
Software engineering education: an international perspective

Hossein Saiedian

Department of Computer Science, University of Nebraska at Omaha, Omaha, NE 68182-0500, USA

1. Background

The state of software and software engineering practice
today includes many successes and many great products.
The field itself is thriving and in many ways contributes to
our daily lives, from every day credit card uses in the gro-
cery stores (which depend on computer-based point-of-sale
systems) to the country’s space mission and defense cap-
abilities. But there are also major software failures and
chronic crisis. In an excellent article which appeared in
Scientific American, Gibbs briefly describes a representative
sample of such failures and problems, in both the private
and government sectors [1]. The problems and crises range
from budget and schedule overruns to software projects that
are terminated after millions of dollars are spent. The Stand-
ish Group1 has published more staggering numbers. In two
reports entitled ‘Chaos’ and ‘Unfinished Voyages’, respec-
tively, the Standish Group estimates that in 1995 some $81
billion was spent on cancelled software projects and another
$100 billion in 1996. The group’s research on budget over-
runs indicate that more than 50% of projects will cost 189%
of their original estimates. Nearly 50% of the IT executives,
according to the ‘Chaos’ article [2], feel that there are more
failures today than there were five years ago.

While the good software products and practices should be
praised (as Bob Glass always does, see, e.g. his latest com-
ments in IEEE Software[3]), the failures, problems and
crises must also be acknowledged, and efforts must be put
into improving the practice and minimize the crises. A con-
siderable number of principles for improving the software
practice have been explored in recent years, and some have
proven effective in practical projects. These include soft-
ware development methodologies and environments, struc-
tured and object-oriented programming, CASE tools, 4th
generation languages, application generators, etc. Neverthe-
less, software problems and crises are not completely
resolved, and a large number of organizations still suffer
enormously from software budget and schedule overruns.

Many have suggested that one way of improving the
practice to is emphasize proper education, and to properly
educate the next generation of software engineering profes-
sionals. Some have suggested that the quality of the soft-
ware engineering workplace is a direct function of the
quality of software engineering education [4]. Through
proper software engineering education, an education that
includes the core knowledge and skills of computer science
but with a primary focus on the definition, development and
maintenance of software, we can succeed in our efforts to
improve the quality of software produced by the next gen-
eration of software engineers, and to substantially reduce
the development and maintenance costs and crises.

2. Improving the education

The debate about the most effective approach to educat-
ing the next generation of software engineers and the intro-
duction of various software engineering education programs
continues unabated. Some argue for a software engineering
(SE) component or track under existing computer science
(or computer engineering) programs. Others promote spe-
cialized and independent SE degrees and programs. Such
SE programs focus on software development and mainte-
nance, and cover topics that are normally not covered (in
enough detail) in typical computer science programs.
Examples of such topics include: project management,
process improvement, testing techniques, multi-semester
term projects, people and process skills, etc. Normally,
computer science courses, e.g. data structures and operat-
ing systems, serve as foundation courses. Regardless of
whether the SE education is provided under a computer
science umbrella or as a specialized software engineering
education program, the objective remains the same: to
prepare a new software engineer who is exposed to the
fundamentals from which technologies arise. By being
exposed to the software development fundamentals, the
new software engineer will be better prepared to apply
the fundamental knowledge in a proper context to real
problems regardless of what the popular (or ‘hot’) tech-
nology or product of the day is.

0950-5849/98/$19.00q 1998 Elsevier Science B.V. All rights reserved
PII S0950-5849(98)00038-X

1 The Standish Group International is a market research and advisory firm
which specializes in mission critical software and electronic commerce.
The group’s web address is: www.standishgroup.com.

Information and Software Technology 40 (1998) 191–193

INFSOF 3896

Software engineering education (SEE) has become the
subject of many discussion and debates in recent years.
The existence of many workshops, conferences and special
issues of journals devoted to SEE in recent years bears wit-
ness to the importance of this relatively new discipline.2 To
address some of the challenges of SEE, the Fourth Interna-
tional Workshop on Software Engineering Education
(IWSEE4) was held in Boston, Massachusetts (USA) on
23 May 1997. (The workshop was held in conjunction
with the 1997 International Conference on Software Engi-
neering.) More than 25 individuals from at least 10 different
countries were invited to and participated in the workshop.

3. Fourth international workshop on SEE

The International Workshop on Software Engineering
Eduction (IWSEE4) provided an active forum to discuss
SEE, to promote collaboration between members of the
academia and industry, to simulate new approaches, and
to facilitate interactive exchange among the participants.3

In addition to the presentations and debates, four Working
Groups were formed during the workshop. Each of the
Working Groups tackled a problem which was raised during
the debates. One of the Working Groups tackled issues
related to the industrial perspective. One key point of this
group’s report, the ‘three-way’ internship, was quite original
and interesting. It suggested that not only is it good to send
students to industry for internships, but it is equally impor-
tant to send faculty to industry on internship and to invite
industrial practitioners to join academia on an internship
basis for team-teaching certain software engineering
courses, and to provide input on course development.

This special issue ofInformation and Software Technol-
ogy is devoted to some selected presentation at the work-
shop. Even though it is difficult to determine the current
trend, teaching methods and directions in SEE curriculum
across a representative sample of international academia,
we did our best in selecting as many internationally diverse
views as possible. The articles included here offer views and
practices from educators in the US, New Zealand, Finland,
Germany, UK and The Netherlands. (IWSEE4 participants
from Canada, Australia and Ireland were also invited to
contribute to this special issue, but were unable to meet
the deadline.) A brief summary of each article follows.

Don Bagert (US) views SEE as a major sub-unit of com-
puter science with an important role and so he examines
how it can be effectively integrated into the computer

science curriculum. A model based on a four-course
sequence is presented and discussed, and suggestions
made on how that model can be integrated into computer
science programs at other institutions.

Robert Biddle and Ewan Tempero (New Zealand) discuss
teaching software development by teaching the principles of
reuseability. Their approach, which is based on a conceptual
model of reuseability, helps simplifying program development.

Jan J. van Amstel (The Netherlands) discusses group
education and training at Phillips. The Education and Training
program is one of the groups within Phillips Research, and
provides education and training for the professional software
developers. The author describes the curriculum, organization
of the software-related courses, experiences and effectiveness
of these courses as SEE models for software practitioners.

Pearl Brereton (UK) and her colleagues describe distrib-
uted group working in software engineering education that
was undertaken by three UK universities to provide students
with the opportunity to experience group working across
multiple sites using low-cost tools. Educational values of
distributed cooperative working are presented at the end.

Michael Godfrey (US) shares observations and ‘unex-
pected results’ in teaching a course in software engineering
to a mixed audience of undergraduate and professional Mas-
ter’s degree students at Cornell University.

Ann E. Kelley Sobel (US) was invited to contribute to this
special issue ofInformation and Software Technologyand she
discusses a strategy for integrating formal methods application
into several software engineering courses. This article was not
presented at the workshop, but because it describes a novel
approach related to SEE, it is included in this special issue.

Jochen Ludewig and Ralf Reißing (Germany) discuss a
new software engineering curriculum that was launched in
1996 at the University of Stuttgart. The authors emphasize
that the curriculum is new for all German speaking univer-
sities. Some background about German universities is
provided, and the reason for the new curriculum as well
as its goals and limitations are discussed.

Kari Alho (Finland) discusses the uses of the WWW
technology in teaching, managing and administering software
engineering courses at the Helsinki University of Technology.

I hope you enjoy the special issue! Let me take this oppor-
tunity to encourage you to prepare an article for the 1999
Conference on Software Engineering Education and Train-
ing (sponsored by the IEEE-Computer Society, in coopera-
tion with the ACM, and supported by the Software
Engineering Institute). The conference’s purpose is to influ-
ence directions in software engineering education and train-
ing, to simulate new instructional approaches, to promote
collaborations and bridges with the industry, and to generate
exchanges among software engineering stakeholders. The
conference will be co-located with the ACM SIGCSE
Symposium on Computer Science Education. The best
articles of CSEE & T’98 will be published in an special
issue of theJournal of Systems and Software(also published
by Elsevier Science).

2 Examples of special journal issues (in addition to the current issue of
Information and Software Technology) includeIEEE Software(November/
December 1997),Annals of Software Engineering(scheduled for 1999) and
a special issue ofJournal of Systems and Softwareplanned for the best
papers of the 1999 Conference on Software Engineering Education and
Training (CSEE & T).

3 The proceedings of the workshop, which included position statements,
short and long articles, is available on line (in PostScript) at http://csal-
pha.unomaha.edu/hossein/prof.html.

192 H. Saiedian/Information and Software Technology 40 (1998) 191–193

References

[1] W. Gibbs, Software’s chronic crisis, Scientific American 271 (3)
(1994) 86–95.

[2] The Standish Group, ‘Chaos’, http://www.standishgroup.com/
chaos.html, 1995.

[3] B. Glass, In praise of practice, IEEE Software 15 (1) (1998) 30–31.
[4] K. Beckman, N. Coulter, S. Khajehouri, N. Mead, Collaborations: Closing

the industry–academia gap, IEEE Software 14 (6) (1997) 49–57.

193H. Saiedian/Information and Software Technology 40 (1998) 191–193

