VIDEO SAR

Audrey Seybert November 30, 2015

Outline

- What is Video SAR (ViSAR)?
- Applications
 - Example 1: Kirtland Airforce Base Solar Array
 - Example 2: Kirtland Airforce Base Eubank Gate
 - Example 3: Display-Aided Target Tracking

What is Video SAR?

- The display of sequentially captured SAR images at a rate that is representative of continuous motion.
- SAR can be operating in stripmap or spotlight modes
- Application 1: High resolution video surveillance of one area **probably spotlight**
 - High resolution implies high latency / low frame rate acceptable
- Application 2: Low res video feed combined with GMTI for tracking probably stripmap
 - Lower resolution better lends itself to real time video applications

Spotlight Mode SAR

- Two scatterers at range R are separated by $\Delta \Theta = \frac{\Delta CR}{R}$
- Doppler difference between them is $\Delta f_D = \frac{2v\Delta\Theta}{\lambda}$
- Radar's Doppler resolution: $\Delta f_D = \frac{1}{T_a}$
- Cross Range Resolution: $\Delta CR = \frac{\lambda}{2\gamma}$
- Aperture Time: $T_a = \frac{\lambda R}{2\nu\Delta CR} = \frac{R\gamma}{\nu}$
- Aperture Length: $D_{SAR} = vT_a = R\gamma$ (small angle approximation)
- Spotlight data products lend themselves to polar format processing (not discussed)

Some Perspective on Frame Rate

- Frame rate (fps) number of distinct images shown per second
- Refresh rate (Hz) number of times the screen content is refreshed per second
- Human requirement for perceiving "continuous" motion is 16 20 fps
- Film industry standard is 24 fps
- 24 SAR images per second would require an aperture time of 42 ms
 - This ignores processing latency & throughput, $(T_a \text{ smaller if watching real time})$
 - Shorter T_a means degraded Doppler resolution $(\Delta f_D = 1/T_a)$

[Tarantola]

- Kirtland Airforce Base Solar Array, Albuquerque, New Mexico
- Video Captured on April 9, 2010
- Recorded 9:04:36 to 9:08:28 PM
- Radar Platform undocumented
- Video composed of 761 images
- Video playback length: 30 s
- Video record duration: 232 s
- Record rate: 761/232 = 3.25 fps
- Playback rate: 761/30 = 25 fps
- <u>http://www.sandia.gov/radar/_assets</u> /videos/solartower.mp4

- Solar panels are ~ 6m on a side
- Estimating that the panel posts have 10 m spacing, the tower's shadow length is ~130 m.
- The tower height is 61 m.
- The radar look angle is $\Theta = tan^{-1}\left(\frac{Ls}{h}\right) \approx 65 \ deg$

Assumed System (Lynx) Parameters

- Lynx first deployed in 1999, design targeted for large UAV platforms (I-GNAT & others)
- Ku-Band (15.2 GHz to 18.2 GHz, fc = 16.7 GHz), Transmitter Power = 320 W
- Modes: Stripmap/Spotlight SAR, GMTI, CCD, "Zoom and Steer" capability
- I-GNAT: max cruise altitude = 8 km
- Max velocity w/ radar op = 250 km/hr

Lynx Spotlight Mode Specifications (1999)	
Resolution	0.1 m to 3.0 m
Range	4 km to 25 km (+ for low res)
Squint Angle	+/- 50 deg to 130 deg
Patch Size	2 x (640 x 480) pixels

Assumed System (Lynx) Analysis

• Given
$$\Delta CR = 0.1$$
, $\gamma = \frac{\lambda}{2\Delta CR} = 0.0898 \, deg$

• Video suggests,
$$\gamma = \frac{\gamma_{tot}}{\#im} = 0.263 \ deg$$
 (3x larger)

 This contradiction suggests more images * may have been formed and averaged (3#*im* = 2283)

• Therefore, aperture time
$$T_a = \frac{t_{rec}}{3*\#im} = 0.102 s$$

Allows ~100 pulses per image with PRF = 1 kHz

If H = 2 km, R =
$$\frac{\cos(\Theta)}{H} = \frac{\cos(65)}{2000} = 4.73 km^*$$

 $v = \frac{R}{\gamma T_a} = 245 km/hr^*$

Assumptions		
Cross Range Res (ΔCR)	0.1 m	
Tx Frequency	16.7 GHz	
Tx Wavelength (λ)	1.8 cm	
*PRF	1 kHz	
Number of Images (# <i>im</i>)	761	
Total Record Time (t_{rec})	232 s	
Total Rotation Angle (γ_{tot})	200 deg	
*Height (H)	2 km	
Incidence Angle (Θ)	65 deg	

* Numbers or statements based purely on conjecture to complete example.

- Eubank entrance to Sandia National Laboratories, Albuquerque, NM
- Motion effects clearly visible as cars start and stop
 - Initially, vehicle motion normal to radar motion.
 - End of video, vehicle motion parallel to radar motion.
- <u>http://www.sandia.gov/radar/_asse</u> <u>ts/videos/eubankgateandtrafficvide</u> <u>osar.mp4</u>

Example High Resolution ViSAR Product Motion Effects

Doppler shifted echoes aren't dramatic in these scenes because the vehicle motion is mostly normal to the radar platform motion

$$f_D = \frac{-2\mathrm{vcos}(\Theta)}{\lambda}$$

Direction of radar platform motion

Example High Resolution ViSAR Product Motion Effects

Direction of radar platform motion

- Velocity Independent Continuous Tracking Radar mode
- Side by side ViSAR / GMTI display
- GMTI tracker specifies region of interest for ViSAR
- Significant zoom and scan evident in ViSAR data product
- Hard to identify radar platform motion from the video, generally seems to move in the direction of the tracked object.
- <u>http://www.sandia.gov/radar/_asse</u> <u>ts/videos/victr.mp4</u>

References

- Richards, M. (2005). Fundamentals of radar signal processing. New York: McGraw-Hill.
- SNL National Solar Thermal Test Facility: <u>http://energy.sandia.gov/energy/renewable-energy/solar-energy/csp-2/nsttf/</u>
- SNL Radar Modes:

http://www.sandia.gov/radar/areas_of_expertise/radar_modes.html

- SNL Radar Video Index: <u>http://www.sandia.gov/radar/video/index.html</u>
- Tarantola, A. (2015, Jan. 14). Why Frame Rate Matters. Retrieved from

http://gizmodo.com/why-frame-rate-matters-1675153198.

Tsunoda et. al. 1999. Lynx: A high-resolution synthetic aperture radar. SPIE Aerosense, 3704. Retrieved From <u>http://www.sandia.gov/radar/files/spie_lynx.pdf</u>.