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The Inner Product 
 
So we now know that a continuous, analog signal  v t  can be 
expressed as: 

   n n
n

v t a t   

 
So that a continuous, analog signal can be (almost) completely 
specified by a discrete set of numbers: 
 

 1 2 3 5 64a ,a ,a ,a ,a ,a ,  
 

Q: But don’t these numbers likewise depend on the basis 
functions  n t ??  How is this any easier or simpler than just 
specifying  v t . 
 
A: Remember, the signal  v t  is arbitrary, but the basis 
functions  n t  are typically well-known and frequently used.   
 
We can think of the basis functions  n t  as a 
standard set of parts, from which we can 
construct any arbitrary function  v t ! 
 

Q: We think you’ve gone off the deep end. 
Parts used for constructing functions? 
Isn’t this discussion impractical, 
ephemeral, esoteric and didactic ?  

A:  Not at all!   
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The concept of constructing massive, complex things out of 
small and simple elements is pervasive not only in engineering, 
but in other sciences and human activity as well!! 
 
Some examples: 
 
1. The genetic code in human DNA is made up of very 
long sequence of just four purine compounds: adenine 
(A), thymine (T), guanine (G), and cytosine (C). 
 
 

2. Almost all human knowledge 
and emotion can be expressed 
in English using the symbols:  
 
ABCDEFGHIJKLMNOPQRSTU
VWXYZ1234567890!,.:;”+- 

 
 
3. All matter in the universe is constructed with a relative 
small number of elements. 
 
 

H2O 
 

C6H12O6 
 

CO2 
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Thus, the set of basis functions  n t  are the “parts” we use 
to construct our signal  v t .  The values  1 2 3a ,a ,a ,  tell us 
the specific “blueprint” (or recipe, code, paragraph—choose 
your analogy) for putting these parts together to create the 
unique function  v t . 
 
Similar to other aspects of life, we must 
choose which set of basis functions are 
most useful to us.  
 
However, instead of choosing between lego blocks and tinker 
toys, or English, Chinese and Spanish, we must choose between 
(for example) sinusoids, sinc function, and wavelets! 
 
Q: But after we choose a basis  n t , how do we determine 
the values na ?  How do we find the “recipe” for constructing 
function  v t ?? 
 
A:  First, we must understand what the values na  tell us about 
the signal  v t .  Essentially, the values na  tell us how much of 
each basis function  n t  exists within  v t .   
 
For example, if the value 1a  is small, the value 2a  is moderate, 
and 3a  is big, or recipe (metaphorically speaking) might be: 
 
“To create  v t , add a pinch of basis function  1 t , a cup of 
basis function  2 t , and about a gallon of basis function 

 3 t .  Place in a hot oven for about 45 minutes*.”  
* This last sentence is not part of the analogy. 
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Q: I thought I would never say this, but can you be more 
mathematically specific? 
 
A: The values na  are the components of signal  v t , with 
respect to basis  n t . 
 
Q:  In EECS 220 we enjoyed learning about the 
components of a vector ( x y zA ,A ,A ), with respect to 
some set of basis vectors ( x y zˆ ˆ ˆ, ,a a a ). E.G.,: 
 

x yˆ ˆ ˆA A A  A x y z za a a  
 
Is this the same thing? 
 
A: Precisely the same thing!  
 
The scalar components ( 1 2 3A ,A ,A ) of a vector tells us how 
much of each base vector (ˆ ˆ ˆ, ,1 2 3a a a ) exists within vector A.   
 
The scalar components ( 1 2 3A ,A ,A ) thus provide the recipe for 
constructing vector A from our fundamental “ingredients” 
(ˆ ˆ ˆ, ,1 2 3a a a ). 
 
Q:  But wait! I remember that we determined these 
components ( 1 2 3A ,A ,A ) by using the dot product, e.g.,: 
 

x y zˆ ˆ ˆA A A     A A Ax y za a a  
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A: That’s correct! For example, consider a vector A, and basis 
vectors ˆxa  and ˆya . 
 
 
 
 
 
 
By using the dot product, we find the component of vector A 
in the direction of basis vector ˆxa . 
 
 
 
 
 
 
Likewise for the component of vector A in the direction of 
basis vector ˆya . 
 
 
 
 
 
 
Thus vector A can be expressed as the sum of two vector 
components: 
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x x y

x y

y

a

Aa

aa

a

a

A





A A A
 

ˆy yA a  

ˆx xA a  

A 

ˆy yA a  

Ay  
cos

ˆ cos

ˆ

Ay

A

y

y

A 







 

A

Α

Α
y

y

a

a

 

x̂a  
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Q:  But we’re not talking about vectors, we’re talking about 
continuous signals like  v t .  Surely there’s no way to use the 
dot product to find its components? 
 
A:  Essentially there is!  The mathematical cousin of the dot 
product is a mathematical operation known as the inner 
product.* 
 
The inner product of two signals  a t  and  b t  is defined as: 
 
 

       




 dttbtatb,ta *
 

 
where * indicates complex conjugate. 
 
If     0a t ,b t  , we say that the two signals  a t  and  b t  
are orthogonal (just like if 0 A B !).  If this is the case, the 
two signals  a t  and  b t  are considered to be completely 
dissimilar—they have no common component. 
 
The energy of some signal is determined by taking the inner 
product of that signal with itself (just like if 2 A A A !): 
 

         








 dttadttatata,taE 2*
a  

 
 

*  And stop calling me Shirley. 
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A signal whose energy is 1E   said to have unit energy (just 
like unit vectors where 1ˆ ˆ a a !). 
 
Finally, consider a set of signals (  n t , say). These signals 
each have unit energy.  
 

    1n nt , t      for all n 
  
Likewise, these signals are all orthogonal to each other: 
 

    0n mt , t      for all m n  
 
These signals are known as mutually orthogonal.   
 
A set of mutually orthogonal signals with unit energy is known 
as an orthonormal set of basis functions (just like ˆ ˆ ˆ, ,x y za a a ). 
 
Orthonormal basis functions have many exceptionally 
attractive mathematical properties.  As a result, we find that 
we frequently use them in signal expansions of the form: 
 

   n n
n

v t a t   

 
Q:  So does that mean that the Fourier and sinc basis 
functions are orthonormal? 
 
A: Absolutely! As are many (but not all) wavelet basis 
functions. 
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The key property of orthonormal basis functions is that it 
allows us to determine the signal components by use of the 
inner product: 
 

   n na v t , t  
 

 
Of course, this is perfectly analogous to our vector 
component analysis: 

n ˆA  A ya  
 

So now we can determine the values na  for our most popular 
basis functions! 
 
1.  Fourier 
 

   
2

for 0
nj t

T
n n n

n n
v t a t a e t T




    
 

 

      

 
Therefore: 
 

         
2 2

0

n nTj t j t
T T

n n na v t , t v t ,e v t e dt V
 

 
   

    
        

 
2.  Sinc Function 
 

   n n n
n n

t nv t a t a sinc 


 
   

 
   



11/16/2010 The Inner Product.doc 9/9 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Therefore: 
 

       n n
t n t na v t , t v t ,sinc v t sinc dt 
 





    
     

   
  

 
Q:  Yikes! This integral looks as ugly and unpleasant ! 
 
A: It does look that way—but it’s not!  ICBST (It Can 
Be Shown That) the solution to this integral is simple 
and straight forward: 
 

   n
t na v t sinc dt v t n 






 
   

 
  

 
The component value na  is simply the value of function  v t  at 
the specific time t n .  Thus: 
 

   n
n n

t n t nv t a sinc v t n sinc 
 

    
     

   
   

 
This is the reason why sinc basis functions are so popular—it 
is extremely easy to determine all the signal components na ! 
 
All we need is a device that samples the signal  v t  at specific 
times t n —and we have such a device! 
 
 
 

 

 


