Topic 3: Trees and Their Implementations

Read: Chpt. 4, Weiss

Q: Why study trees? Standard linear data structures (arrays, lists, stacks, …) are no longer sufficient for many applications; most advance ADTs are implemented using tree-based data structures.

Recursive definition of (free) tree:
Let \(T \) be a set with \(n \geq 0 \) elements.
(i) If \(n = 0 \), \(T \) is an empty tree,
(ii) If \(n > 0 \), then there is a distinct element \(r \), called the root of \(T \), such that \(T - \{r\} \) can be partitioned into 0 or more disjoint subsets \(T_1, T_2, \ldots \), where each of these subsets also forms a tree.

Basic Concepts of Trees:
Elements of \(T \) are nodes in the tree \(T \).
Each subset \(T_i \) is a subtree of \(r \).
The roots of the subtrees of \(r \) are children of \(r \).
The root \(r \) is the parent of the roots of its subtrees.
Nodes with the same parents are siblings.
Nodes with no children are leaves.
Degree of a node is the number of children of the node.
A path of length \(k \) (in a tree) from node \(x \) to node \(y \) is a sequence of \(k+1 \) nodes \(x = n_0, n_1, n_2, \ldots, n_k = y \) such that \(n_i \) is the parent of \(n_{i+1} \) for all \(i = 0, 1, \ldots, k-1 \).

If there is a path from \(x \) to \(y \), then \(x \) is an **ancestor** of \(y \) and \(y \) is a **descendant** of \(x \).

For any given node \(x \), the **depth** (level) of \(x \) is the length of the (unique) path from the root to \(x \), and the **height** of \(x \) is the length of a longest path from \(x \) to any leaf.

The height of a tree is the height of its root.
The depth of a tree is the maximum depth of its nodes.

Remarks:

1. There is a unique path from the root to each node in the tree.
2. There is a path of zero length from any node to itself.
3. Depth of the root of a tree is 0 and height of a leaf is also 0.
4. Height of tree = Depth of tree.
5. For convenience, the height of an empty tree is defined to be \(-1\).
Graphical Representation of Tree:

A is the \textit{root} of tree T,
D is the \textit{parent} of F and G,
F and G are children of D,
Degree of F is 2,
B, C, D are \textit{siblings},
C, E, G, H, I are \textit{leaves},
D is an \textit{ancestor} of I and I is a \textit{descendant} of D,
(A,D,F,H) is a \textit{path} of length 3,
H is of \textit{height} 0 but \textit{depth} 3.
Height (depth) of the tree is 3.
Some Important Classes of Trees:
1. k-ary trees, $k \geq 2$:
 A k-tree is an unordered tree with each node having at most k children, $k \geq 2$.

2. Binary tree:
 A binary tree is an ordered 2-ary tree.

Recursive Definition of Binary Tree:
Let T be a set with $n \geq 0$ elements. T is a binary tree iff

(i) T is empty, or

(ii) if T is not empty, T has a root r such that $T-\{r\}$ can be partitioned into two disjoint binary trees T_L and T_R, called the *left subtree* and *right subtree* of r.

Example: A binary trees.
3. Extended binary tree:

An **extended binary tree** (EBT) T_E of a given binary tree T with n nodes, $n \geq 0$, is a binary tree constructed from T such that each (original) node in T will have exactly two children in T_E. The (original) nodes in T are called **internal nodes** and the (new) nodes in $T_E - T$ are called **external nodes** of the EBT.

Special Case:
When $n = 0$, the EBT of an empty tree T consists of a single external node.

Example:

```
T
Ø → T_E
```

Diagram: [Binary tree representation]
Given an extended binary tree T_E with n internal nodes.

Definition:

External path length of T_E:

$E(T_E) =$ sum of the level numbers (depth) of all external nodes.

Internal path length of T_E:

$I(T_E) =$ sum of the level numbers (depth) of all internal nodes.

Observations:

1. $\#\text{external nodes} = \#\text{internal nodes} + 1$

2. $E(T_E) = I(T_E) + 2n$.

3. Average distance to an external node $= \frac{E(T_E)}{n + 1}$.

4. Average distance to an internal node $= \frac{I(T_E)}{n}$.

Q. What kind of extended binary trees will have maximum (minimum) internal and external path length?
4. Complete binary tree:
 A complete binary tree T with height h is a binary tree such that
 (1) Each node on levels 0 to $h-2$ must have exactly two children, and
 (2) Leaves on level h are left-justified.

Examples:
(a) Not complete binary tree:

(b) Complete binary tree:
5. Balanced binary tree:

A balanced binary tree T is a binary tree such that for any node x in the tree, the height of its left subtree differs by no more than one from the height of its right subtree. Hence, $|h(T_L(x)) - h(T_R(x))| \leq 1$, where $h(T_L(x))$, and $h(T_R(x))$, are the height of the left, and right, subtree rooted at x, respectively.

Example:
Balanced binary tree showing height of nodes:

```
   3
  /  \
 2    1
 / \   /
0   1  0
   0
```

Not a balanced binary tree showing height of nodes:

```
   4
  /  \
 3    1
 /   /
0   2  0
    /
    1
     /
     0
```
6. Skew tree:
A skew tree T is a binary tree such that each non-leaf node in T is having exactly one child.

Example: Some skew trees.

7. Full binary tree:
A full binary tree of height h is a binary tree such that each node on levels 0 to $h - 1$ is having exactly two children.
Hence, T has exactly $2^{h+1} - 1$ nodes.

Example: A full binary tree with $h = 2$.
Observation:
A full tree is a complete binary tree and a complete binary tree is a balanced binary tree.

When implementing an ADT using a (binary) tree, either non-leaf or leaf-nodes can be used to hold the data objects of the ADT and the performance of an ADT operation will usually depend on the height of the tree.

Nodes, Leaves, and Heights of Binary Trees:
Given a non-empty binary tree T.
1. T with height h, $h \geq 0$:
 - Min # nodes = $h+1$.
 - Max # nodes = $2^{h+1} - 1$.
2. T with height h, $h \geq 0$:
 - Min # leaves = 1.
 - Max # leaves = 2^h.
3. T with n nodes, $n \geq 1$:
 - Min height = $\lceil \log_2 n \rceil$.
 - Max height = $n-1$.
4. T with n nodes, $n \geq 1$:
 - Min # leaves = 1.
 - Max # leaves = $\lceil n/2 \rceil$.
5. T with m leaves, $m \geq 1$:
 - Min height = $\lceil \log_2 m \rceil$.
 - Max height = ∞.
6. T with m leaves, $m \geq 1$:
 - Min # nodes = $2m-1$.
 - Max # nodes = ∞.

HW: Prove the above results.
Can you generalize them to k-ary trees, $k > 2$?
Traversing a Binary Tree:
1. To explore the underlying hierarchical structures.
2. To retrieve information stored in nodes.
3. To store and restore the topological structure of a tree.

Basic Binary Tree Traversal Algorithms:
1. *Preorder traversal:*
 Traverse/retrieve root,
 Traverse left subtree recursively in preorder,
 Traverse right subtree recursively in preorder.

2. *Postorder traversal:*
 Traverse left subtree recursively in postorder,
 Traverse right subtree recursively in postorder,
 Traverse/retrieve root.

3. *Inorder traversal:*
 Traverse left subtree recursively in inorder,
 Traverse/retrieve root,
 Traverse right subtree recursively in inorder.

4. *Level-order traversal:*
 Starting at level 0, traverse the nodes on each level from left to right level by level.
Example: Binary tree traversals.

![Binary tree](image)

- **Preorder**: A B E F D G H
- **Postorder**: E F B H G D A
- **Inorder**: E B F A D H G
- **Level-order**: A B D E F G H

HW: Implement the above tree traversal algorithms.

More on binary tree traversals:

Observe that for a given binary tree T, it is easy to traverse T.

Q: If the traversal of a binary tree T is given, can we reconstruct the binary tree T?

No!
Consider the following binary trees:

```
    A
   / \
  R   A
```

Observe that preorder, postorder, and level-order traversals for both trees are given by AB, BA, and AB, respectively. Hence, these two binary trees are indistinguishable if only one of the above tree traversals is given!

Q: How about inorder traversal?

Consider the following binary trees:

```
    R
   / \   A
  A   B
```

Again, these two binary trees are indistinguishable if only their inorder traversal is given!
Q: Can we reconstruct the binary tree T from its traversal(s)?
 Must know the root, the left, and the right subtrees.

If we are given any one of the following pairs of traversals of T, T can be reconstructed if exists.
 1. Preorder and inorder traversals.
 2. Postorder and inorder traversals.
 3. Level-order and inorder traversals.

Remark: Preorder and postorder, level order and preorder, and level-order and postorder traversals will not work!

HW. Can you reconstruct a binary tree T having the following pairs of traversals? Algorithms?

Preorder: B A D C E F G I H
Inorder: A F E G C D I B H

Preorder: A C D H I E B F G
Inorder: D I H C E A B G F

Preorder: A C D H I E B F G
LevelOrder: A C B D E F H G I

Postorder: A K J G B D H F I E C
Inorder: A D K G J B C F H E I
Consider given a pair of preorder and inorder traversals of a binary tree T.

Q: How do we reconstruct T if exists?
 Scan preorder traversal from left to right to determine root followed by scanning inorder traversal to determine left and right subtree.

Example: Let preorder = ABDEC and inorder = BEDAC.
General Tree Traversals:
1. Preorder traversal:
 Traverse/retrieve root,
 Traverse subtree T_1 recursively in preorder,
 Traverse subtree T_2 recursively in preorder,
 \[\cdots \]
 Traverse subtree T_k recursively in preorder.

2. Postorder traversal:
 Traverse subtree T_1 recursively in postorder,
 Traverse subtree T_2 recursively in postorder,
 \[\cdots \]
 Traverse subtree T_k recursively in postorder,
 Traverse/retrieve root.

3. Level order traversal:
 Starting at level 0, traverse the nodes on each level from left to right level by level.

4. Inorder traversal:
 Since the concept of *in-between* is not well-defined for a general tree, we don't usually use inorder traversal for general tree!
Example: General tree traversals.

Preorder: A B E C D F H I J G
Postorder: E B C H I J F G D A
Level order: A B C D E F G H I J
ADT: Binary tree.

UML diagram for the class *BinaryTree*:

```
Binary Tree

root
leftTree
rightTree

createTree()
destroyTree()
isEmpty()
getRootData()
setRootData()
attachLeftTree()
attachRightTree()
detachLeftTree()
detachRightTree()
getLeftTree()
getRootTree()
preorderTraversal()
postorderTraversal()
inorderTraversal()
levelorderTraversal()
...
```
Binary Tree Implementations:
Depend on speed and memory requirements.

Movement in tree:

- \textbf{up} (require parent info)
- \textbf{down} (require children info)
- \textbf{sideway} (require siblings info)

Q: Array, pointer, or hybrid implementation?

1. Array-based Implementation of (Complete) Binary Tree:
 Given a complete binary tree T with n nodes. T can be implemented using an array $A[0:n-1]$ such that
 - (1) Root of T at $A[0]$,
 - (2) Parent of a node $A[i]$ at $A[(i-1)/2]$ if exists,
 Observe that, for $n \geq 1$, $A[i]$ is a leaf iff $2i \geq n-1$.
Example:

```
+--- A ---+
|         |
+--- B ---+   +--- C ---+
|         |       |       |
+--- D ---+   +--- F ---+
|         |       |       |
    H      |       |       |
```

last = 9

```
0   1   2   3   4   5   6   7   8   9
A   B   C   D   E   F   G   H   I   J   ...```

**Advantages:** Fastest, $\Theta(1)$ time, in accessing parent and children locations.

**Disadvantage:** Only useful when tree is complete (or “almost complete”); otherwise, very memory intensive. For a tree with height $h$, it requires an array of size $2^{h+1} - 1$. Hence, a skew tree with 10 nodes with height 9 will require an array of size $2^{10} - 1 = 1023$ for its implementation.

**HW:** What if root of T is stored at A[1] instead? For a node stored in A[i], $i \geq 1$, compute its parent, left child, and right child location.
2. Children-Pointer Implementation of Binary Tree:

**NodeType:**

<table>
<thead>
<tr>
<th>item</th>
<th>Lchild</th>
<th>Rchild</th>
</tr>
</thead>
</table>

The external pointer root points at the root r of the tree. If the tree is empty, root is NULL; otherwise, root→leftChildPtr (root→rightChildPtr) points to the root of the left (right) subtree of r.
TreeNode Class:

typedef string TreeItemType;

class TreeNode  // node in the tree
{
private:
    TreeNode() {};  
    TreeNode(const TreeItemType& nodeItem,
             TreeNode *left = NULL,
             TreeNode *right = NULL) :
        item(nodeItem), leftChildPtr(left),
        rightChildPtr(right) { }
    TreeItemType item;  // data portion
    TreeNode *leftChildPtr;  // pointer to left child
    TreeNode *rightChildPtr; // pointer to right child

    friend class BinaryTree;  // friend class
};  // end TreeNode class

Friends:

In C++, function/class can be declared as a "friend" to another class C. Doing so will allow the function/class to access all of the private and protected members of the class C.
3. Parent-Pointer Implementation of Tree:

Observe that every node in a tree can have at most one parent. Hence, we can implement any tree by using the following hybrid data structure.

**NodeType:**

```
parent

item
```

**Example:**

![Tree Diagram](image)

**Remark:** The array of pointers will be used to access the nodes of the tree.
**General Tree Implementations:**
1. k-tree implementation, k > 2:
   (a) Array-based Implementation of (Complete) k-Tree:
   Given a complete k-tree T with n nodes. T can be implemented using an array $A[0:n-1]$ such that
   (1) Root of T at $A[0]$,
   (2) Parent of a node $A[i]$ at $A[(i-1)/k]$ if exists,
   (3) The jth child of a node $A[i]$, $1 \leq j \leq k$, at $A[ki+j]$ if exist.
   Observe that, for $n \geq 1$, $A[i]$ is a leaf iff $ki \geq n-1$.

**Example:**

![Diagram of a tree with nodes A, B, C, D, E, F, G, H, I and array representation]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
</tbody>
</table>

last = 8
(b) Children-Pointer Implementation:
Same as before except using $k$ children pointers.

NodeType:

```
+-------+-------+
| item |
+-------+-------+
| child1 | ... |
+-------+-------+
| | childk |
+-------+-------+
```

2. Parent-Pointer Implementation:
Same as above.

3. Left-Child List-of-Siblings Implementation:
For each node $N$ in $T$, the leftmost child of $N$, say $x$, will become the only child of $N$ and the siblings of $x$ will be linked together to form a chain of siblings of $x$.

NodeType:

```
+-------+-------+
| item |
+-------+-------+
| child | sibling |
+-------+-------+
```

```
Example:

Left-Child List-of-Siblings Implementation:

Remark: Based on applications, siblings can be linked together using a suitable linked structure such as singly, doubly, or circular doubly linked list.

9/10/14