q = 2x3z   when x and z are specified in

meters and V is the cube shown Figure P2-14.

2 [m]

2 [m]

2 [m]

x

y

z
V

Figure P2-14
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2-15 Evaluate the surface integral ∫
S

 gds  over the sector shown in Figure P2-15 if g = 2ρ cosφ.

60°

2 [m]

x

y

z

Figure P2-15

2-16 If F = xy âx  - y ây , calculate the value of the line integral ∫ F•dl  from P1 to P2 in Figure

P2-16 along the paths:

a) along a straight line from P1 to P2 ,
b) along the path P1 AP2 .

P (4,3)2

x

y

P (2,1)1

1 2 3 4

1

2

3

4

C1

C2

Figure P2-16

2-17 A family of surfaces is defined by the equation

2x 2y + xz = C ,

where each surface corresponds to a different value of the constant C.  Find the unit vector
ân that is directed outward from the surface at the point P(1,2,-1).

2-18 For the scalar function g = 2xy + z2, find

a) the magnitude and direction of the maximum rate of change of g at the point P(1,3,2).
b) the rate of change of g along the line directed from P(1,3,2) to P(2,2,-1).



Chapter 2: Vector Analysis - 60

2-19 Consider the line integral  W = ∫
P1

P2

 F•dl , where F = 4y ây .

a) Prove that the value of W is independent of the path chosen between the endpoints P1
and P2 .

b) Find the value of W when the endpoints are  P1(1,0,0) and P2(2,-1,4).

2-20 For the function f = 2xy,
a) Calculate ∇∇∇∇f in Cartesian coordinates.

b) Express f in cylindrical coordinates and calculate ∇f in cylindrical coordinates

c) Show that ∇∇∇∇f is the same vector in both coordinate systems by transforming the vector
found in a) into cylindrical coordinates.

2-21 If the representation of a vector A in spherical coordinates is A = r âr,

a) Calculate ∇∇∇∇•A in the spherical coordinate system
b) Find the representation of A in the Cartesian coordinate system and then calculate

∇∇∇∇•A.  Is it the same value as found in part a)?  Why or why not?

2-22 Evaluate the integral  o∫
S

 D•ds over the surface bounding the cube shown in Figure P2-14

when D = 2y âx + xz â y + z âz.  Show that the same result is obtained using the

divergence theorem by integrating ∇•D throughout the volume.

2-23 Consider the line integral o∫
C

 B•dl, where B = y âx + z ây  and C is a square path in the

z =0 plane with sides x = -1, x =1, y = -1 and y =1.  Assume that the direction of the path
is counterclockwise when looking downward from the +z  axis.

a) Calculate the line integral directly.
b) Calculate the line integral by using Stoke's theorem and integrating ∇xxxxB over the

square surface in the z = 0 plane that is bounded by C.
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2-24 Find ∇∇∇∇•B  and ∇∇∇∇xxxxB if

a) B = ρz âρ + ρ2 âφ + 2z2 â z

b) B = 2xy âx  + 3y â z

c) B = 4r sinθ âr  + 3r cosφ âθ

2-25 Given that f = r sinθ cosφ,  calculate

a) ∇∇∇∇f

b)∇∇∇∇xxxx∇∇∇∇f

c)  ∇∇∇∇•∇∇∇∇f

2-26 In Figure P2-26, S1 is a circular disk with unit radius, centered in thez = 0 plane, and S2
is a hemisphere for z > 0, centered at the origin with unit radius.  If A = 3r âφ , calculate

o∫ ∇∇∇∇xxxxA•ds S1 and then onS2.  Assume that the normal direction to both surfaces points

has a positive z component.  Do these integrals have the same values?  Why or why not?

x y

z

S 2

S 1

Figure P2-26

2-27 Using the Cartesian coordinate system, verify that the identity ∇∇∇∇xxxx∇∇∇∇V = 0 is valid for all
scalar fields V.

2-28 Using the Cartesian coordinate system, verify that the identity ∇∇∇∇•∇∇∇∇xxxxA = 0 is valid for all
vector fields A.

2-29 Using  thge identity ∇∇∇∇2A = âx ∇∇∇∇
2Ax + ây ∇∇∇∇

2Ay + âz ∇∇∇∇
2Az , prove that

 ∇∇∇∇2A = ∇∇∇∇(∇∇∇∇•A) - ∇∇∇∇xxxx∇∇∇∇xxxxA  .


