Computer Science Education 0899-3408/02/1201-2-005$16.00
2002, Vol. 12, No. 1-2, pp. 5-9 © Swets & Zeitlinger

Bridging Academic Software Engineering Education and
Industrial Needs

Hossein Saiedian
Elec. Engineering and Computer Science, University of Kansas, Lawrence, USA

Welcome to the special issue of the Computer Science Education on Software
Engineering Education and Training. This special issue of the Computer
Science Education includes four of the best education papers of the 23rd
International Conference on Software Engineering (ICSE) as well as one
invited article presenting ongoing work in Software Engineering Education
(SEE). The articles share a common theme: They emphasize effective educa-
tion for practical and industrial problems. Some of the articles, in fact, repre-
sent case studies of collaborative projects between members of the academic
and industrial or government institutions.

ICSE, the flagship conference of the software engineering community, is
well known for being a world-wide forum where researchers, practitioners,
and educators together define and identify new directions of research and
practice in software engineering, assess the state of the art, and exchange
ideas. The 23rd ICSE, which included a track in SEE, was held in Toronto,
Canada, during May 12-19, 2001. Four of the SEE papers were recommended
for further consideration for the Computer Science Education. The authors of
the selected papers were requested to revise their original papers and thus
were provided with an opportunity to expand on their papers beyond the
version published in the proceedings. The invited article provides an
investigation into one type of industry/university collaboration to address
the existing lack of available software engineers.

Formalism and Component-Based Software Development

Component-based software development is widely acknowledged as funda-
mental for improving software productivity and quality. To reason about a
component in a modular fashion, without being concerned about the imple-

Correspondence: Hossein Saiedian, Elec. Engineering and Computer Science, University of
Kansas, Lawrence, KS 66045, USA. Tel.: + 1-913-897-8515, E-mail: saiedian @eecs.ukans.edu

6 HOSSEIN SAIEDIAN

mentation details of the components it reuses and without the knowledge of
the entire system in which the component is deployed, participating compo-
nents must have abstract specifications of behavior. Traditionally, the
educational community has been reluctant in introducing component-based
principles of templates, specification, and reasoning in introductory under-
graduate classes for one of two reasons: The principles might be too difficult
for freshmen to understand or that they might displace other principles taught
in introductory courses such as efficiency analysis. The article by Murali
Sitaraman (Clemson University, USA), Timothy Long and Bruce Weide (Ohio
State University, USA), James Harner and Liqing Wang (West Virginia
University) provide significant evidence to help overcome this reluctance. It
discusses a multi-year educational experiment at two major institutions in
teaching component-based software development using RESOLVE, and presents
positive results from attitudinal and other evaluations of students.

Educating Students in Risk Management

The increasing pace of change in information technology (IT) makes one-size-
fits-all, cookbook solutions increasingly inadequate. Yet students are largely
educated on cookbook solutions to set-piece problems (e.g., compiler design
and development). Applying cookbook solution approaches to current IT
applications frequently leads to:

e Good solutions to the wrong problems;

o Large amounts of late rework;

o Overemphasized or underemphasized activities through inability to deter-
mine how much is enough?

A good education in risk management provides skills and methods for dealing
with these problems in the following ways:

1. Addressing the risks of building the wrong system focuses software
engineers on understanding the stakeholders objectives and context while
exploring solution approaches;

2. Resolving risks early avoids extensive late rework;

3. ‘How much is enough’ questions are best addressed by considering the
risks of doing too much or too little.

Educating students in risk management is not easy. Usually risk-management
skills take years to acquire. The major challenges are learning how to re-
cognize and deal with particularly risky personal tendencies and external

EDITORIAL 7

constraints. Barry Boehm and Daniel Port (University of S. California, USA)
discuss a number of such challenges in detail and use a cognitive demands
analysis to determine which individual skills are more important to learn and
what sequence of educational experiences are likely to be most effective in
helping the students learn the skills.

Maintenance Education is Critical

Maintenance has always been viewed as a second class programming task
with an ‘“‘admixture of on-the-job training for beginners and low-status
assignments for the outcasts and the fallen”” (Gunderman, 1988). Usually less
experienced programmers are assigned to maintenance programming, while
the more experienced ones begin new developments. However, junior and
less-experienced programmers often lack formal training in performing their
chores, which include many challenging activities such as understanding the
existing program, making the necessary changes or additions, conducting
regression testing, and ensuring that design and analysis documents are up-
dated to reflect the changes, additions made, or both.

A highly skilled maintainer is the most important organizational asset for
achieving quality software and is strategic for improving maintenance and
development processes. This requires that universities properly prepare
students to enter the maintenance workforce and that maintenance organiza-
tions actively build and maintain their human knowledge and skill base. Mira
Kajko-Mattsson (Stockholm University, Sweden) Stefan Forssander, Gunnar
Andersson, and Ulf Olsson (ABB, Sweden) present CM3: Maintainer’s
Education and Training — a maturity model for educating and training main-
tenance engineers within corrective maintenance. This model is presently
being developed at ABB by the Software Maintenance Laboratory. Our goal is to
provide guidance to ABB and industrial organizations worldwide in the process
of building or improving their most important asset — humane recourses.

Software Factory Courses

Industry often express concerns that current academic curricula do not address
the practical issues of real software development. John Tvedt, Kevin Gary
(Catholic University of America, USA) and Roseanne Tesoriero (Experi-
mental Software Engineering, USA) outline a proposal for an innovative core
curriculum for a Bachelor of Science in Computer Science. The proposed core
curriculum contains elements of traditional computer science programs
combined with software engineering via a team-oriented, hands-on approach

8 HOSSEIN SAIEDIAN

to large-scale software development. In addition to traditional lecture, project,
and exam courses, students are required to take an eight-semester sequence of
‘Software Factory’ courses. Software Factory courses help students’ put their
newly acquired skills to work in a real software organization staffed and
managed by all students in the program.

Lack of Skilled Software Engineers: A Concern

During the past several years, the market for skilled software engineers has
been growing. Even the current slowdown in the technology sector has not
allowed the supply for software engineers to meet the existing demand. The
inequity between supply and demand has resulted in a variety of problems like
high turnover rates, staffing shortfalls, increased production costs, increased
salaries, and outflow of crucial company knowledge. In addition to the increase
in demand for software engineers, some companies that have software develop-
ment as a focus have indicated that the skills provided by existing software
engineering education do not completely meet their requirements.

Since the most influential factor in the success of a software project is the
skill level of the participating software engineers, and one of the highest risk
factors for a project is the lack of talented software personnel to develop the
project (Boehm et al., 2000), the expansion of the pool of skilled software
engineers is a critical task. One obvious solution to the dual problems of the
shortage of skilled software engineers and the software development knowl-
edge shortfall is to involve industry more closely in the educational process.
The participation of the companies that stand to benefit most from the
education has several potential benefits which include students with a skillset
that matches industry needs, increased company visibility, increased incentive
on the part of the students, and others.

The investigation into one type of industry/university collaboration to
address the existing lack of available software engineers is the focus of the
paper by Heidi Ellis (Rensselaer at Hartford, USA), Nancy Mead (Software
Engineering Institute, USA), Ana Moreno (Universidad Politecnica de
Madrid, Spain), Cynthia Tanner (West Virginia University, USA), and Dawn
Ramsey (Southern Polytechnic State University, USA). The paper looks
specifically at efforts to re-educate non-software engineers to become software
engineers. The research provides insight into the factors that contribute to the
success of such a collaboration and outlines guidelines for the development of
successful industry/university collaboration programs for producing software
engineers. The authors hope that these guidelines can be used by both

EDITORIAL 9

companies and academic institutions alike to structure successful programs
for the re-education of software engineers.

I thank the organizers of the conference, the authors, and the reviewers for
all their efforts which made the production of this special issue of the Comp-
uter Science Education possible, and hope you enjoy their collective contribu-
tions.

REFERENCES

Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R.,
Reifer, D., & Steece, B. (2000). Software cost estimates with COCOMO II. Englewood
Cliffs, NJ: Prentice Hall.

Gunderman, R. (1988). A glimpse into a program maintenance. In G. Parikh (Ed.), Techniques
of program and system maintenance. MA, USA: Wellesley. (pp. 55-59). QED
Information Sciences.

