
Pragmatic XML Access Control Using
Off-the-Shelf RDBMS

Bo Luo, Dongwon Lee, and Peng Liu�

The Pennsylvania State University
{bluo,dongwon,pxl20}@psu.edu

Abstract. As the XML model gets more popular, new needs arise to
specify access control within XML model. Various XML access control
models and enforcement methods have been proposed recently. However,
by and large, these approaches either assume the support of security fea-
tures from XML databases or use proprietary tools outside of databases.
Since there are currently few commercial XML databases with such ca-
pabilities, the proposed approaches are not yet practical. Therefore, we
explore the problem of “Is is possible to fully support XML access control
in RDBMS?” We formalize XML and relational access control models us-
ing deep set operators. Then we show that the problem of XML AC atop
RDBMS is amount to the problem of converting XML deep set opera-
tors into equivalent relational deep set operators. We show the conversion
algebra and identify the properties to ensure the correct conversion. Fi-
nally, we present three practical implementations of XML access controls
using off-the-shelf RDBMS and their performance results.

1 Introduction

The XML model [1] has emerged as the de facto standard for storing and ex-
changing information in the Internet Age. As more information is exchanged
over the Web, the issues of security become increasingly important. Such is-
sues span from data level security to network level security to high-level access
controls. In this paper, our focus is on how to support access control for XML
data. Many access control methods extending the XML model to incorporate
security aspects have been proposed recently (e.g., [2,3,4,5]). To the lesser or
greater extent, however, XML access control enforcement mechanisms proposed
in the research community neglect the fact that the most XML data still resides
in RDBMS. In the scenario of RDBMS-backed XML database systems (here-
after XRDB), XML documents are stored in RDBMS and query-answering is
conducted through a conversion layer. In the scenario of XML publishing, rela-
tional data is compiled into XML format for distribution and exchange. For both
scenarios, we enjoy the benefit of XML model while taking advantage of the ma-
turity of the off-the-shelf RDBMS. In both scenarios, it is desirable to natively
specify access controls on the XML side, but they need to be enforced on the

� Peng Liu was supported in part by NSF CCR-0233324.

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, pp. 55–71, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

56 B. Luo, D. Lee, and P. Liu

RDBMS. We believe that current XML access control enforcement mechanism
research is in a sense re-inventing wheels without utilizing existing relational ac-
cess control models or leveraging on security features that are readily available
in relational products. In short, our goal in this paper is to answer the question:
When is it (not) possible to support XML access control using RDBMS? Why?
How?

Challenges. First, the major challenges of supporting XML access control in
XRDB systems stem from the inherent discrepancy of XML and relational data
models. Relational data model features a structure of two-dimensional table,
while XML features a hierarchical data model. When XML data are shredded
into relational data model, not all transformation algorithms can fully preserve
structural properties of XML model [6]. The inherent incompatibility of two data
models leads to the fundamental discrepancy between two access control models.
Second, relational access control policies define authorized actions of “cells,”
where each cell is an impartible element and whose accessibility is explicitly
expressed. However, XML nodes are hierarchically nested, and XML data model
inherently takes “answer by subtree model” (e.g., querying for //foo yields the
whole subtree rooting at node <foo/>). Therefore, for any XML node, an action
could be: authorized/unauthorized to the whole subtree, or partially authorized.
The later case does not occur in relational access control model. Finally, in XML
model, we can control the access right of each individual node. In traditional
relational model, the smallest granularity that we may control is a column via
GRANT/REVOKE. Therefore, we need to employ more recent developments of
RDBMS access controls (e.g., Oracle VPD) to enable cell level access control.

Key contributions. (1) To our best knowledge, this work is the first one to al-
gebraically formalize XML access control in both native XML (XDB) and XRDB
environment. (2) This work takes the first steps to define the equivalent objects
and equivalent operations between native XML and XRDB systems. With this
concept, we can migrate all the exciting features of native XML systems into
XRDB by converting the atomic operations into equivalent relational counter-
parts. In this paper, we take the feature of fine-grained XML access control for
a pilot study, and the results are encouraging. (3) This work shows for the first
time that the “security” of XRDB can be achieved by finding the “equivalent”
relational operators for three specific deep-set operators. This finding provides a
viable way to build secure XRDB systems. (4) Finally, this work proposes several
practical approaches to implement the viable way “discovered” by our theory.

2 Related Work

2.1 XML and Relational Access Control

Current access control research can be categorized into two groups: access control
modeling and access control enforcement mechanisms.

On the model side, several XML access control models have been proposed.
Starting with [7] for HTML documents; [8,3] describes XML access control with

Pragmatic XML Access Control Using Off-the-Shelf RDBMS 57

RDBMS-supported XML database system

XML Document
DX

XML Query
QX

Relational Document
DR

Relational Query
QR

Relational
Answer

AR

XML
Answer

AX

X
M

L
-R

elational
C

onversion (C
)

R
everse

C
onversion (C

-1)

1

2

3
4

5

6

(a) Overview (b) XMark DTD

Fig. 1. Overview architecture and an example XML schema

an authorization sheet to each document or DTD. [4] proposed and XML ac-
cess control model to deal with authorization priorities and conflict resolution.
[9] introduced provisional authorization and XACL. [10] formalizes the way of
specifying objects in XML access control using XPath. Most of the proposals
adopt either role-based access control (e.g. [12]) or credential-based access con-
trol (e.g. [13]). The major difference between them is the way they identify users.
Credential-based access control is more flexible and powerful in this aspect. How-
ever, in the research of access control enforcement mechanisms, people tend to
choose a relatively simple access control model to avoid distraction.

XML access control enforcement mechanisms in native XML environment
have been intensively studied in recent years. They are categorized into four
classes: (1) engine level mechanisms implement security check inside XML
database engine; each XML node is tagged with a label [15,16,17] or an au-
thorization list [18,19], and filtered during query processing. (2) view based ap-
proaches build security views that only contain access-granted data [20,21,22].
1(3) pre-processing approaches check user queries and enforce access control rules
before queries are evaluated, such as the static analysis approach [23,14], QFil-
ter approach [24], access condition table approach [25], policy matching tree[26],
secure query rewrite (SQR) approach [27], etc. (4) [28] considers access control
of streaming XML data and apply security check at client side, using a filter-
ing mechanism. More recently, [29,30] takes encryption issues into consideration,
and [31,32] focus on protecting the privacy and security associated with XML
tree structure.

Relational access control models can be classified into two categories: multi-
level security models [33,34,35] and discretionary security models (DAC). Most
real world database systems implement a table/column level DAC similar to
the one implemented in System R [36]. View-based approaches is the traditional
method to enable row-level access control, while Oracle’s VPD is the most re-
cent development. Finally, some advanced access control models (e.g., [37,38])
are proposed in a more theoretical manner.

2.2 XML and Relational Conversion

As illustrated in Figure 1(a), in XRDB: XML data DX are converted into DR

and stored in RDBMS; user issues XML query QX (XPath or XQuery) using
1 When a view-based approach implements virtual views without materializing them,

it is inherently a pre-processing approach.

58 B. Luo, D. Lee, and P. Liu

published XML schema; QX is converted into QR (SQL) and evaluated against
DR; relational answer AR is finally converted to XML (AX) to return to user.

Toward conversion between XML and relational models, an array of research
has addressed the particular issues lately. On the industry side, database ven-
dors are busily extending their databases to adopt XML types. Shredding and
non-shredding are two major pathes that followed by commercial products. Or-
acle provides both un-shredded (CLOB) and shredded storage options [40]. Mi-
crosoft supports XML shredding and publishing through mid-tier approach in
SQL Server 2000, and adds CLOB storage in SQL Server 2005 [41]. IBM pro-
poses the first native XML storage in DB2 9, but shredded XML storage (through
schema decomposition) is still kept as an important feature [42,43]. On the re-
search side, various proposals have been made recently, mainly either schema-
based (e.g., [44,45,46]) or schema-oblivious (e.g., [47,48]) approaches.

In terms of access control, some commercial products apply existing column
level access control of RDBMS on XML data stored in CLOB columns. None
of these approaches supports or discusses fine-grained access control. Finally, to
our best knowledge, the only work that is directly relevant to our proposal is [5].
[5] proposes an idea of using RDBMS to handle XML access controls, in a rather
limited setting. In our vision paper [49], we addressed some issues and challenges
of enforcing XML access control atop RDBMS. We provide the algebraic analysis
and explore practical solutions in this paper.

Our framework is not tied to a particular conversion method. Throughout
this paper, we use shared-inlining [45] and XRel [48] as the examples of schema-
based and schema-oblivious conversion methods, respectively. Briefly, XRel de-
composes XML documents into document, element, attribute, text, and path
tables. In this approach, each node is stored as one record in the element table,
and each distinct path is stored as one record in the pth table. As a simple
example, we decompose an XMark ([50], Figure 1(b)) document using XRel and
show part of element table in Figure 2 (b). As we can see, element 252 is a node
of path 164 (“/site/people”, as stored in the path table); which starts from
offset 33996 (byte) and ends at 36229 in the original XML document.

3 Preliminaries

3.1 XML Access Control Policy

Access control models define the semantics and syntax of access control policies.
Although they could be very complicated, the essential is to describe subjects,
objects, actions and all the variations around it. Fortunately, there is no dis-
crepancy in identifying subjects and defining actions in XML and relational
environment, e.g., they both could adopt RBAC or CBAC to identify users. As
we described in Section 1, shredding XML access control models into relational
ones is a challenging task, because of the fundamental discrepancies of XML
and Relational data models. Therefore, challenges reside in object -related com-
ponents of access control models, while issues that only relate to subjects and
actions are trivial. Thus, our subsequent discussion focuses more on object part.

Pragmatic XML Access Control Using Off-the-Shelf RDBMS 59

In this paper, we adopt the model proposed in [3] as the basis; other models like
[23,28,24,51] can be used as well with a reasonable change.

Definition 1 (XML Access Control Rule) . An XML access control policy is
specifiedby a set ofaccess control rules:RX ={subject,object, action, sign},
where subject is to whom an authorization is granted, object is a set of XML nodes
(in XPath) to which the policy is applied, action is one of read, write, or update,
and sign ∈ {+, −} refers to access granted or denied, respectively. �

In this model, access is prohibited by default. Negative rule takes precedence
when it conflicts with positive rules. All access controls propagate to the entire
subtree rooting at object, complying with the answer-by-tree XML semantics. If
a rule applies to context node only, we add “/text()” to its object field.

3.2 XML to Relational Conversion

Remark 1.A relational to XML conversion method contains: (1) CD() to con-
vert XML to relational data, (2) CQ() to convert XML query (XQuery or XPath)
to SQL, and (3) C−1 to convert relational answer back to XML. �

That is, QR = CQ(QX), DR = CD(DX), and AX = C−1(AR). From this, the
process of “evaluating XML query on XRDB” can be modeled as:

AX = C−1(AR) = C−1(QR〈DR〉) = C−1(CQ(QX)〈CD(DX)〉) (1)

Remark 2 . An X2R conversion algorithm is lossless iff: (1) (lossless node con-
version) ∀ XML node xi, C

−1
D (CD(xi)) = xi; (2) (lossless node set decomposition)

∀ XML node set {x1, ..., xn}, C−1
D (CD({x1, ...xn})) = C−1

D ({CD(x1), ...CD(xn)}) =
{C−1

D (CD(x1)), ...C−1
D (CD(xn))}; and (3) (exclusive conversion) CD(x1)=CD(x2)

only when x1 = x2, and C−1
D (r1) = C−1

D (r2) only when r1 = r2. �

Remark 3 . An X2R conversion algorithm is correct iff: ∀ query Q and ∀ doc-
ument X , Q〈X〉 = C−1(QR〈DR〉) = C−1(CQ(QX)〈CD(X)〉). �

Definition 2 (Soundness) . An X2R conversion algorithm A is sound iff it is
lossless and correct. �

In the remainder of the paper, we assume that the conversion algorithm being
used is sound. We ignore the order of XML nodes when we compare the correct-
ness, since this feature is not supported in most X2R conversion algorithms.

In the research community, most X2R conversion algorithms support a subset
of XQuery/XPath (e.g., /, //, * and predicates). Our approach does not alter the
query or data conversion algorithm. Therefore, for a particular X2R conversion
method X , we support everything that X supports. For ease of understanding,
we do not use predicates in the examples, however, we test queries with predicates
in our experiments.

60 B. Luo, D. Lee, and P. Liu

3.3 Deep Set Operators

In [52], we propose deep set operators for XML, as extensions of conventional set
operators defined in XPath [53] and XQuery [54]. Here, we briefly revisit them,
and later demonstrate how they are used to formalize XML access control.

Definition 3 (deep set operators) . The deep-union operator (
D
∪) takes node

sequences 〈P 〉 and 〈Q〉 as operands, and returns a sequence of nodes (1) who exist
as a node or as a descendant in either operand sequences, and (2) whose parent

does not satisfy (1). Formally, 〈P 〉
D
∪ 〈Q〉 = {n|(n ∈ 〈Pd〉 ∨ n ∈ 〈Qd〉) ∧ (n ::

parent() 	∈ 〈Pd〉 ∧ n :: parent() 	∈ 〈Qd〉)} where Pd = P/descendant − or −
self(). The deep-intersect operator (

D
∩) takes node sequences 〈P 〉 and 〈Q〉 as

operands, returns a sequence of nodes (1) who exist as a node or as a descendant
in both operand sequences, and (2) whose parent does not satisfy (1). Formally,

〈P 〉
D
∩ 〈Q〉 = {n|(n ∈ 〈Pd〉 ∧ n ∈ 〈Qd〉) ∧ (n :: parent() 	∈ 〈Pd〉 ∨ n :: parent() 	∈

〈Qd〉)}. Finally, the deep-except operator (
D
−) takes node sequences 〈P 〉 and

〈Q〉 as operands, for each node 〈pi〉 in 〈P 〉, it remove 〈pi〉
D
∩X 〈Q〉 from the subtree

of 〈pi〉 and return the remaining. �

3.4 XML Access Control in XDB and XRDB

XML access control is to ensure that only safe answer (SA) is returned. As
in [55,52], safe answer of Q includes all the XML nodes n such that: (1) n ∈ 〈Q〉,
(2) the access of n is granted by positive rules, and (3) the access of n is not
denied by negative rules. Therefore, the precise semantics of “safe answer,” SAX

is:

SAX = 〈QX〉
D
∩X [(〈R+

X1
〉

D
∪X ...

D
∪X 〈R+

Xn
〉)

D
−X (〈R−

X1
〉

D
∪X ...

D
∪X 〈R−

Xm
〉)] (2)

Equation (1) models XML query evaluation in XRDB. Similarly, (2) models
how only safe XML answers, SAX , are returned. Combine them, we have:

Definition 4 (Secure XRDB) . An XRDB is secure iff ∀ ACR set ACRX and
∀ query QX , it always returns the safe answer: AX ≡ SAX . Therefore,

C−1({CQ(QX)〈CD(DX)〉}′) ≡ 〈QX〉
D
∩X [(〈R+

X1〉
D
∪X ...)

D
−X (〈R−

X1〉
D
∪X ...)] (3)

�

Note that {CQ(QX)〈CD(DX)〉}′ indicates that access control mechanism inter-
venes in relational query processing. Our goal in this paper is to enforce XML
access controls on RDBMS so that Equation 3 holds in XRDB setting. In this
way, we need to convert access control rules RX and deep set operators into their
equivalent relational counterpart.

Pragmatic XML Access Control Using Off-the-Shelf RDBMS 61

1. {user, /site/people/person, read, +}
2. {user, /site/people/person/credicard, read, -}

DOCID ELEMENTID PATHID ST ED
0 252 164 33996 36229 <people>
0 293 165 35592 35826 <person>
0 299 165 35832 36217 <person>
0 303 188 35989 36032 <creditcard>

SELECT e0.DOCID, e0.ELEMENTID, e0.PATHID, e0.ST, e0.ED
FROM document d, element e0, pth p0
WHERE p0.pathexp LIKE '#%/people'
AND e0.pathid = p0.pathid AND d.docid = e0.docid

(a)

(b)

SELECT e0.DOCID, e0.ELEMENTID, e0.PATHID, e0.ST, e0.ED
FROM document d, element e0, pth p0
WHERE p0.pathexp LIKE '#%/people#/person'
AND e0.pathid = p0.pathid AND d.docid = e0.docid

(c)

(d)

Fig. 2. Naive enforcement of “equivalent” relational ACR leads to wrong answer

4 XML Access Control in XRDB: The Theory

All entities of the 4-tuple XML access control model, except object, can be di-
rectly adopted to relational access control model. We apply an X2R algorithm
C(RX .object) to get RR.object. Therefore, we get “equivalent” relational ACR:

RR = {RX.subject,C(RX.object),RX.action,RX.sign}

However, naive enforcement of the converted relational access control rules may
lead to security leakage, as demonstrated in the following example:

Example 1. Consider two rules of Fig. 2(a) with XRDB(XRel) – an XRDB
employing XRel [48] as the conversion algorithm. The “element” table is partly
shown in Fig. 2(b). Rule 1 indicates that a user is allowed to access <person>
nodes, i.e., nodes 293 and 299 (record 2 and 3 in Fig. 2 (b)), and rule 2 indicates
that a user cannot access <credicard> nodes, i.e., node 303. Naive enforcement
will grant access to the record 2, 3; and revoke the access to record 4.

Query “//people” is desired to yield an answer containing two <person>
nodes, since they are the accessible descendants of the requested node. However,
the converted SQL query (Fig. 2(c)) yields no answer since access to record 1
is prohibited by default. Moreover, for a query “//person”, the converted SQL
(Fig. 2(d)) returns both <person> nodes to the user (with the unauthorized
<creditcard> node). This is so because both records of element 293 and 299
are accessible, while revoking access to element 303 does not affect its ancestor.�

4.1 Object and Operation Equivalency

To solve the problem illustrated in Example 1, we propose our framework of sup-
porting access control in XRDB systems. First, we define object and operation
equivalency between XML and relational.

Definition 5 (Object Equivalency) . When both R=C(X) and X = C−1(R)
hold for XML node set X and relation R, we consider X and R equivalent w.r.t.
C/C−1, and denote as X ≡ R. �

Note that, when we talk about equivalency of X and R, we have to predefine
the context, i.e., select the X2R conversion algorithm C/C−1. For a XML node
set X , C(X) may be different under different X2R conversion algorithms.

62 B. Luo, D. Lee, and P. Liu

Definition 6 (Operation Equivalency) . Suppose X1 ≡ R1 and X2 ≡ R2
w.r.t. C/C−1. Then, an XML operation OPX is equivalent to a relational oper-
ation OPR (denoted as OPX ≡ OPR) w.r.t. C and C−1 if:

C(X1 OPX X2) = C(X1) OPR C(X2) = R1 OPR R2 �

Note that XML operator takes node sets as operands while its equivalent rela-
tional counterpart may not take two generic relations as operands. Each operand
is the equivalent objects of corresponding XML node set, which may be tables,
columns, records, etc. Relational operations require operands to be domain com-
patible (e.g., intersect, union etc.). We loosen this requirement for OPR.

With the concept of operation equivalency, we can migrate all the exciting
features of XML into XRDB by converting the atomic operations into equivalent
relational operation. Our secure XRDB problem is articulated as follows:

Lemma 1. In XRDB(C), if we can find relational operators,
D
∪R,

D
∩R, and

D
−R,

which are equivalent to XML deep set operators,
D
∪X ,

D
∩X , and

D
−X , w.r.t. the

X2R conversion algorithm C, we are able to enforce XML access control in
XRDB(C) such that Equation (3) always holds.

Please refer to [56] for detailed proof. Now we need to find equivalent operations

such that
D
∪R ≡

D
∪X ,

D
∩R ≡

D
∩X and

D
−R ≡

D
−X . Again, equivalency is based

on specific X2R conversion method, therefore, the existence and representation
of relational deep set operators also depends on the particular X2R conversion.
Hereafter, we analyze the role of each deep set operator in (2) and the existence of
its equivalent relational counterpart under different X2R conversion algorithms.

4.2 On Equivalent Conversion of Deep Set Operators

Deep-union operator is used to integrate all the accessible nodes defined by
individual positive rules (also, all the inaccessible nodes defined by negative

rules). With the property P
D
∪ Q ⊆ P ∪ Q [52], Remark 1 is rewritten into:

〈P 〉
D
∪X 〈Q〉 = {n|(n ∈ 〈P 〉 ∨ n ∈ 〈Q〉) ∧ (n 	∈ 〈P//∗〉 ∧ n 	∈ 〈Q//∗〉)} (4)

Let r = C(n). When C/C−1 is sound according to Definition 2, we have:

C(〈P 〉
D
∪X〈Q〉) = {r|[r ∈ C(〈P 〉)∨r ∈ C(〈Q〉)] ∧[r 	∈ C(〈P//∗〉)∧r 	∈ C(〈Q//∗〉)]}

Here, since we are to find
D
∪R such that C(〈P 〉)

D
∪R C(〈Q〉) = C(〈P 〉

D
∪X 〈Q〉):

C(〈P 〉)
D
∪RC(〈Q〉) = {r|[r ∈ C(〈P 〉)∨ r ∈ C(〈Q〉)] ∧[r 	∈ C(〈P//∗〉)∧ r 	∈ C(〈Q//∗〉)]}

The condition of [r ∈ C(〈P 〉) ∨ r ∈ C(〈Q〉)] is essentially the regular union. It
is composed by set containment and Boolean operations. In XRDB, set contain-
ment check is supported when the soundness requirement in Definition 2 is ful-
filled, and Boolean operation is generally supported in RDBMS. [r 	∈ C(〈P//∗〉)

Pragmatic XML Access Control Using Off-the-Shelf RDBMS 63

∧ r 	∈ C(〈Q//∗〉)] tends to support deep semantics. It requires XRDB to be able
to identify if r ∈ C(〈P//∗〉) for any given relational object r and set C(〈P 〉).

Lemma 2. To implement deep-union operator in XRDB(C), the X2R conver-
sion algorithm C should: (1) fulfil the soundness requirement stated in Defini-
tion 2; and (2) for given node n and node set 〈P 〉, it should be able to check the
containment condition of: C(n) ∈ C(〈P//∗〉), e.g., it should recognize if C(n) is
a descendant of any node C(pi);

At present, all X2R conversion algorithms (we are aware of) fulfill Lemma 2.

Deep-intersect operator is used to calculate the exact overlapping of queried
data and accessible data (i.e. 〈Q〉 and 〈ACR〉). It is defined as:

C(〈P 〉
D
∩X〈Q〉)={r|[r∈C(〈P 〉)∧ r ∈ C(〈Q〉)] ∧[r 	∈ C(〈P//∗〉)∨ r 	∈ C(〈Q//∗〉)]}

(5)
Compare with 4, they only differ in logical operators. Therefore, Lemma 2 could
be directly extended to deep-intersect.

Example 2. In Example 1, a query “//people” yields <people> nodes, i.e.
element 252, (record 1 in Fig. 2 (b)). Meanwhile, object field of access control
rule 1, “/site/people/person”, yields <person> nodes, i.e. element 293 and
299 (record 2 and 3 in Fig. 2 (b). In XRel, each XML node is marked with
“start” and “end” offset. Node containment is checked through comparison of
the offsets: for nodes p1 and p2, if (p1.start < p2.start) and (p1.end > p2.end), p2
is an descendant of p1. Here, we can tell that node 293 and 299 are descendants

of node 292. Therefore, “//people
D
∩X //person” yields node 293 and 299.

Comparing with Example 1, “//people ∩ //person” yields Null. �

The operands of XML deep-union/intersect operators may contain different
nodes. In RDBMS, where domain compatibility is strictly enforced, their re-
lational equivalent counterpart might be domain incompatible (e.g. a row “in-
tersect” a cell). This happens in schema-based X2R conversion (e.g. [44,45]),
where different XML nodes could be converted to tables, rows, etc. To tackle
this problem, we employ new RDBMS techniques, e.g. Oracle VPD, to enable
fine-control of relational tables to create relational views with any group of cells.

Deep-except is used to remove inaccessible nodes from the answer. Recall that,
in our XML access control model, all nodes are inaccessible by default. When
a user is prohibited to access a node, there is no need to write a negative rule
to revoke accessibility unless the node is covered by positive rules (ACR+).
Thus, negative rules are only used to specify exceptions to global permissions,
i.e. “revoke” access granted by ACR+. Deep except operator is used to enforce
negative rules. Regarding whether deep except could be implemented in XRDB
with X2R conversion algorithm, it depends upon the characteristics of specific
negative rule. In particular, we distinguish two types of negative rules:

64 B. Luo, D. Lee, and P. Liu

Definition 7 (Node elimination vs. Descendant elimination rules) . A
negative rule in ACR restricts user from access a set of nodes {r−1 , ...r−n }. If
none of the nodes is a descendant of the context node of a positive rule, i.e.:

r−i 	∈ 〈R+//∗〉, ∀r−i ∈ {r−1 , ...r−n }; ∀〈R+〉 ∈ 〈ACR+〉

then it is called a node elimination (NE) negative rule. Else, if one of the
nodes is a descendant of the context node of a positive rule, i.e.:

r−i ∈ 〈R+//∗〉, ∃r−i ∈ {r−1 , ...r−n }; ∃〈R+〉 ∈ 〈ACR+〉

it is called a descendant elimination (DE) negative rule. �

Intuitively, “Node Elimination” negative rule removes context node from
〈ACR+〉. For XML nodes covered by node elimination negative rules 〈ACR−

1 〉,
deep-except operator directly removes them from 〈ACR+〉:

〈ACR+〉
D
−X 〈ACR−

1 〉 = {n|n ∈ 〈ACR+〉 ∧ n 	∈ 〈ACR−
1 〉}

Essentially, this is the regular except semantics. In this way, in XRDB, we have,

C(〈ACR+〉)
D
−R C(〈ACR−

1 〉) = {r|r ∈ C(〈ACR+〉) ∧ r 	∈ C(〈ACR−
1 〉)}

To support deep except operator for node elimination negative rules only, the
conditions described in Lemma 2 still apply.

On the other hand, “Descendant Elimination” negative rule removes descen-
dants from context node of 〈ACR+〉. It takes more burden to process descendant
elimination negative rules, where real “deep” semantics is required. That is,

〈ACR+〉
D
−X 〈ACR−

2 〉 = {deepRemove(n, n
D
∩X 〈ACR−

2 〉)|n ∈ 〈ACR+〉}
where deepRemove(p, 〈Q〉) takes a node and a set of its descendants as operands,
removes the descendants from the subtree of the node and return the remaining.
This function may not be directly converted to relational.

Lemma 3. When deep-except operator takes node specified by descendant elim-
ination negative rules as the second operand, it is implemented through
deepRemove() operation. To implement deep-except operator that supports de-
scendant elimination negative rules in XRDB(C), the X2R conversion algo-
rithm X should: (1) fully satisfy Lemma 2; and (2) for any node n1 and its
descendant n2, C(n2) should be part of C(n1); and in the reverse conversion of
n1 = C−1(C(n1)), node n2 in the subtree is entirely converted from C(n2).

Example 3. For instance, in Example 1, Rule 2 is a descendant elimination
negative rule since it revoke access towards descendants of node (<person>).

In XRDB(XRel) [48], descendants are converted to independent records that
are stand alone from ancestors. As shown in Fig. 2(b), to reconstruct a <person>
node, C−1

XRel() only takes record 2 to reconstruct a full node. The descendant

Pragmatic XML Access Control Using Off-the-Shelf RDBMS 65

<creditcard> is included in the answer, but the record 4 is not touched by
C−1

XRel(). Therefore, XRel violates condition (2) of Lemma 3, so that we can-
not directly implement deep-except operator to support descendant elimination
rules. When user requests for “//person”, we are not able to revoke access
towards <creditcard> child from RDBMS side.

In Shared-Inlining [45] approach, <person> nodes are translated into a table,
and <creditcard> nodes take a column. The relational schema is [57]:

Person(Id, ParentId, Person, Person_address, Person_address_city, ...
..., Person_address_zipcode, Person_creditcard,)

Here, the ancestor-descendant relationship is kept such that each row represents
a “person” node, and each cell represents a child node. Therefore, to obtain

//person
D
−X //creditcard, we just mask “person creditcard” column in the

table; and the reconstructed XML tree of “person” node will not have corre-
sponding child, i.e., “creditcard” node is removed from the XML answer. �

5 XML Access Control Enforcement in XRDB

Figures 3 shows a general framework for XML access control in XDB and XRDB.
There are three categories of XML access control enforcement mechanisms: (1)
view-based approach (1© 4© in Fig. 3); (2) pre-processing approach (2© 5© in
Fig. 3); and (3) post-processing approach (3© 6© in Fig. 3). In this section, we
articulate the algebra of these approaches using deep set operators.

5.1 View-Based Approach

When access control is first enforced on XML documents to create views, it is the
traditional view-based approach. In this model, XML view VX (or safe document
SD) is constructed, and query is evaluated against the view

SA = Q〈VX〉 = Q[(〈R+
X1〉

D
∪X ...

D
∪X 〈R+

n 〉)
D
−X (〈R−

1 〉
D
∪X ...

D
∪X 〈R−

m〉)]

A’R

QX DXACRX QXDX ACRX

A’X

DXACRX

DXACRX

VX

VR

QX

QX

QR

View-based approach Preprocessing approach Post-processing approach

B
D

L
M

X
)e

di
s

L
M

X (
B

D
R

X
)e

di
s

S
M

B
D

R (
B

D
R

X

1

A’R

A’XDXACRX

VR

DRACRR

QX

QR

4

QX DXACRX

Q’X

Q’R DR A’R

A’X

QX DXACRX

Q’R DR A’R

QRACRR

A’X

QXDX ACRX

AX

DR ARQR

A’X

QXDX ACRX

A’RDR ARQR

A’X

ACRR

2 3

5 6

Fig. 3. Access control enforcement approaches in XML DB and XRDB

66 B. Luo, D. Lee, and P. Liu

Fig. 4. Enforcing XML access control via external pre-processing

To convert this approach into XRDB, we can either convert XML view into
relational view, as shown in 1© of Figure 3; or construct relational view using
converted relational ACR, 4© of Figure 3. They are formalized as:

SA = C−1(QR〈VR〉) = C−1(QR〈C(VX)〉) (6)
and SA = C−1(Q〈VR〉) = C−1(Q〈C(ACRX)〈DR〉〉) (7)

5.2 Pre-processing Approach

In preprocessing model, safe query SQ is constructed as:

SQX = QX

D
∩X [(R+

X1
D
∪X ...

D
∪X R+

Xn)
D
−X (R−

X1
D
∪X ...

D
∪X R−

Xm)]

Safe answer is yielded by evaluating safe query against the original document:
SAX = SQX〈DX〉. To extend this approach to XRDB, we have: (1) XML Query
Rewriting: as shown in 2© in Fig. 3, we convert the safe XML query into SQL,
and answer it with regular XRDB; and (2) Relational Query Rewriting: as shown
in 5© in Fig. 3, we convert original QX into SQL QR. and then we rewrite it into
safe query SQR. They are formalized as

SAX = C−1(SQR〈DR〉) = C−1(C(SQX)〈DR〉) (8)

and SQR = QR

D
∩R [(R+

R1
D
∪R ...

D
∪R R+

Rn)
D
−X (R−

R1
D
∪X ...

D
∪X R−

Rm)](9)

Example 4. Let use revisit the previous examples: we manage XMark docu-
ment in XRDB(XRel). Suppose we have access control rule (user, //people,
read, +), and user submits query //name. Figure 4(a) shows the relational

query for C(//people)
D
∩R C(//name), which is implemented according to the

definition in Equation 5 (we marked up all the sub-queries). Moreover, this query
could be further optimized, as shown in Figure 4(b). �

Pragmatic XML Access Control Using Off-the-Shelf RDBMS 67

Another method is to use Oracle VPD. Oracle version 8.1.5 introduces a new
security feature supporting non-view-based fine-grained access control, namely
Row Level Security or Virtual Private Database. It allows users to control acces-
sibility towards row/cell level. With VPD, we are able to tailor relational data
into any shape we want. To utilize VPD for access control in XRDB, we first
construct relational predicates from the converted relational access control rules
ACRR, then define a VPD policy to enforce the predicates on converted SQL
queries. Moreover, cell level access control capability of VPD is of special im-
portance to XRDB systems that use schema-based X2R conversion algorithm,
such as Inlining. In those XRDB systems, XML nodes are converted to different
types of relational objects: tables, rows and cells. In this way, 〈ACR〉 may not be
conventional relations, e.g. it could be arbitrary combinations of columns, rows
and/or individual cells.

5.3 Post-processing Based Approach

In native XML DB, access control through post-processing described as:

SAX = ACR〈AX〉 = ACR〈QX〈DX〉〉

In XRDB, this approach could be conducted through: (1) XML answer filtering
(3© in Fig. 3); or (2) relational answer filtering (6© in Fig. 3). (1) is similar to
the postprocessing approach in [55], while (2) evaluates relational query QR to
obtain unsafe relational answer, and process ACRR against the answers:

SAX = C−1(SAR) = C−1(ACRR〈AR〉) = C−1(ACRR〈QR〈DR〉〉)

However, the post-processing filters require the intermediate answers (〈AR〉 or
〈AX〉) to retain information of the original paths for ACR to operate on. As an
example of this approach, [28] check streaming XML data against both query
and ACR at the same time. Since it works in the streaming data environment,
full paths are retained. However, in most X2R conversion algorithms, the inter-
mediate answer AR or AX does not contain full path information. Therefore,
postprocessing approaches are not suitable for all applications.

6 Experimental Validation

To show that the proposed theory and implementations are practical yet efficient,
we show our preliminary experimental results.

An XML document with 8517 nodes are generated by XMark [50]. We use
XRDB(XRel) [48], with Oracle 10g as underlying RDBMS. We design five roles,
abbreviated as A (administrator), M , RU , S and U , respectively. We do not have
any descendant elimination negative rules since XRDB(XRel) cannot directly
handle it (Lemma 3. We generate four groups of synthetic XPath queries, each
has a different setting of wildcards and predicates.

In the XRDB(XRel), we convert all rules into relational, and enforce them
through views and VPD. For a comparison, we also enforce same rule sets on
the same XML document in native XML environment. We enforce XML access

68 B. Luo, D. Lee, and P. Liu

Fig. 5. Query processing time for four sets of queries

control rules using QFilter [24], and answer XML queries using Galax. In all the
experiments, we use the query processing time as an evaluation metric. Figure 5
shows the results. Comparing both view-based and VPD-based approaches with
the reference (no security enforcement), our approaches do not add much over-
head for fine-grained access control. Meanwhile, the size of accessible data gets
smaller with security enforcement. Therefore, querying on smaller set of records
is even faster than that on no-security case.

7 Conclusion

In this paper, we propose a generic analysis to the access control problem in
XRDB. We first analyze XML control models to propose a formal description of
XML access control using deep set operators. Then we articulate the problem
of XML access control in XRDB as essentially the problem of XML/Relational
object and operation equivalency and conversion. We show that, equivalent coun-
terparts of deep set operators in relational model are needed to fully implement
XML access control in XRDB. We analyze the definition and semantics of each
operator, and show how they can be converted to XRDB through two lemmas.
Although detailed conversion implementation is connected with the specific X2R
conversion algorithm used in XRDB, we propose an algebraic description of these
operators. Moreover, we study possible implementations of XML access control
in XRDB. We categorize them into three approaches, and formally describe the
semantics of each approach using deep set operators. Finally, we show the valid-
ity of our approaches using experiment results.

Pragmatic XML Access Control Using Off-the-Shelf RDBMS 69

References

1. Bray, T., Paoli, J., Sperberg-McQueen (Eds), C.M.: Extensible Markup Language
(XML) 1.0 (2nd Ed.). W3C Recommendation (2000)

2. Godik, S., Moses (Eds), T.: eXtensible Access Control Markup Language
(XACML) Version 1.0 (2003)

3. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A Fine-
Grained Access Control System for XML Documents. ACM TISSEC 5(2) (May
2002) 169–202

4. Bertino, E., Ferrari, E.: Secure and Selective Dissemination of XML Documents.
ACM TISSEC 5(3) (August 2002) 290–331

5. Tan, K.L., Lee, M.L., Wang, Y.: Access Control of XML Documents in Relational
Database Systems. In: IC, Las Vegas, NV (June 2001)

6. Barbosa, D., Freire, J., Mendelzon, A.O.: Designing Information-preserving Map-
ping Schemes for XML. In: VLDB, Trondheim, Norway (2005) 109–120

7. Samarati, P., Bertino, E., Jajodia, S.: “An Authorization Model for a Distributed
Hypertext System”. IEEE TKDE 8(4) (1996) 555–562

8. Damiani, E., Vimercati, S.D.C.D., Paraboschi, S., Samarati, P.: Design and Im-
plementation of an Access Control Processor for XML Documents. Computer
Networks 33(6) (2000) 59–75

9. Kudo, M., Hada, S.: XML Document Security Based on Provisional Authorization.
In: ACM CCS. (2000)

10. Fundulaki, I., Marx, M.: Specifying access control policies for xml documents with
xpath. In: ACM SACMAT. (2004) 61–69

11. Fernandez, E., Gudes, E., Song, H.: A Model of Evaluation and Administration of
Security in Object-Oriented Databases. IEEE TKDE 6(2) (1994) 275–292

12. Wang, J., Osborn, S.L.: A role-based approach to access control for XML databases.
In: ACM SACMAT. (2004) 70–77

13. Bertino, E., Castano, S., Ferrari, E.: Securing XML Documents with Author-X.
IEEE Internet Computing 5(3) (2001) 21–31

14. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML access control using static
analysis. ACM TISSEC 9(3) (2006) 292–324

15. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: Securing XML
Documents. In: EDBT. (2000) 121–135

16. Cho, S., Amer-Yahia, S., Lakshmanan, L.V., Srivastava, D.: Optimizing the Secure
Evaluation of Twig Queries. In: VLDB, Hong Kong, China (August 2002)

17. Xiao, Y., Luo, B., Lee, D.: Security-Conscious XML Indexing. In: DASFAA,
Bangkok, Thailand (2007)

18. Yu, T., Srivastava, D., Lakshmanan, L.V., Jagadish, H.V.: Compressed Acces-
sibility Map: Efficient Access Control for XML. In: VLDB, Hong Kong, China
(2002)

19. Jiang, M., Fu, A.W.C.: Integration and Efficient Lookup of Compressed XML
Accessibility Maps. IEEE TKDE 17(7) (2005) 939–953

20. Stoica, A., Farkas, C.: Secure XML Views. In: DBSec. (2002) 133–146
21. Fan, W., Chan, C.Y., Garofalakis, M.: Secure XML querying with security views.

In: SIGMOD. (2004) 587–598
22. Kuper, G., Massacci, F., Rassadko, N.: Generalized XML security views. In:

SACMAT. (2005) 77–84
23. Murata, M., Tozawa, A., Kudo, M.: XML Access Control using Static Analysis.

In: ACM CCS, Washington D.C. (2003)

70 B. Luo, D. Lee, and P. Liu

24. Luo, B., Lee, D., Lee, W.C., Liu, P.: QFilter: Fine-Grained Run-Time XML Access
Control via NFA-based Query Rewriting. In: ACM CIKM, Washington D.C., USA
(November 2004)

25. Qi, N., Kudo, M.: Access-condition-table-driven access control for xml databases.
In: ESORICS. (2004) 17–32

26. Qi, N., Kudo, M.: Xml access control with policy matching tree. In: ESORICS.
(2005) 3–23

27. Mohan, S., Sengupta, A., Wu, Y.: Access control for XML: a dynamic query
rewriting approach. In: CIKM. (2005) 251–252

28. Bouganim, L., Ngoc, F.D., Pucheral, P.: Client-Based Access Control Management
for XML Documents. In: VLDB, Toronto, Canada (2004)

29. Bertino, E., Ferrari, E., Provenza, L.P.: Signature and Access Control Policies for
XML Documents. In: ESORICS. (2003) 1–22

30. Carminati, B., Ferrari, E., Bertino, E.: Securing XML data in third-party distrib-
ution systems. In: CIKM. (2005) 99–106

31. Finance, B., Medjdoub, S., Pucheral, P.: The case for access control on XML
relationships. In: CIKM. (2005) 107–114

32. Mohan, S., Wu, Y.: IPAC: an interactive approach to access control for semi-
structured data. In: VLDB, VLDB Endowment (2006) 1147–1150

33. Jajodia, S., Sandhu, R.: Toward a Multilevel Secure Relational Data Model. In:
SIGMOD. (May 1990)

34. Winslett, M., Smith, K., Qian, X.: Formal Query Languages for Secure Relational
Databases. ACM TODS 19(4) (1994) 626–662

35. Sandhu, R., Chen, F.: The Multilevel Relational (MLR) Data Model. ACM TIS-
SEC 1(1) (1998)

36. Griffiths, P.P., Wade, B.W.: An Authorization Mechanism for a Relational Data-
base System. ACM TODS 1(3) (September 1976) 242–255

37. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible Support for
Multiple Access Control Policies. ACM TODS 26(2) (June 2001) 214–260

38. Jajodia, S., Samarati, P., Subrahmanian, V.S., Bertino, E.: A Unified Framework
for Enforcing Multiple Access Control Policies. In: ACM SIGMOD. (May 1997)
474–485

39. Gabillon, A., Bruno, E.: Regulating access to XML documents. In: DBSec. (2002)
299–314

40. Murthy, R., Liu, Z.H., Krishnaprasad, M., Chandrasekar, S., Tran, A.T., Sedlar, E.,
Florescu, D., Kotsovolos, S., Agarwal, N., Arora, V., Krishnamurthy, V.: Towards
an enterprise XML architecture. In: ACM SIGMOD. (2005) 953–957

41. Rys, M.: XML and relational database management systems: inside Microsoft SQL
Server 2005. In: ACM SIGMOD. (2005) 958–962

42. Nicola, M., van der Linden, B.: Native XML support in DB2 universal database.
In: VLDB. (2005) 1164–1174

43. Beyer, K., Ozcan, F., Saiprasad, S., der Linden, B.V.: DB2/XML: designing for
evolution. In: ACM SIGMOD. (2005) 948–952

44. Deutsch, A., Fernandez, M.F., Suciu, D.: Storing Semistructured Data with
STORED. In: ACM SIGMOD, Philadephia, PA (Jun. 1998)

45. Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., Naughton, J.:
Relational Databases for Querying XML Documents: Limitations and Opportuni-
ties. In: VLDB, Edinburgh, Scotland (September 1999)

46. Lee, D., Chu, W.W.: Constraints-preserving Transformation from XML Document
Type Definition to Relational Schema. In: ER, Salt Lake City, UT (2000) 323–338

Pragmatic XML Access Control Using Off-the-Shelf RDBMS 71

47. Florescu, D., Kossmann, D.: Storing and Querying XML Data Using an RDBMS.
”IEEE Data Eng. Bulletin 22(3) (Sep. 1999) 27–34

48. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: A Path-Based Ap-
proach to Storage and Retrieval of XML Documents using Relational Databases.
ACM TOIT 1(2) (November 2001) 110–141

49. Lee, D., Lee, W.C., Liu, P.: Supporting XML Security Models using Relational
Databases: A Vision. In: XSym, Berlin, Germany (September 2003)

50. Schmidt, A.R., Waas, F., Kersten, M.L., Florescu, D., Manolescu, I., Carey, M.J.,
Busse, R.: The XML Benchmark Project. Technical Report INS-R0103, CWI
(April 2001)

51. Qi, N., Kudo, M., Myllymaki, J., Pirahesh, H.: A function-based access control
model for xml databases. In: ACM CIKM. (2005) 115–122

52. Luo, B., Lee, D., Lee, W.C., Liu, P.: Deep Set Operators for XQuery. In: ACM
SIGMOD Workshop on XIME-P, Baltimore, MD, USA. (2005)

53. Berglund, A., Boag, S., Chamberlin, D., Fernndez, M.F., Kay, M., Robie, J.,
Simeon, J.: XML Path Language (XPath) 2.0. W3C Working Draft (November
2003)

54. Boag, S., Chamberlin, D., Fernndez, M.F., Florescu, D., Robie, J., Simeon, J.:
XQuery 1.0: An XML Query Language. W3C Working Draft (November 2003)

55. Luo, B., Lee, D., Lee, W.C., Liu, P.: A Flexible Framework for Architecting XML
Access Control Enforcement Mechanisms. In: VLDB Workshop on SDM, Toronto,
Canada (2004)

56. Luo, B., Lee, D., Liu, P.: Pragmatic XML access control using off-the-shelf RDBMS.
Technical report, Penn State University (2007)

57. Lu et al., H.: What makes the differences: benchmarking XML database imple-
mentations. ACM TOIT 5(1) (2005) 154–194

	Pragmatic XML Access Control Using Off-the-Shelf RDBMS
	Introduction
	Related Work
	XML and Relational Access Control
	XML and Relational Conversion

	Preliminaries
	XML Access Control Policy
	XML to Relational Conversion
	Deep Set Operators
	XML Access Control in XDB and XRDB

	XML Access Control in XRDB: The Theory
	Object and Operation Equivalency
	On Equivalent Conversion of Deep Set Operators

	XML Access Control Enforcement in XRDB
	View-Based Approach
	Pre-processing Approach
	Post-processing Based Approach

	Experimental Validation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

