	The University of Kansas	
EECS 2 1	212- Circuits II Spring	<u>, 2024</u>
Catalog Data:	EECS 212 Circuits II (4). Continued study of electrical circuits: Steady state panalysis, three-phase circuits, transformers, frequency response, two-port netwanalysis. Prerequisites: EECS 202	power vork
Textbook:	Fundamentals of Electric Circuits, 7 th edition by Alexander and Sadiku, McGraw Hill, 202	
Software:	Cadence (which includes Pspice and PCB Layout) is available on EECS network computers under the program heading "Cadence PSD"	ork
Course Object	ctives:	
Ū	This course is to complete the study by sophomores in electrical engineering a computer engineering of the basics of the analysis of linear electrical circuits a provide an introduction to their design.	ind and to
Prerequisites b	by Topics:	
-	Basic dc and ac circuit analysis	
	Pspice computer program for circuit analysis	
Course Topics	25:	
Re	eview of steady state sinusoidal analysis	
Fre	requency response, Bode diagrams	
	agnetically coupled networks	
Pol	olyphase circuits	
Tw	wo-port networks	
Dis	vistributed Circuits & Transmission Lines	
Tools Usage:		
Ps _I Cir	spice circuit analysis and pcb layout software fircuit test equipment	
Laboratory to	opics:	
AC/D	DC circuits	
I ransi Opera	sient circuits	
Transt	sformers	
Freque	uency response and filters	
Two-p	-port network measurement techniques	
Estimated Cou	ourse Content: Engineering science: 4.0 hours or 100%	
Instructor: Ke	Cenneth R. Demarest	
302	028 Eaton Hall 864-7395	
em	mail: demarest@ku.edu website: <u>http://people.eecs.ku.edu/~demarest</u>	
Office Hours:	1:00 - 3:00 MWF	
	9:30-10:30 and 1:30-3:00 T,Th	
	Zoom: Meeting ID: 955 1144 2187 Passcode: 411316 (arrange with email)	

Lab TA: Anjana Lamsal email: lamsalanjana@ku.edu website: <u>https://people.eecs.ku.edu/~j400d084/eecs212_lab/</u> Grading: The following percentages will be used to arrive at the final grade scores

Final letter grades are determined from the final grade scores using a scale determined at the end of the semester by the instructor's evaluation of the overall class performance and the difficulty and curve of the exams, but is typically similar to the traditional 90-100 A, 80-90 B, etc. A passing grade must be earned in each of the three grade categories (exams, lab, and homework) to earn a passing grade for the course. In addition, a composite exam score of C or above must be attained to earn a course grade of C or above. EECS 212 will *not* utilize +/- grading system. Changes announced in class supersede these written instructions.

Homework: Homework will be collected at the beginning of class on roughly a weekly basis. Late homework is not accepted, except for unusual circumstances. Collaboration with classmates is permitted. Copying from any source is *not* permitted and will be penalized.

Special Needs: Any student who has a disability that demands special accommodations should contact the instructor personally in order to make arrangements. Also, members of KU sanctioned organizations (band, athletic teams, etc.) that have special needs should also contact the instructor as the need arises.

Make-ups: Make-up exams are given rarely, and only if: 1) I am informed IN ADVANCE, and 2) I deem the reason to be sufficiently meritorious (job interviews and pleasure trips are not). If the reason is illness, I REQUIRE documentation of the illness from a health-care professional. I do not consider a cold to be an illness.

Academic Misconduct: Instances of cheating failure of class and referral to the Dean. Cheating includes, but is not limited to: copying another exam or lab report, copying of hardcopy or online solution manuals or previously worked homework papers, having another person do your work, etc.

<u>Syllabus</u>

<u>Week</u>	<u>Topic/Chapter</u>		
1	Laplace/Phasor Analysis Review/ Chapter 10, 16 & Instructor Notes		
2	AC power / Chapter 11		
3-4	3-phase power / Chapter 12		
5	Magnetically coupled circuits and Trnasformers/ Chapter 13		
Exam I (Wednesday, February 28- tentative)			
6-9	Network Transfer Functions/ Frequency response / Chapter 14		
10-11	Two-port networks/ Chapter 19		
Exam II (Monday, April 15 - tentative)			
12-15	Distributed circuits & transmission lines		
Final Exam (comprehensive, Thursday, May 9 from 10:30am – 1:00pm)			