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Motivation

• We are interested in an optimal design problem which is solved
by coupling an optimization code and a simulation code.

• The dimension of the optimization problem is small.

• A PDE is solved to evaluate f(x).

• No derivative information is available. The derivative is
approximated by computing finite-difference gradients.

• Challenge: High computational expense of the simulation.

• These characteristics are typical of many optimization problems
derived from modeling and simulation of physical processes.
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The Big Challenge

To decrease the amount of time spent on f(x) evaluations.

Combine two approaches:

1. Use parallelism to evaluate functions concurrently.

2. Use approximation models to replace expensive function
evaluations with inexpensive model evaluations.
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Trust-Region (TR) Method

• Trust Region: method that finds the
minimum by evaluating the quadratic
model in a region where the model is a
good approximation to the function

• Strengths:

– Favorable convergence properties

• Weaknesses:

– Uses derivatives that are not
always available analytically

– Computationally expensive function
evaluations
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Parallel Direct Search (PDS) Method

• Parallel Direct Search: parallel
method that finds the minimum by
evaluating the function at points on a
grid.

• Strengths:

– Does not use derivatives

– Easy to parallelize

• Weaknesses:

– Slow convergence

– Expensive function evaluations
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Trust-Region PDS (TRPDS) Method

• TRPDS: Combines TR Method and PDS Method

• Strengths:

– Fast and global convergence

– Parallelizable

– Flexibility: Method fits into generalized trust-region
framework

• Weaknesses:

– Current implementation does not take advantage of
flexibility

– Current implementation still performs several expensive
function evaluations when ratio of sss to processors is large
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Algorithm 1. TRPDS Given x0, g0, H0, δ0, and η ∈ (0, 1)
for k = 0, 1, . . . until convergence do

1. Solve HksN = −gk

for i = 0, 1, . . . until step accepted do
2. Form an initial simplex using sN

3. Find an approximate solution si that minimizes f(xk + s)
if ared/pred > η then

4. Set xk+1 = xk + si; Evaluate gk+1 and Hk+1

end if
5. Update δ

end for
end for
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An Overview of TRPDS
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Generalized Trust-Region Framework

The framework is for managing the use of approximation models.
(Alexandrov, Dennis, Lewis, and Torczon, 1998)

• An approximation model ak(xk) is a less expensive
representation of f(xk).

• The trust-region method with generalized approximation
models converges globally whenever:

1. ak(xk) = f(xk)

2. ∇ak(xk) = ∇f(xk)

• Steps can be computed in any manner as long as the sequence
of iterates produced satisfies the fraction of Cauchy decrease
(FCD) condition.
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TRPDS with Generalized Approximation Models

The model management framework is employed as follows:

• At iteration k, an approximation model, mk(xk), to the
objective function, f(xk), is built.

• Then, the following PDS subproblem is solved approximately:

min mk(xk + s)
s.t. ‖s‖2 ≤ 2δk

• Our approximation model, mk(xk), is used only to solve the
PDS subproblem. We model f(xk) by a quadratic model, i.e.,
ak(xk + s) = f(xk) + gT

k s + 1
2s

T Hks, when determining if FCD
has been satisfied.



'

&

$

%

TRPDS(p): Incorporating

Approximation Models
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Algorithm 2. TRPDS(p) (Howle, Shontz, and Hough, 2000)
Given p processors, m0, x0, g0, H0, δ0, and η ∈ (0, 1)
for k = 0, 1, . . . until convergence do

1. Solve HksN = −gk

for i = 0, 1, . . . until step accepted do
2. Form initial simplex using sN

3. Compute p best approximate solutions s1, . . . , sp that
minimize mk(xk + s)
4. Compute si that minimizes f(xk + s)
if ared/pred > η then

5. Set xk+1 = xk + si; Evaluate gk+1, Hk+1

end if
6. Update δ

end for
end for
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An Overview of TRPDS(p)
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The Use of Quadratic Models in TRPDS(p)

• Initially, we implemented TRPDS(p) for the case where mk is a
quadratic model, i.e.,

mk(xk + s) = f(xk) + gT
k s + 1

2s
T Hks.

• Initial numerical results (on standard test problems)
correspond to this case.

• Later, TRPDS(p) was extended to include the use of more
general approximation models.
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Standard Test Problems

To compare the performance of TRPDS and TRPDS(p), we solved
a standard set of test problems from papers by Moré, Garbow, and
Hillstrom (Moré, et. al., 1981), Byrd, Schnabel, and Shultz (Byrd,
et. al., 1988), and Conn, Gould, and Toint (Conn, et. al., 1986).

• The starting points used for these problems were the same as
those given in the references.

• We used the step tolerance, the function tolerance, and the
gradient tolerance as stopping conditions.

• We recorded the number of concurrent function evaluations for
comparisons.
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Initial Conditions for Test Problems

Machine Epsilon = 2.22045× 10−16

Maximum Step = 1000

Minimum Step = 1.49012× 10−8

Maximum Iter = 500

Maximum Fcn Eval = 10000

Step Tolerance = 1.49012× 10−8

Function Tolerance = 1.49012× 10−8

Gradient Tolerance = 6.05545× 10−6

LineSearch Tolerance = 0.0001.
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Test Problem Results: dim=8, p=9
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TRPDS(p) with a quadratic model nearly always beats TRPDS.
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Problem 10: cragg levy

• TRPDS(p) required 118 concurrent fevals and 58 iterations.

• TRPDS required 102 concurrent fevals and 25 iterations.

• Because the problem dimension must be divisible by 4, no
contour plots can be drawn.

• The quadratic model in TRPDS(p) often predicts increase and
is thus not a good choice of approximation model for this
problem.
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Problem 10: cragg levy
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TRPDS(p) Statistics

Over all test problems:

• TRPDS(p) with QM beats TRPDS 95 percent of the time with
respect to concurrent function evaluations.

• TRPDS(p) with QM yielded up to 87 percent improvement
over TRPDS with respect to concurrent function evaluations.

• TRPDS(p) with QM yields an average improvement of 36
percent over TRPDS with respect to concurrent function
evaluations.
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Using Generalized Approximation Models

in TRPDS(p)

• We extended our implementation of TRPDS(p) to include the
use of a general approximation model within the PDS portion
of TRPDS(p).

• Now, any approximation model (physical, numerical,
mathematical, etc.) can be used to approximately solve the
PDS subproblem.

• A quadratic model is still used to determine if the FCD
condition has been satisfied. This could be made more general.
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Case Study: Optimal Design Problem

• Chemical vapor
deposition reactor

• Heating coils
controlled by zone

• Goal: Uniform
chemical deposition
on each of the wafers
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TWAFER Optimization Problem

• The power settings, pj , are optimized to achieve a particular
uniform temperature (with the goal of achieving uniform
chemical deposition on each wafer).

• The objective function, f , is defined by a least-squares fit of
the N discrete wafer temperatures, Ti, to a prescribed
temperature, T ∗,

f (p) =
N∑

i=1

(Ti − T ∗)2

where the pj are the unknown power parameters.
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Approximation Models

We implemented several approximation models for the optimal
design problem including the following:

• Mathematical Model:

– Quadratic Model

• Discretization Models:

– Coarse-to-fine discretization: Number of wafers

– Coarse-to-fine discretization: Number of points per wafer

– Coarse-to-fine discretization: Based on both

• Numerical Model:

– Loose-to-Tight PDE Convergence Tolerances
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Twafer Results: dim = 7, p = 8, sss = 56

0

1000

2000

3000

4000

5000

6000

7000

8000

W
al

l C
lo

ck
 T

im
e 

(s
ec

on
ds

)

Effect of Number of Wafers

75 50 25 

TRPDS(p) decreases solution time by
decreasing the number of wafers.
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Twafer Results: dim = 7, p = 8, sss = 56
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TRPDS(p) decreases solution time by
decreasing the number of points per wafer.
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Twafer Results: dim = 7, p = 8, sss = 56
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It’s harder to choose the appropriate number
of wafers and points per wafer for TRPDS(p).
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Twafer Results: dim = 7, p = 8, sss = 56
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TRPDS(p) decreases solution time by
making convergence tolerances looser.
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Twafer Results: dim = 7, p = 14, sss = 14
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TRPDS(p) decreases solution time with
the use of appropriate approximation models.
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Twafer Results: dim = 7, p = 14, sss=14
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Twafer Results: dim = 7, p = 14, sss=14
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TRPDS(p) reduces concurrent function evaluations.
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Twafer Results: dim = 7, p = 14, sss = 14
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Twafer Results: dim = 7, p = 8, sss = 56
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Conclusions

• Added approximation model option in TRPDS(p)
in solution of the PDS subproblem

• Use of approximation models in TRPDS(p) was competitive on
an engineering application

• Most successful models were less expensive models where
TRPDS(p) spent less time on solution of PDS subproblem.

• Important to consider tradeoffs between model cost
and fidelity.
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Future Work

• Develop a range of model strategies within PDS subproblem

• Replace quadratic model with other approximation at the
trust region level

• Incorporate a speculative gradient capability in TRPDS(p)

• Evaluate with forthcoming GSS variation (Meza, Oliva)
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Motivation for Speculative Gradients:

Inefficient Use of Extra Parallelism
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An Iteration of Speculative Gradient

1. Minimize quadratic model
over trust region

2. Processor 0 evaluates trial
iterate;
Remaining processors
evaluate gradient

3. Check sufficient decrease

4. Accept/Reject trial iterate

5. Update trust region

6. Goto 1
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Results

Figure 1: QuadraticModel < SpecGrad < TRPDS.
Most models are within a factor of two of SpecGrad.
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Results

Figure 2: Contour plot illustrates relationship that demonstrates
TRPDS(p) with a speculative strategy would have done better than
speculative gradient.
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Total Time to Solution

Contour plot demonstrating tradeoff between
model cost and fidelity.
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Time Spent on Approximation Evaluations

The time required for approximation evals can quickly
build up with the number of PDS iterations for

more expensive approximations.


