
The Journal of Systems and Software 74 (2005) 109–111

www.elsevier.com/locate/jss
Guest editorial

The new context for software engineering education and training
1. Introduction

The ‘‘software crisis’’ of the last decade was char-

acterized as one of low programmer productivity and

poor software quality Gibbs, 1994. This description

was a shot across the bow for computer science edu-

cators, who shared the blame for the fact that their
graduates were performing poorly. Then arose a severe

shortage of software professionals––perhaps partly be-

cause of their low productivity and the need to fix their

poor quality products (e.g., Y2K problems). Tradi-

tional computer science departments were also unable

to graduate enough software engineers to meet the

seemingly insatiable demand. Could not computer sci-

ence and/or software engineering educators do better?
The creation of many software engineering programs

(at both undergraduate and graduate levels) and pro-

posals for many model curricula have provided sub-

stantial help. There is no doubt that software

engineering and software engineering education are

evolving into a true engineering discipline. There are

many indications of this new direction: CCSE efforts,

SWEBOK initiative, the IEEE/ACM codes of ethic,
and the Conference on Software Engineering Educa-

tion and Training (CSEE&T) which will be held for its

17 year in 2004.

Many software engineering problems have faded, or

perhaps mutated, during the past few years––only to be

replaced by new ones that seem at least equally chal-

lenging for the software engineering education and

training community. Software engineering has been
punctuated by rapid changes in both the technical and

politico-economic conditions under which it is practiced.

On the technical side, there have been changes in the

computing platform. Today’s software engineers must

know how to deal with applications built from software

components that are distributed over the web. The basic

conceptual model of how such software operates is,

frankly, quite convoluted and therefore more likely to
detract from than to improve overall software quality.

But this model is a fait accompli. The consequence is

that a modern software engineering education should

cover technical concepts that most currently practicing
0164-1212/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2003.09.023
software engineers (like most software-engineering

educators) never learned in school.

Meanwhile, industry has found its own solution to

the shortage of software engineers in the developed

world. It has expanded dramatically the outsourcing of

some software engineering activities to the developing

world––sometimes to companies half way around the
globe whose employees speak different languages and

who work during times that are several hours out of

phase with those of the home office. Today’s software

engineers must understand how to communicate pre-

cisely about software requirements and related details in

a truly global environment. They must know how to

participate in, to coordinate, to manage, projects on

which work is being done literally around the clock and
around the world.

It is little wonder that software engineering education

and training is an exciting area in which to work. For in

addition to the above challenges, the debates continue

about what software engineering is, whether it is an

engineering discipline or what would make it so, whe-

ther there should be undergraduate as well as graduate

degree programs in software engineering (different from
those in computer science), whether software engineers

should be licensed/certified, etc. (Bagert et al., 2001;

Henderson, 2003; Saiedian et al., 2002). All of these

questions are important. Still, the central issues in

software engineering education and training concern the

same two questions as always:

• Content: What specific ideas should be taught in soft-

ware engineering courses and curricula? The rapid

pace of technological change, and especially the total

change that a software engineer will experience over a

career of 30–35 years, suggests that content should

focus significantly on technology-independent princi-
ples underlying the design and construction of large

software-based systems. It is safe to say that there is

no general agreement about what all these principles

are; but also that some such principles are widely if

not universally accepted and that students can start

to learn them as early as CS1. At the same time, it

is important to teach some software technologies,



110 Guest editorial / The Journal of Systems and Software 74 (2005) 109–111
and to expose students to currently popular method-

ologies through which time-tested principles are ap-

plied in practice. One big problem for educators is

that there are so many of these to choose from! An-

other problem is that the jury is still out on how well
most of these methodologies work in practice, let

alone in the classroom.

• Pedagogy: What are the best ways to teach the ideas

that are selected? Evidence clearly shows that stu-

dents learn best by doing, by practicing, and that pro-

jects are therefore always an important feature of

software engineering courses. Yet, technological ad-

vances have raised new pedagogical questions along
with content questions. In particular, the availability

of the web and concomitant new possibilities for dis-

tance education have led to many investigations of

combining tried-and-true teaching techniques with

new methods of delivery to physically distributed

audiences.

It is in this dynamic context that we received 52 paper

submissions for the Software Engineering Education

and Training track of the 25th International Conference

of Software Engineering, which was held in May 2003 in

Portland, Oregon, US. Each was reviewed by at least

three program committee members, and 11 papers were
accepted for and presented at the conference. This spe-

cial issue includes extended versions of three of them,

along with an invited additional paper that is especially

relevant.
2. Contributions to the special issue

As software engineering degree programs emerge, the

need for tools and methodologies that can be effectively

used throughout the curriculum also emerges. Bagert

and Mengel discuss a project process which was devel-
oped at Texas Tech University and has been used suc-

cessfully in their undergraduate and graduate software

engineering courses there over the last five years. Thus,

the project process can be introduced in early software

engineering classes, and the students become well-versed

in its use by the capstone experience courses. The pro-

cess is tailored for use in various classes and types of

projects.
The process is entirely web-based (including tem-

plates), which helps to facilitate communication with all

stakeholders across platforms; this is especially useful

for distance education and when the project client is not

locally based.

An existence proof for the effective portability of the

process is the successful transfer of it to the software

engineering courses at the Rose-Hulman Institute of
Technology, which has a school and program structure

somewhat different from that of Texas Tech.
The next paper, by Jean-Guy Schneider and Lorraine

Johnston from Swinburne University of Technology,

Melbourne, Australia, addresses the issue of whether

eXtreme Programming as it stands today should be

introduced for educating undergraduate software engi-
neering students. Their study is motivated by the fact

that ‘‘traditional’’ software engineering curricula in

tertiary education are perceived as being very document-

centric and do not introduce students enough to ‘‘hands-

on’’ practices used in industry.

In their paper, they first define a number of educa-

tional objectives for undergraduate software engineering

courses and then evaluate the practices of eXtreme
Programming against these objectives. Novel to their

study is that they do not investigate individual practices

such as pair programming in isolation, but instead

analyze their impact from a ‘‘holistic’’ perspective, i.e.

they consider eXtreme Programming as a package. They

examine which of the initially set objectives can be met

using eXtreme Programming given the constraints of a

tertiary teaching environment and which ones cannot. In
particular, they suggest that students require more

maturity to comprehend all aspects of software engi-

neering, especially whether or not certain quality

assurance procedures could be omitted.

They conclude that while individual practices of eX-

treme Programming may be helpful for educating stu-

dents about small scale development, as a package it

does not provide students with a wide enough experi-
ence to fully understand the importance of engineering

in software development.

The third paper is by Hedin, Bendix, and Magnusson

from Department of Computer Science at Lund Uni-

versity, Sweden. They have used Extreme Programming

(XP) with success to substitute for a more traditional

waterfall model on a project that introduces team-

programming aspects of software engineering to a large
group of students.

They have scaled down projects to 14 hours of weekly

work for seven weeks, doing six iterations and a final

peer evaluation. Still projects expose students to most

problems and all phases of software development by a

team. The six iterations provides students with six

occasions for reflection, learning and self-planned

improvement. Projects are done ‘‘by-the-book’’ apply-
ing all XP practices with more focus on quality, process

and learning than on the product.

They find that it is fundamental to their success that

they provide proper support for the projects. This in-

cludes a short course on XP practices and labs on the

tools to be used, but––more importantly––also dedi-

cated on-site coaches, team in one room, and on-site

customer. Still it is not a drain on teaching resources as
coaching is done by older students following a special

coaching course. In exchange for their work they get

deeper knowledge and practice of XP and software



Guest editorial / The Journal of Systems and Software 74 (2005) 109–111 111
architecture, team management knowledge and experi-

ence, and study credits.

Finally, Perry Alexander presents a discussion and

postmortem analysis of a software engineering course

that integrated formal methods with traditional tech-
niques. Z was taught in the lecture course with an

emphasis on defining requirements for software com-

ponents. In the laboratory, traditional object-oriented

techniques were taught with an emphasis on integrating

formal with traditional techniques. A capstone project

required the students to understand where formal tech-

niques fit in the traditional development cycle and where

they complement traditional techniques. The course was
offered to undergraduate and graduate students for six

years with surprisingly successful results. Alexander’s

paper is actually an invited paper.
Acknowledgements

We thank the organizers of the conference, and

especially the Software Engineering Education sub-

committee, the select few others who helped with their

reviews, the ICSE Program Chairs, the editorial office of

the Journal of Systems and Software, and of course the
authors for all their efforts which made the production

of this special issue of the JSS possible, and hope you

enjoy their collective contributions.
References

Bagert, D., Dupuis, R., Freeman, P., Saiedian, H., Shaw, M.,

Thompson, J., 2001. Software engineering body of knowledge,

Proceedings of the 23rd International Conference on Software

Engineering (ICSE’01). Toronto, Canada, May 2001, pp. 693–696.
Gibbs, W., 1994. Software’s chronic crisis. Scientific American 271 (3),

86–95.

Henderson, P., 2003. Software engineering education (SEEd). ACM

Software Engineering Notes 28 (4), 3–5.

Saiedian, H., Bagert, D., Mead, N., 2002. Software engineering

programs: dispelling myths and misconceptions. IEEE Software 19

(5), 35–41.
Hossein Saiedian (Ph.D., Kansas State University, 1989) is currently a
professor of Software Engineering in the Department of Electrical
Engineering and Computer Science at the University of Kansas. Pro-
fessor Saiedian’s primary area of research is software engineering and
in particular models for quality software development, both technical
and managerial ones. He has over 100 publications in a variety of
topics in software engineering and computer science.
Bruce W. Weide is a professor of Computer and Information Science at
The Ohio State University, where he co-directs the Reusable Software
Research Group. His interests include all aspects of software compo-
nent engineering, especially in applying RSRG work to practice and in
teaching its principles to beginning CS students. He and colleague Tim
Long were awarded the IEEE Computer Society’s 2000 Computer
Science and Engineering Undergraduate Teaching Award for their
work in the latter area. Weide holds a Ph.D. in Computer Science from
Carnegie Mellon University and a B.S.E.E. from the University of
Toledo. He is a member of the IEEE, ACM, and CPSR.

Hossein Saiedian

Electrical Engineering and Computer Science

The University of Kansas

Lawrence, KS 66045, USA

E-mail address: saiedian@eecs.ku.edu

Bruce W. Weide

Department of Computer Information Science

The Ohio State University

Columbus, Ohio 43210, USA

E-mail address: weide@cis.ohio-state.edu

Available online 5 January 2004


