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Abstract. The finite element method is commonly used in the numer-
ical solution of partial differential equations (PDEs). Poor quality ele-
ments effect the convergence and stability of the method as well as the
accuracy of the computed PDE solution. Thus, mesh quality improve-
ment methods are often used as a post-processing step in automatic mesh
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generation.

Optimization-based methods have proven effective for mesh quality im-
provement and fall into two categories: local methods (which adjust one
interior vertex position at a time) and global methods (which simultane-
ously adjust all interior vertex positions). We consider the intermediate
case and propose a patch-based mesh optimization method (which de-
composes the mesh into subset ‘patches’ to be optimized one at a time).
We investigate the effects of the number of patches and the amount of
patch overlap on mesh optimization time and mesh quality and compare
our results with those obtained from the global and local versions of
the method. Numerical experiments show that an implementation based
on the feasible Newton algorithm is up to 69.3% and 92.9% faster than
global and local vertex repositioning, respectively.

Key words: parallel scientific computing, mesh quality improvement,
optimization, mesh partition

1 Introduction

Discretization methods, such as the finite element method, are commonly used
in the numerical solution of partial differential equations (PDEs). The accuracy
of the computed solution depends on the degree of the approximation scheme
and number of elements in the mesh [1], as well as the quality of the mesh [2,
3]. In addition, the stability and convergence of the finite element method is
affected by poor quality elements. Various techniques such as adaptivity [4],
vertex repositioning [5, 6], and swapping [7] can be used to improve the quality
of meshes resulting from automatic mesh generation, dynamic mesh motion, or
physical simulation. This work focuses on vertex repositioning techniques for
mesh quality improvement.

Optimization-based formulations of the mesh vertex repositioning problem
use the mesh quality as an objective function [8–10]. Existing optimization-based
methods for vertex repositioning are either local or global in nature. Local meth-
ods seek to improve the quality of the mesh by adjusting the position of one
interior vertex at a time based on a local objective function, with convergence
based upon a global objective function. They are most common in engineer-
ing practice. Global methods simultaneously adjust all interior vertex positions
each iteration. They are gaining in popularity because of excellent performance
obtained for some algorithms [11].

Freitag Diachin et al. [12] demonstrate numerous tradeoffs between local
and global mesh vertex repositioning methods including: computational require-
ments, amount of memory required, time to solution, accuracy of the solu-
tion, and rate of convergence. Additional factors which may influence perfor-
mance metrics include: the number of elements, element heterogeneity, element
anisotropy, the type of mesh (structured vs. unstructured), the quality met-
ric, the objective function, and the desired level of accuracy in the optimized
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mesh [12]. In [12], it was demonstrated that there is not a clear winner between
the global and local versions of the feasible Newton (FeasNewt) algorithm [11].

Similarly, optimization-based methods that operate on an intermediate sub-
set of the mesh, i.e., a patch, may produce optimal meshes in less time than the
corresponding local or global versions of the algorithm by balancing the tradeoffs
between the amount of memory required to calculate a step and the amount of
additional knowledge available from neighboring vertices.

2 Problem Statement

2.1 Mesh Quality Metric

For this study, we employ the inverse mean-ratio mesh quality metric [13] which
measures the difference between a trial element and an ideal element. Our de-
scription of the inverse mean-ratio metric is for a tetrahedral element and follows
that of [11] and [14]; this derivation can be extended to other element types.

Suppose e is a tetrahedral element of an unstructured mesh M such that
x ∈ R3×4 is a matrix containing the coordinates of each of e’s four vertices
x1, x2, x3, and x4. Define an incidence function A : R3×4 → R3×3 as follows:

A(x) := [x2 − x1 x3 − x1 x4 − x1] ,

where xi denotes the ith column of the matrix argument. Note that the volume
of e is given by 1

6 |det(A(x))|. Let w ∈ R3×4 denote the vertex coordinates for
an ideal element (a unit equilateral tetrahedra for this study). Observe that
A(x)A(w)−1 is the identity matrix precisely when the trial element x and ideal
element w have the same shape and size.

The inverse mean-ratio metric between x and w is given by

‖A(x)A(w)−1‖2
F

3 det(A(x)A(w)−1)
2
3
.

The inverse mean-ratio metric is independent of scaling and takes on values
between one (optimal) and infinity (degenerate) for positively oriented elements.

2.2 Mesh Quality Improvement Problem

Let V and E denote the set of vertices and elements in M , respectively, and
VI and VB denote the set of vertices in the interior and (fixed) boundary of the
mesh, respectively. Then, the problem of minimizing the average inverse-mean
ratio over the entire mesh M becomes:

min x∈R3×|V | Θ(x) :=
1
|E|

∑
e∈E

‖A(xe)A(w)−1‖2
F

3 det(A(xe)A(w)−1)
2
3

(1a)

subject to det
(
A(xe)A(w)−1

)
> 0, ∀e ∈ E (1b)

xi = x̄i, ∀i ∈ VB , (1c)
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where x̄i denotes the fixed coordinates of the ith boundary vertex. Constraint
(1b) ensures that each element has a consistent orientation which is necessary for
most discretization methods to work properly [15]. We solve the objective func-
tion for a local minimum because it is non-convex and thus does not necessarily
have a unique minimum [11].

3 Patch-Based Mesh Optimization

Many optimization algorithms could be applied to solve the above mesh shape-
quality optimization problem. One algorithm which has been successfully applied
to solve this problem is FeasNewt [11], developed by Munson. The local version
of this algorithm corresponds to a block coordinate descent method where each
subproblem is solved with an inexact Newton method. The global version per-
forms an inexact Newton method with an Armijo linesearch. For a detailed
comparison of the local and global versions of FeasNewt see [12].

We focus on the intermediate case and propose solving the mesh quality
improvement problem using a patch-based approach by iteratively optimizing
vertices in each patch of the mesh in a method inspired by the Schwarz domain
decomposition methods [16]. The patches are defined by assigning vertices to
patches and then adding in additional adjacent vertices according to the overlap
calculation (see Fig. 1). For each patch, we solve an optimization problem similar
to (1a) through (1c) on the interior and boundary vertices of the patch using a
modified version of FeasNewt.

Fig. 1. Patches with overlap level 0 (left), 1 (middle), and 2 (right). Two patches are
shown by the light and dark gray regions, with the initial vertex assignment given by
the vertex colors. The striped region denotes elements that are assigned to both patches.

An outline of the major steps in our patch-based mesh optimization algo-
rithm is given below. The first step is to partition the mesh M into n patches
(currently done using Metis [17]). Second, the overlap region for each patch is
computed. In particular, all elements adjacent to the current patch are added for
each level of overlap. Third, until convergence is obtained, global mesh vertex
repositioning is performed on each patch, and the new vertex positions in the
overlap regions are communicated to overlapping patches. FeasNewt [11] is used
to perform the vertex repositioning step. Code development is being performed
in Mesquite [18], the Mesh Quality Improvement Toolkit, since it is extensible
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and contains both local and global implementations of FeasNewt. We added a
new class, MetisPatch, to Mesquite so that FeasNewt could be used to optimize
vertices in various sized patches.

Patch-Based Mesh Optimization Algorithm

Input: M = mesh; n = number of patches desired,
l = level of overlap desired.

1. Partition M into n patches.
2. Compute overlap of level l.
3. While (!converged) do
4. For each patch
5. Perform global mesh optimization on the patch.
6. Communicate new vertex positions to overlapping patches.
7. End for
8. End while.

4 Numerical Experiments

Numerical experiments were designed to investigate the effects of the number
of patches and the amount of patch overlap on mesh optimization time. All ex-
periments were run to a high level of mesh quality, selected so that subsequent
iterations provided little improvement. Results may differ if meshes of lesser qual-
ity are acceptable. Results from the patch-based mesh optimization experiments
were compared with those obtained from global and local mesh optimization
using FeasNewt. CUBIT [19] was used to generate meshes for the duct and gear
geometries (see Fig. 2) for the numerical experiments. The experiments were
performed on a Dell machine with an Intel Core 2 Duo processor (2.13 GHz, 4
MB L2 cache), 3 GB of RAM, and running Linux.

Fig. 2. The duct geometry (left), large duct mesh decomposed into patches (middle),
and gear geometry (right).

For the first experiment, a small duct mesh was created having 13,193 vertices
and 65,574 tetrahedral elements. This mesh was divided into 2, 4, 6, 8, 16, 32,
and 64 patches. Mesh optimization was performed with 1, 2, 3, 4, 8, and 16 levels
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of overlap and was terminated when the average mesh quality reached 1.1401785.
(Figures for this experiment have been omitted due to space constraints.) For this
mesh, the best patch-based result required 1.67 seconds and was obtained with 2
patches and overlap level 2. The greatest time required was 8.99 seconds and was
obtained for 64 patches and overlap level 16. In this case, the best results were
obtained for a smaller number of patches and level of overlap. At some point,
decomposing the mesh into more patches or increasing the amount of overlap
does not pay off. For this mesh, we outperformed local mesh optimization (29.5
seconds) for every combination of (patches, overlap level); however, we were not
able to outperform global mesh optimization (1.55 seconds). Larger meshes are
required before our patch-based mesh optimization algorithm outperforms the
global algorithm. Decomposing the mesh into overlapping patches was shown
not to effect the mesh quality. In all cases (global, local, patch-based), the mesh
optimization algorithms converged to meshes of similar quality.

For the second experiment, a large duct mesh was generated having 177,887
vertices and 965,759 tetrahedral elements. To create a more difficult optimization
problem, the initial mesh was also randomly perturbed making it further from
optimal. The initial quality of the large duct mesh can be found in Table 1. For
this experiment, the mesh was divided into 2, 4, 8, 16, 32, 64, and 96 patches.
Mesh optimization was performed with 1, 2, 3, 4, 8, 16, and 24 levels of overlap
and was terminated when the average mesh quality reached 1.135295. Typical
results for varying the number of patches (for a fixed overlap level) and varying
the amount of overlap (for a fixed number of patches) are shown in the top row
of Fig. 3. The bottom row of Fig. 3 shows the total time versus the number of
patches (with a fixed overlap level) and the total time versus the overlap level
(with a fixed number of patches) for all combinations of (number of patches,
overlap level) using the patch-based mesh optimization algorithm. The solid
lines in these plots represent the time taken by global mesh optimization (46.49
seconds, 6 iterations) and local mesh optimization (117.68 seconds, 8 iterations).

Table 1. Initial and final quality of large duct mesh

Mesh Minimum Average RMS Maximum Std. Dev.

Initial 1.00037 1.15198 1.15843 20.6399 0.122132

Final (16 patches, 8 overlap) 1.00037 1.13529 1.14019 11.0809 0.105568

For patch-based mesh optimization, the fastest result (35.11 seconds, 2 iter-
ations, final quality shown in Table 1) was obtained for 16 patches and overlap
level 8 (a medium number of patches and overlap level) on the large duct mesh.
This result was 1.4% faster than the next best result and outperformed global
mesh optimization by 24.5% and local mesh optimization by 70.2% by reducing
the number of nonlinear iterations (final quality of the local and global meshes,
not included due to space, is very similar to that of the patch-based one). The ob-
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Fig. 3. Top row: Typical results: Varying patches, overlap level 4 (left) and 8 patches,
varying overlap (right) for the ductbig mesh. Bottom row: Total time versus overlap
level, varying patches (left) and total time versus patches (right) for the ductbig mesh.
global and local times are indicated by lower and upper horizontal lines (respectively).

served range of mesh optimization times for the patch-based mesh optimization
method is 35.11 to 175.32 seconds.

From these figures, it can be seen that nine combinations of (patches, over-
lap level) outperformed the global mesh optimization method. In addition, all
but three combinations outperformed the local mesh optimization method. It
should also be noted that the (4 patches, overlap level 4) combination was much
slower than others with overlap level 4 as seen in Fig. 3. This is likely since Metis
decomposed the large duct mesh into four patches, with one of the patches con-
sisting of two non-contiguous blocks; see Fig. 2. This behavior was not observed
on other mesh decompositions. We plan to investigate the use of other mesh
partitioners with the goal of improving the mesh decomposition.

To give a better idea of the patch-based mesh optimization performance,
Table 2 gives a breakdown of the mesh optimization time into the following
categories: mesh decomposition time, overlap calculation time, and vertex repo-
sitioning time for three sample performances: slow, medium, and fast (in terms
of total time required to solve the problem). Thus, the decomposition time is
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small and roughly constant; the overlap time is intermediate and variable, and
the optimization time is large and variable.

Table 2. Timing on large duct mesh

Decomposition Time (s)

Type Patches Overlap Decomposition Overlap Optimization Total

Slow 64 24 0.910 (0.9%) 13.22 (12.8%) 89.2 (86.3%) 124.16

Medium 2 16 0.840 (2.1%) 7.12 (17.5%) 32.8 (80.5%) 60.29

Fast 16 8 0.830 (3.0%) 7.45 (26.9%) 19.4 (70.1%) 35.11

For the final experiment, a mesh was created on the more complex gear ge-
ometry (which contains a hole and a concave exterior boundary). The gear mesh
has 102,405 vertices and 544,649 tetrahedral elements; the initial quality of this
mesh can be found in Table 3. For this experiment, the mesh was divided into
the following numbers of patches: all powers of 2 from 2 to 28 = 256 and the
intermediate values halfway between consecutive powers of 2. Mesh optimization
was performed with 1, 2, 3, 4, 8, 12, 16, and 24 levels of overlap and was termi-
nated when the average mesh quality reached 1.1203. Figures similar to those in
the top row of Fig. 3 have been omitted due to space constraints.

Fig. 4 shows the total time versus the number of patches (for a fixed overlap
level) and the total time versus the overlap level (for a fixed number of patches)
for all combinations of (patches, overlap level) for the patch-based mesh opti-
mization algorithm. For comparison purposes, the solid lines in this figure rep-
resent the time taken by global mesh optimization (52.64 seconds, 10 iterations)
and local mesh optimization (227.53 seconds, 25 iterations).

Table 3. Initial and final quality of gear mesh

Mesh Minimum Average RMS Maximum Std. Dev.

Initial 1.00004 1.16299 1.16748 2.28506 0.102356

Final (256 patches, 1 overlap) 1.00016 1.12071 1.12417 4.32766 0.088178

The fastest result (16.17 seconds, 3 iterations, final quality shown in Table 3)
was obtained for 256 patches and overlap level 1, corresponding to an increased
number of patches and small overlap level. This was 0.3% better then the next
fastest result and outperformed global mesh optimization by 69.3% and local
mesh optimization by 92.9%. Numerous combinations of (patches, overlap level)
outperformed the global mesh optimization method, and all but one outper-
formed the local mesh optimization method. The range of mesh optimization
times for the patch-based method was 16.17 to 268.12 seconds.
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Fig. 4. Total time vs. overlap level, varying patches (left) and total time vs. patches
(right) for the gear mesh. (Some intermediate results are not shown for figure clarity).
Global and local times are indicated by lower and upper horizontal lines, respectively.

5 Conclusions

We proposed a patch-based optimization algorithm for mesh quality improve-
ment. The algorithm decomposes the mesh into patches, computes the desired
level of overlap, and optimizes vertices in the overlapping patches. Numerical
experiments showed that patch-based mesh optimization with either an inter-
mediate number of patches and intermediate level of overlap or an intermediate
number of patches and small level of overlap give best results for larger meshes
(depending on mesh geometry and initial mesh quality). For the small mesh,
a small number of patches and small overlap level yielded the best result. For
this mesh, our patch-based algorithm outperformed the local algorithm, but
did not outperform the global mesh optimization algorithm. For large meshes,
the patch-based algorithm outperformed both the global algorithm with several
combinations of (patches, overlap level) and the local algorithm with nearly all
combinations due to a reduced number of nonlinear iterations. These results sug-
gest a parallel version of our algorithm will likely be competitive with existing
parallel local and global mesh optimization algorithms (e.g., [20]).

We have identified three avenues for future work. First, we will study the ef-
fect the mesh partitioner has on the algorithm by considering other partitioners
such as geometric separators [21]. Second, we plan to develop a theory of patch-
based mesh optimization by connecting to domain decomposition methods such
as the multiplicative Schwarz methods. Third, we will parallelize our algorithm
to enable optimization of large-scale meshes. Associated challenges include: dis-
tributing the patches, handling overlaps, finding optimal patch ordering within
processors, and determining the optimal communication patttern.
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