The Journal of Systems and Software 82 (2009) 551-552

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect Bl

The Journal of Systems and Software WWNWN "NH””"HW""““HW

Editorial

Software engineering challenges of the “Net” generation

The theme of the 2008 IEEE Conference on Software Engineering
Education and Training (CSEE&T'08) was “Educating the Net Gener-
ation of Software Engineers.” The theme acknowledged the vital
role that Internet technologies and applications play in the society
and the importance of properly educating and training the “Net”
generation of software engineers. The Net generation characterizes
the current students who may have never known life without the
Internet. Their early and ubiquitous exposure to technology has de-
fined their styles, their modes of communication, their learning
preferences, their social choices, and their entertainment prefer-
ences. Additionally, the realities of the software industry for which
the Net generation need to prepare have shifted from that of the
foundational beliefs and practices of many software engineering
educators. Thus the educators need to become familiar with the
Net era’s teaching and training challenges, to investigate the pecu-
liarities of educating and training Net software engineers, and to
identify the necessary ingredients for success and for improving
our teaching practices and course delivery methodologies.

In addition, Gartner (http://www.gartner.com) has projected
the world market for open source software to grow to $35B before
the end of this decade. How do we need to change our curriculum
to prepare students to develop open source software? The number
of security attacks on software is growing exponentially each year.
How do we teach students to build security into their software and
to implement software consistent with privacy policies? Increas-
ingly, software development teams are geographically distributed
as teams are disbursed throughout the globe and as telecommuting
is on the rise. Are students learning about communication and
coordination practices for working in these distributed teams? As
educators, how do we adjust our teaching to meet the personal
preferences and technical challenges of the net generation of soft-
ware engineers? These and similar open issues were addressed at
the CSEE&T ’'08 in a number of keynotes, technical and experience
papers, presentations, and workshops. A number of these were se-
lected and further extended for the current issue of the Journal of
Systems and Software. A summary of each article is provided below.

1. Using Wikis to Support the Net Generation in Improving
Knowledge Acquisition in Capstone Projects

In an article entitled “Using Wikis to Support the Net Genera-
tion in Improving Knowledge Acquisition in Capstone Projects,”
Eric Ras and Jorg Rech describe experience factories, which support
the packaging and dissemination of valuable experiences in a soft-
ware organization, provide excellent facilities to support Net Gen-
eration students during capstone projects and to create effective
learning scenarios. The Net Generation (born 1981-1994) differs
from the previous generations in terms of commitment, interac-

0164-1212/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.01.020

tion, and learning style, and hence creates new challenges for edu-
cation and the usage of technology. The “digital natives” have
grown up with technology and are connected, experimental, and
very communicative. The authors conduct a small study to find
out which Web 2.0 technologies satisfy the needs of the Net Gen-
eration. The outcome shows that Wikis match the characteristics of
the Net Generation. A Wiki supports asynchronous communication
and the collaborative capturing, organization, and distribution of
emergent knowledge. Hence, a Wiki was used to implement an
experience factory. In addition, this Wiki-based platform called
Software Organization Platform (SOP) is able to enrich documented
experiences with additional information and to dynamically gener-
ate so-called learning spaces. A learning space consists of hyper-
media pages structured in such a way that is supports
experiential learning. It provides information on software engi-
neering topics according to the selected experience description
and current context of the students. These learning spaces intend
to cope with the lack of students’ background knowledge and
explicitly support learning processes. A controlled experiment con-
firmed that the students acquired about 200% more knowledge
when using learning spaces than with conventional experience
descriptions. The authors experienced that by using the right
Web 2.0 technologies, learning can be made more engaging, social,
personalized, and learner-centered.

2. Engaging the net generation with evidence-based software
engineering through a community-driven Web database

Although its importance and benefits are increasingly recog-
nized, the awareness and use of evidence-based software engineer-
ing (EBSE) is still lower than desired. To popularize EBSE, David
Janzen and Jungwoo Ryoo propose a Web accessible repository of
EBSE studies. Based on their belief that early EBSE exposure is crit-
ical, the authors developed a new course module that serves as an
introduction to EBSE early in a software engineering curriculum.
Particularly, to appeal to today’s Net Generation students, the
course module contains, as its centerpiece, a team-based project
in which students are required to develop a Web accessible repos-
itory of EBSE studies. To successfully complete this project, stu-
dents must do their own research on dozens of state of the art
EBSE studies and summarize their findings in a short descriptive
text for each paper they review. Although the quality of their
writing carries the most significant weight, student teams also
compete with each other on the ideas of Web features that can
help galvanize the fledgling online EBSE community consisting of
researchers, students, and professionals. Many proven Web 2.0
technologies (such as a user-centric rating system that makes a
certain article bubble up or down based on its popularity) have

http://www.gartner.com
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

552 Editorial/ The Journal of Systems and Software 82 (2009) 551-552

already been adopted for the official EBSE site created as a result of
the first trial of the proposed course module. The student-gener-
ated EBSE study summaries act as the seeds of larger scale, more
community-driven discussions on the Net later.

3. Software Engineering Education: How Far We’ve Come and
How Far We Have To Go

The paper written by Nancy Mead, “Software Engineering Edu-
cation: How Far We've Come and How Far We Have To Go” pro-
vides a retrospective view of software engineering education. In
this paper Mead discusses the history of software engineering edu-
cation, some current trends, and a view towards the future. His-
toric events such as early industrial education and academic
degree programs are discussed, along with the players whose lead-
ership led to many early advances in the field of software engineer-
ing education. The evolution and growth of degree programs in
software engineering education is outlined, along with many pro-
fessional issues, such as licensing, certification, and ethics. Educa-
tion initiatives, working groups, and conferences are outlined.
The Conference on Software Engineering Education and Training
and the Working Group on Software Education and Training are
discussed in some detail. She then discusses topics such as indus-
try/university collaboration, development of course curricula and
materials, advanced delivery mechanisms, and globalization.

In examining the present, new curriculum efforts, the evolution
of educational offerings, as well as the expansion of degree pro-
grams and conferences is discussed. Predictions are made for the
future of software engineering education, and some of the contin-
uing challenges are discussed. It is noted that many substantive is-
sues remain to be addressed, including recognition of educational
research as a valid form of research, the continuing need for men-
toring relationships between experienced educators and those new
to the field, the need to motivate people to enter the field. The pa-
per concludes that the need for leadership in software engineering
education will continue to exist in the future, just as in the past.

4. Single Development Project

Nenad Stankovic presents an article entitled “Single Develop-
ment Project.” The Internet has changed our lives in a profound
way, but new opportunities cannot be exploited if not supported
by software systems. These, in turn, require software engineers
who can work on complex projects and within multiple teams that
are supported by many forms of communication. They should pos-
sess technical, managerial, and organizational skills. While soft-
ware engineering courses should bring out the interdisciplinary
nature of the discipline, the implementation of student projects
must be adjusted to needs of the instructional setting. Students’
learning is directly influenced by the kind of roles and tasks in
which they engage. New knowledge becomes accessible and rele-
vant when it is supported by problems that place learning within

a context. Whenever possible, students should activate prior
knowledge and establish a broader understanding of its use and
value. In this paper, the author reports on a new project course
in software engineering for sophomores, immediate findings, and
detail the outcome. Teams of students work within a controllable
setting on a broad set of targeted problems that span the software
lifecycle. Students use popular methods, current technologies, and
tools, while given freedom to define their own goals of achieve-
ments, plans, iterative process, and solutions that are appropriate
for their level of experience and knowledge.

5. Discovering Vulnerabilities in Control System Human-
Machine Interface Software

In “Discovery of Vulnerabilities in Control Systems Human-
Machine Interface Software”, the authors, Robert McGrew and
Ray Vaughn, describe vulnerabilities discovered in a supervisory
control and data acquisition (SCADA) software product. These find-
ings are discussed in the context of using these vulnerabilities (and
those similar to them) to educate the “net generation” of software
engineers about appropriate application of basic secure software
engineering principles. The software described in the case study
is a human-machine interface (HMI) product, which implements
the interface that control panel operators use to view and manip-
ulate components of an automated system, such as an assembly
line or a water treatment facility. Many deployments of this soft-
ware are in areas of national critical infrastructure, making it
important to realize the impact of not following secure software
engineering practices. Many examples of vulnerabilities involve
programming errors (buffer overflows, for example), so it is useful
when educating students for them to realize that some vulnerabil-
ities, like the ones disclosed in this paper, are design errors that are
introduced in earlier stages of the software development process.
The paper also describes how this vulnerability has been used in
the classroom to illustrate concepts related to developing software,
and procedures used to find vulnerabilities in currently existing
software. Suggestions are given for how the case study might be
used as an example or a hands-on exercise in several software
engineering classes.

Preparation of this special issue has been a learning experience.
I'd like to thank the authors for extending their original articles and
the reviewers who reviewed the extended papers.

Hossein Saiedian

(Guest Editor)

Electrical Engineering & Computer Science,
University of Kansas,

Lawrence, KS 66045,

United States

E-mail address: saiedian@eecs.ku.edu

Available online 29 January 2009

mailto:saiedian@eecs.ku.edu

	Software engineering challenges of the “Net” generation
	Using Wikis to Support the Net Generation in Improving Knowledge Acquisition in Capstone Projects
	Engaging the net generation with evidence-based software engineering through a community-driven Web database
	Software Engineering Education: How Far We’ve Come and How Far We Have To Go
	Single Development Project
	Discovering Vulnerabilities in Control System Human–Machine Interface Software

