
Towards More Formalism in Software Engineering Education

Hossein Saiedian

Dept. of Computer Science

University of Nebraska

Omaha, NE 68182

Abstract

Improving students’ understanding of software engi-

neering concepts and increasing the productivity of

softwaze engineers requires new ways of thlnklng and

reasoning about software and better ways of produc-

ing it. To gain intellectual control over the software

development process and become more productive

and efficient, we encourage the use of formal methods.

The use of formal methods requires that students be

educated and software engineers be trained. We make

a distinction between education and training. Educ~

tion is the long term goal designed to build a foun-

dation of knowledge for the students while training is

a short term activity designed for software engineers.

The challenge to educators is to provide the appro-

priate foundation for software engineering students.

This issue is discussed in the paper.

1 Background

It has been more than 20 years since universities es-

tablished academic programs in computer and infor-

mation sciences. Graduates of these programs are

hired by industry and government to develop and

maintain computer programs which are used to keep
banking and hospital records, assist in controlling air

traffic, maintain inventories, etc. Sometimes these

computer programs help engineers design buildings

and bridges and build cars and airplanes. Thus the

non- engineering graduates of computer science pro-

grams develop products that may be used for buildlng

engineering artifacts such as cars and airplanes. It is

time to examine and ensure that this back door to

engineering possesses appropriate e engineering knowl-

edge. Engineering is viewed as the application of sci-

entific knowledge and formal methods for designing

useful products and for other practical purposes. Soft-

ware engineering must be viewed in the same way.
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantaQe, the ACM copyright notice and the

utle of the publication and its date appaar, and notica is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

andlor specific permission.

ACM-24thCSE-2193 -lN, USA

o 1993 ACM 0-S9791-566-6/93 /0002 /0193 . ..$1 .50

The computer science programs thus must embody

enough material to ensure that future software engi-

neers are able to use scientific knowledge and formal

methods in the construction of computer programs.

Computer science students must be convinced that

software engineering is in fact an engineering disci-

pline.

According to David Gries [3], a pioneer in program

development, software engineering lacks a sense of

professionalism and responsibility because:

●

●

●

few software engineers know how to write a good

specification,

few software engineers view a specification as a

legal contract, and

few software engineers stand 100~0 behind their

software product.

An explanation of these conclusions is that the soft-

ware engineering students have not been exposed

to means of acting professionally, and without the

means, no amount of exhortation to act professionally

can help [3]. The students are weak on the fundamen-

tal concepts; their computer science knowledge is pri-

marily focused on the narrow areas of programming

languages and classical operating systems problems.

Most importantly, they are never exposed to the dk-

cipline associated with engineering. They accept the

bizarre inconsistency and unpredictable behavior of

current systems as normal.

In thk paper, we emphasize curriculum materials

which are in the duection of increased formalism in

software development. Thh includes discussion of

necessary course work and tools that would help stu-

dents appreciate the need for formal methods. Our

goal is not to propose a new curriculum;, nor is it to

single out any particular department’s curriculum or

any particular report as a paradigm.

1We & b~eve that many current undergraduate curricda

are focused on the very narrow areas of programming, program-

ming languagea, and operating systems and that treatment of

mathematics and logic in these curricula is oft en quite shallow.

193

2 Formal Courses to take a course in logic. I persuaded many

students to do so, but I never did so myself.”
In this section we discuss the courses that we believe

should be emphasized more strongly in the computer

science curriculums for exposing the students to the

concepts related to formaJ methods.

2.1 Discrete Mathematics

Discrete mathematics is a study of calculations involv-

ing a finite number of steps and is the foundation for

much of computer science. It focuses on the under-

standing of concepts and provides invaluable tools for

thinking and problem solving. Discrete mathematics

is especially important when a computer science st u-

dent is not required to study much of ancillary math-

ematics.

Computer science students should take at least a

one semester course in dhcrete mathematics cover-

ing fundamentals topics such as set theory, functions,

relations, graphs, and combinatorics. There have

been few attempts to teach these topics to fresh-

men/sophomores in a thorough fashion that would re-

late discrete mathematical concepts to computer sci-

ence and software development.

2.2 Mathematical Logic

Logic is fundamental to many of the notations and

concepts in computing science. Mathematical logic al-

lows students to mathematically formulate and solve

a wide class of problems, is fundamental in under-

standing the meaning of algorithms, and represents

the foundation of logic programming. Students thus

must have deep understanding of concepts such as de-
cision procedures and higher order logic, and the rela-

tionship between set theory and lambda calculus. A

one semester course which focuses on these concepts

is essential.

In his influential textbook, The Science of Program-

ming, Prof. David Gries has the following to say about

the importance of mathematical logic:

“The research was fraught with lack of un-

derstanding and frustration. One reason was

that computer scientists in the field, as a
whole, did not know enough formal logic.

Some papers were written simply because

the authors didn’t understand earlier work;

others contained errors that wouldn’t have

happened had the authors been educated in

logic . . . VVe spent a good deal of time thrash-

ing, just tre~lng water, instead of swim-

ming, because of our ignorance. With hin-

dsight, I can say that the best thing for me

to have done ten years ago would have been

The above statements imply that professors of com-
puter science should also consider taking a course in

mathematical logic if they do not possess an adequate

background.

The mathematical logic course and the discrete

mathematics course should enhance a student’s ability

for abstract specification and the mathematical skdls

for specifying, manipulating, and analyzing programs.

2.3 Formal Specification

In addition to the above courses, students should take

a formal specification project course. Such a course

ties together the abstract concepts learned in the die-

crete mathematics and logic courses and provides an

opportunity to make practical use of these concepts.

Students must have suficient experience to be able

to appreciate the need for proper specification. This

experience may be developed in such a class and could

come from the ad hoc development of a program

of some complexity or better still, from attempts to

modify a poorly documented and poorly modularized

system.

The above course should not simply survey several

different approaches but rather give in-depth practice

with one or two approaches that have proven useful

(e.g., Z).

One misconception about formal methods is that

is that they are too mathematical and too compli-

cated requiring a Ph.D. to understand them. Formal

methods me based on mathematics. However, the

mathematics of formal methods are not difiicult to

learn. Using them requires some training, but experi-

ence has shown that such training is not dficult and

that people with only high school math can develop

the skflls to write good formal specifications. Most
popular formal specification languages (e.g., Z and

VDM) employ only a liited branch of mathemat-

ics consisting of set theory and logic. The elements of

both set theory and logic are easily understood and

are taught early in high school these days. Certainly,

anyone who can learn a programming language can
learn a specification language like Z. In fact learning a

specification language such as Z should be easier thzm

a programming language like COBOL. Z is smaller; it

is abstract and is implementation-independent.2 The

specification of a problem in Z is shorter and much

easier to understand than its expression in a program-

ming language like COBOL.

2For example, Z uses data formalized data types (e.g, sets)

instead of types which conform to those generally in use in

progr amming Iangua.gzs (e.g., arrays).

194

The negative perception of the role ofmathemat-

ical techniques in software specification is very un-

fortunate. When problems become very large and

complex in other engineering disciplines, they turn to

mathematics for help. Unfortunately, some software

engineers feel that formal methods and mathemati-

cal tools are of academic interest only and that reaJ

software systems problems are too large and complex

to be handled by formal methods and mathematical

tools.

The need for a broader use of mathematical tech-

niques and concerns for lack of rigor and accountabil-
ity in software engineering is not felt just by the com-

puter scientists. Consider, for example, a recent re-

port released by the Subcommittee on Oversight of

the House of Representatives Committee on Science,

Space and Technology [2]. This report addresses the

problem of software reliability and quality and criti-

cizes universities for not providing adequate education

for software engineers. In an article summarizing this

congressional report, Cherniavksy [1] writes:

“[... there is] a fundamental difference be-

tween software engineers and other engi-

neers. Engineers are well trained in the

mathematics necessary for good engineering.

Software engineers are not trained in the dis-

ciplines necessary to assure high-quality soft-

ware ...“

Another negative perception and perhaps fear

about formal specification languages is the presence

of mathematical symbols. But such symbols are in-

troduced to make mathematics easier and less wordy.

The difficulty in learning is not symbols any more

than difficulty in learning Farsi is learning Farsi al-

phabets.

The advantages of mathematics and its positive role

in producing good specifications are summarized by

Ince [5] as:

● Conciseness. Whale a natural language is verbose

and wordy, a mathematically-based notation is

concise and contains concepts that can be used to

represent complicated relations that would oth-
erwise be expressed in a large number of words.

● Ease of Reasoning. Mathematics provides one

with the ability to deduce useful results, or to

use reasoning rules and theorems to check results

of propositions.

● Unambiguous and Well-defined Meanings. Com-

pare the following example of informal specific~

tion:

The lamp voltage will always be a

whole number of volts between 3 and

6.

with the following mathematical expression:

voltage >3 A voltage <6

While the former can be read ambiguously, the

latter expression has only one interpretation. In

addition to the above, even if two notations, one

mathematical and one informtd, can be “proved’)

to be equivalent, they may differ in the ease with

which they can be evaluated or manipulated. It

is fair to say that mathematical expressions are

easier to manipulate than informal expressions.

● Modelling Reality. Engineers very often use

mathematics to model reality and have been very

successful in developing reliable systems.

● Suppression of Unnecessary Detail. This is be-

cause mathematicians use abstract values instead

of actual values and because they use symbols in-

stead of large structures.

● Mathematics is constant. For exarnpl~e, the con-

cept of set theory and the methods of represent-

ing it, including its operations, properties, etc.,

has been the same almost from its very genesis.

Compare this with all dtierent methods invented

for software specification and design during the

last 20 years.

3 Training for Professionals

Since their jobs are product oriented, software engi-

neers require a different kind of education than that

typically offered by research institutions and com-

puter science departments. The ~1 approach for

educating the practitioners is to develop, a curricu-

lum for a graduate professional degree (analogous to

an MBA degree but perhaps with less course work).

Such a curriculum would cover the necessary back-

ground for using formal methods (e.g., dkxete math-

ematics courses covering sets and logic) and would

present a variety of principles, tools, and skills in ap-

plying formal methods during software development.

Such a professional curriculum is, unfortunately, not

very practical now but it should be considered for the

near future.

The professional degree is not the only approach. A

good deal of knowledge concerning formaJ methods in

software engineering resides in professional workshops

in industry and can be attained through apprentice-

ship. Typical workshops on formal methods present

195

concepts and comparisons of various types of specifi-

cations for different soft ware components (e.g., data

structures, files, single procedures, composite objects,

programs, etc.). Examples are developed ad the rela-

tionships between formal specifications and other top-

ics such as logic programming, program verification

and “clean-room development” are illustrated.

We suggest the following hints for the software en-

gineering professional

●

●

●

‘llatilng in discrete mathematics covering ele-

mentary set theory and logic should be the first

step. For those who have a mathematical back-

ground but are unfamihar with the basic con-

cepts of set theory and propositional logic one or

at most two days suffices to introduce the ideas.

For others one week of training is required.

Training in a particular formal method such as

Z or VDM should be the next step. Such train-

ing typically takes one to three weeks, once the

participant has the necessary mathematical back-
ground.

Tutoring and consultation in a real project is

helpful, so is participation in workshops where

one can tackle a problem with the help of a tu-

tor.

Most practitioners perceive formal methods aa aca-

demic tools which are difficult to use. They are reluc-

tant to use them despite their considerable advantage

over traditional methods. A study needs to be done

to discover what it will take to move formal methods

from this unfair perception into a wider acceptabil-

ityy within software projects. Case studies must be

developed to demonstrate the applicability of formal

methods with the intention of convincing the practi-

tioners that the benefits outweigh the difficulties of

transition and result disseminated.

To demonstrate that formal methods pay off, more

realistic, large scale examples performed in conjunc-

tion with industry (e.g., IBM’s CICS) are necessary.

These industrial case studies not only are necessary

for advancing the technology and demonstrating the

potential benefits, they also help identify the needs of
companies that adopt formal met hods and enhance

the integration of formal methods with current soft-

ware engineering practices. In general, formal meth-

ods tend to address semantic issues rather than prag-

matic of a software. Managers and practitioners are

however most concerned with pragrnatics issues. An

understanding would help researchers delineate more

precisely where formal methods are most useful.

Case studies also assist in identifying the limits of

formal methods. Formal methods have proven very

useful for specification of functional properties of a

system. Non-functional properties of a software sys-

tem such as reliability, cost, performance, portabihty,

man-machine interface, and resource consumption of

running programs are difficult or impossible specify

by means of formal methods. Research needs to be

done to find out if formal methods can in fact be used

for such purposes. It is only in the practical applica-

tions that the limits or constraints of formal methods

are revealed.

4 Students Need Tools

Students learn more by active participation than just

by observing. Theoretical concepts (such as discrete

mathematics and graph theory) should be reinforced

with hands on experience in labs. Since such courses

should be taught early in the college career (to provide

necessary background for high-level courses), educa-

tors must ensure that the students learn the concepts

well. As is often the case, the students have difE-

culty with theoretical concepts that are described in

the books using definitions, theorems, and proofs. A

tool which visualizes theoretical concepts and allows

a student to experiment with these concepts creates

a creative environment. Such a tool is helpful in solv-

ing various discrete math problems which would be

tedious to work by hand. Freed from mechanical as-

pects of these calculation, the students can focus their

attention on the concepts which form the basis of the

material being studied.

One factor limiting the use of formal methods is
the lack of investment in automated tools and sup-

port structures to reduce the efforts of applying these

methods. In fact, lack of support tools is often seen

as a major barrier the to use formal methods. A key

factor in the acceptance of high-level languages has

been the presence of a comprehensive set of tools to

support the user. If formal methods languages are

to achieve the same level of acceptance, they too will

require extensive automated support. Support tools

may reduce the learning time, thereby aiding their

wide spread use. Automated tools may include:

● Special edMng environments

● Syntax checkers

. Animation tools

● Refinement and Proof Tools

For example, a special editing environment for the

specification language Z would provide a specifier with

a number of pop-up menus from which the speci-

fier could view global schemas, local schemas, state

196

schemas, operation schemas, defined sets, etc. The

editor would also make schema creation, modification,

deletion, etc., more flexible.

In addition to the above, good interfaces to specifi-

cation languages, transformation tools for taking pop-

ular methods and converting them into formal meth-

ods, and tools for inferring from specifications to assist

softwaxe validation are needed.

5 Conclusions

Formal methods enable a software engineer to specify

a system via a rigorous mathematical notation. Such

an approach to specification can eliminate many of the

problems associated with software development such

as ambiguity, impreciseness, incompleteness and in-

consistency. The errors are discovered and corrected

more easily; moreover error detection is accomplished

not through an ad hoc review, but through applica-

tion of mathematical analysis. When used during the

early stages of software development, formal methods

enable the software developer to discover and correct

errors that otherwise might go undetected, therefore

increasing the quality of the software and its main-

tenance and decreasing its failure rate as well as its

maintenance cost. Although such properties are the

objective of all specification methods, the use of for-

mal methods results in a much higher likelihood of

achieving these ideas. While it may be easier to edu-

cate software engineering students in formal methods

within an academic setting, it is less easy to convince

the industry to accept such methods. More research

and case studies are required to minimize industry’s

misconception of formal methods.

There is a rather large volume of literature on for-

mal methods, their applications, and their advan-

tages. In particular, the the September 1990 issue

of IEEE Software, 7 (5), contains a series of read-

able tutorial articles discussing different aspects of

formal methods. These are excellent articles to be

studied in a senior-level software engineering or soft-

ware specification course. The article by Anthony

Hall [4] about the myth of formal methods is partic-

ularly recommended. More technical papers appear

in the complementary issues of the IEEE Computer

and IEEE Transactions on Software Engineering of

the same month.

References

[1]

[2]

[3]

[4]

[5]

J.C. Cherniavsky. Software failures attract con-

gressional attention. Computer Research Review,

2(1):4-5, January 1990.

GPO 052-070-066041. Bugs in the program —

problems in federal government computer software

development and regulation. Superintendent of

Documents; Government Printing Office; Wash-

ington, D. C., 20402, 1989.

D. Gries. Positional statement on the foundation

of software engineering. In G.X. Ritter, editor,

Information Processing 89. Elsevier Science Pub-

lishers, North-Holland, 1989.

A. Hall. Seven myths of formaJ methods. IEEE

Software, 7(5):11–19, September 1990.

D. Ince. An Introduction to Discrete Mathematics

and Formal System Specification. Oxford Univer-

sity Press, 1990.

Acknowledgment

The author is grateful to the anonymous referees for

their comments and corrections.

197

