
The Journal of Systems and Software 147 (2019) 104–105

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Editorial

Advancing software engineering education: New practices and

perspectives

c

t

a

r

v

A

t

E

p

O

w

J

q

p

i

s

a

s

h

T

g

a

p

d

c

i

c

e

i

s

i

t

s

t

d

w

I

J

s

O

t
Welcome to the special issue of the Journal of Systems and Soft-

ware (JSS) on software engineering education (SEE). SEE is a dis-

cipline that focuses exclusively on the study of how to effectively

teach software engineering. SEE has become an independent and

mature field. The first SEE conference was held more than 30 years

ago. The software engineering field has matured and advanced in

many ways. Because of the complexity of the field, we can no

longer restrict our curriculum, course delivery, and instructional

methods to the practices developed years ago. Many of the older

SE problem solving methods have faded over the years and many

new ones, that are equally or more challenging, have emerged. As

educators, we have to devise new methods of course delivery, ad-

just our teaching methods, expand our tools and methods, and be

aware of the technological advances and best practices that indus-

trial practitioners and leaders promote.

The Conference on Software Engineering Education and Train-

ing (CSEE&T) has been providing a forum for the researchers and

educators to present and debate new perspectives and progresses

in SEE.

The 30th CSEE&T was held in Savannah, Georgia, during 7–9

November, 2017. It included a number of paper sessions, panels,

and workshops and provided an excellent forum to discuss some

of the very relevant topics related to content delivery, innovation,

and instructional approaches to software engineering education,

and best practices in software engineering training and university-

industrial collaboration and partnership. The major themes of the

conference, organized in terms of paper sessions, included: course

design, DevOps and mobile development, project-based learning,

modeling, online programming, agile processes, learning strategies,

online and novice education, and human aspects. In addition to

the paper sessions, three very relevant panels attracted and enter-

tained the conference attendees. These included a panel entitled

“How to Enhance Diversity in Software Engineering Programs?"

(led by Hossein Saiedian, Grace L. Lewis and Andrew B. Williams),

one entitled “Undergraduate Software Engineering Programs,” (led

by Chris Taylor, Kevin Gary, James Kiper, Carol Wellington, Norha

M. Villegas, and Lily Chang), and one entitled “A CSEE&T 2017

Panel Session,” (led by Rich Hilliard). The conference also included

a workshop, “Crafting the Future of Software Engineering Educa-

tion in CC2020: A Workshop,” (instructed by Richard J. LeBlanc,

Nancy R. Mead, John Impagliazzo).

The current special issue of the JSS was motivated by the con-

ference. We considered the best papers of the conference but

also issued an open call for papers related to the theme of the
https://doi.org/10.1016/j.jss.2018.09.023

0164-1212/© 2018 Published by Elsevier Inc.
onference. The authors of the best papers were asked to extend

heir papers to make it sufficiently different from the conference

nd include additional empirical data. The extended papers were

eviewed by the original reviewers but also one or two new re-

iewers. The following is a summery of the accepted papers.

n Environment with Static and Dynamic Visualization

Jeong Yang, Young Lee, and Kai H. Chang discuss “Evalua-

ions of JaguarCode: A Web-Based Object-Oriented Programming

nvironment with Static and Dynamic Visualization.” To increase

rogram comprehension and overcome learning obstacles of

bject-Oriented Programming (OOP), this research introduces a

eb-based programming environment, JaguarCode, which supports

ava programming along with UML diagrams (class, object, and se-

uence) and execution traces of programs. JaguarCode uses an ap-

roach to integrate the structural and behavioral aspects of OOP

n a platform-independent environment. It provides a synchronized

tatic and dynamic visualization of Java programs at line level and

 full overview of a project under development. It aims to help

tudents better understand the static structure and dynamic be-

avior of the programs, as well as object-oriented design concepts.

heir paper reports on the evaluation results of JaguarCode re-

arding its effectiveness and user satisfaction through quantitative

nd qualitative experiments. The quantitative evaluation study ex-

lored differences in correctness and time usage on program un-

erstanding problems. The results of the experiments support the

onclusion that students in the experimental group using visual-

zations performed better to answer questions correctly than the

ontrolled group. The application of t-tests rejects the null hypoth-

sis that the correctness is significantly increased by the availabil-

ty of visualizations in JaguarCode. About the response time, the

tatistical analysis reveals that, for the relatively hard project, there

s a significant difference between the controlled and experimen-

al groups. There was also an interesting finding of how both vi-

ualizations did affect students’ understanding of program execu-

ion. Students took longer to answer, in particular, the relatively

ifficult questions using the visualizations provided in JaguarCode,

hich led to higher accuracy in answering the questions correctly.

n the qualitative evaluation, student feedback on the usability of

aguarCode interface was studied whether the visualizations help

tudents make their OOP learning easier, their understanding of

O concepts better, and whether the interface would contribute

o giving satisfaction. The results of the qualitative evaluation

https://doi.org/10.1016/j.jss.2018.09.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.09.023&domain=pdf
https://doi.org/10.1016/j.jss.2018.09.023

Editorial / The Journal of Systems and Software 147 (2019) 104–105 105

s

d

i

i

A

C

R

a

t

a

s

r

e

i

l

l

(

p

a

t

t

d

s

t

T

p

s

t

c

a

t

o

o

b

n

t

t

u

t

i

t

t

c

t

t

f

n

p

U

C

i

m

a

s

t

a

m

e

i

A

i

t

i

t

c

i

s

m

s

fl

a

e

o

C

o

a

c

a

t

n

c

s

t

a

t

t

r

w

i

w

A

v

s

a

w

l

upport the positive effect of JaguarCode on helping students un-

erstand OO concepts and meeting goals of providing comfortabil-

ty and satisfaction for the observations of visualization and usabil-

ty.

pplying a Maturity Model during a Software Engineering

ourse

Andreas Bollin, Elisa Reci, Csaba Szabo, Veronika Szaboova, and

udolf Siebenhofer discuss “Applying a Maturity Model during

 Software Engineering Course - Experiences and Recommenda-

ions.” In industry, the benefit of maturity models is uncontested,

nd models like CMMI are normally taught in at least advanced

oftware engineering courses. However, when not being part of

eal-world projects, the added values are difficult to be experi-

nced on first hand by their students. On the other side, teach-

ng itself can be seen as a process (or even better: as a set of re-

ated processes) involving the educators, the environments and the

earners. So, key ideas stemming from the field of maturity models

e.g. measurement steps, quality improvement, and generic/specific

ractices to be followed) could be applied to it, too - providing

 lot of opportunities for improving the lectures and for showing

he usefulness of such models. The authors report on a study and

eaching approach where, in three successive semesters and at two

ifferent institutions, they started rating the process-maturity of

tudents solving tasks in their software engineering courses and

ransparently related the maturity levels to the task performances.

o do so, they defined their own teaching process and, for one

rocess area, they selected five dimensions (planning, setup, task

olving speed, team discussion, and mood) to be observed. Next,

hey looked for associations between these dimensions, the overall

ourse performance, and the quality (in the sense of completeness

nd accuracy) of the task preparation of the students. It turned out

hat, apart from speed, medium-sized correlations between most

f the measures and the course performance exist. It also turned

ut that the quality of the project plans (that were to be prepared

y the students before starting to work on their tasks) had a non-

egligible influence on the overall performance, but that this fac-

or is only weakly related to process maturity. Moreover, the au-

hors noticed that their students were surprised to experience the

se(-fulness) of a maturity model at first hand. They were eager

o make use of the practices in their ongoing course works, yield-

ng better results at the end. For that reason, even though their

eaching maturity model is at the very beginning, they recommend

o transparently introduce an “observation reflection improvement”

ycle in any (software engineering) lecture and to start measuring

he above mentioned dimensions. Such an approach might yield

o students’ process-improvement steps during the course, help in

ostering the understanding of the term process maturity, and, fi-

ally, also might help in improving the overall students’ course

erformances.

ndergraduate Requirements Engineering Course

Chandan R. Rupakheti, Mark Hays, Sriram Mohan, Stephen

henoweth, and Amanda Stouder present “On a Pursuit for Perfect-

ng an Undergraduate Requirements Engineering Course.” Require-

ents engineering is an important development activity within

ny software development cycle and therefore, understanding and

atisfying stakeholder needs and wants is the difference between

he success and failure of a product. The authors who have taught
 course on requirements engineering many times discuss the

ethodologies they have used and present the pros and cons of

ach methodology and reflect on what worked and what did not

n teaching requirements to undergraduate engineering students.

dapting Agile Practices

Zainab Masood, Rashina Hoda and Kelly Blincoe present “Adapt-

ng Agile Practices in University Contexts.” The authors describe

he constraints the students faced while applying agile practices

n a university course including difficulty in setting up common

ime for all team members to work together, limited availability of

ustomer due to busy schedule and the modifications the students

ntroduced to adapt agile practices to suit the university context,

uch as daily stand-ups with reduced frequency, combining sprint

eetings, and rotating scrum master from team. The authors also

ummarize the effectiveness of these modifications based on re-

ection of the students and offer recommendations for educators

nd students. The authors’ findings and recommendations will help

ducators and students better coordinate and apply agile practices

n industry-based projects in university contexts.

ollaborative and Teamwork Software Development

Claudia Raibulet and Francesca Arcelli Fontana present “Collab-

rative and Teamwork Software Development in an Undergradu-

te Software Engineering Course.” Two essential elements of suc-

essful software development are collaboration and teamwork. The

uthors describe their experience in stimulating collaboration and

eamwork activities of students in the context of a software engi-

eering course at the third year of an undergraduate program in

omputer science program. The students were asked to develop a

oftware project in teams of 3–5 students for the final exam of

he course. The students were also asked to perform project man-

gement tasks (e.g., the Gantt) using the Microsoft Project tool. At

he end of the course, the authors gathered the student feedback

hrough a questionnaire on their collaboration and teamwork expe-

ience. From their feedback, the students were enthusiastic about

orking in teams for their project development and about learn-

ng how to use tools which are exploited not only in the academic

orld but also in industry.

cknowledgment

We thank the organizers of the conference, the authors, the re-

iewers (CSEE&T and the JSS), W.K. Chan who is in charge of the

pecial issues of the JSS and the editorial office of the JSS for their

ssistance and for making this special issue possible. We enjoyed

orking with the above individuals and hope you enjoy their col-

ective contributions.

Hossein Saiedian

∗

Guest Editor

The University of Kansas, USA

Hironori Washizak

Guest Editor

Waseda University, Japan

∗Corresponding author.

E-mail address: saiedian@ku.edu (H. Saiedian)

Accepted 7 September 2018

mailto:saiedian@ku.edu

