
Computer Networks 192 (2021) 108128

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

An evaluation of videogame network architecture performance and security
Blake Bryant, Hossein Saiedian ∗

Information and TelecommunicationTechnology Center (ITTC) and Department of Electrical Engineering and Computer Science, University of
Kansas, Lawrence, KS, USA

A R T I C L E I N F O

Keywords:
Network security
Videogames
Videogame networking
Network performance
Videogame security

A B S T R A C T

The recent introduction of higher reward in videogame competitions is expected to motivate unethical players
to pursue opportunities to gain unfair advantages while playing networked videogames. Networked videogames
implement a variety of approaches to attain a balance between reliable data transfer and game performance.
Certain aspects of these network approaches may be exploited by players to gain unfair advantage or degrade
the gaming experience for others. This paper lays the conceptual groundwork for networked videogames
by describing common network architectures that facilitate competitive videogame play. These networking
concepts are then evaluated for susceptibility to potential exploits. Finally, three current gaming titles are
selected as case studies, using the principles established within this paper, to evaluate the effects of client-side
exploits, latency, and state synchronization, on competitive game play.
1. Introduction

A thriving economy of computer-based videogames has existed for
well over four decades. However, a drastic spike in the popularity
of highly competitive multiplayer games has propelled the industry
into a new economic tier, on par with that of traditional spectator
sports. Notable gaming titles, such as Fortnite, Defense of the Ancients
2 (DotA 2) and Counterstrike GO (CSGO), now offer tournament pots
in the tens of millions of dollars [1]. Several content streamers on
the videogame-oriented Twitch steaming service now earn seven figure
salaries, with some boasting net worth in the tens of millions of dollars
[2]. The astronomical rewards offered in such tournaments, or stream
viewership, will naturally motivate unscrupulous individuals to seek
opportunities to exploit the growing esports ecosystem. Within this
context, the networking protocols used to facilitate online multiplayer
games should be evaluated for their feasibility in a semi-trusted or
contested environment.

This paper provides a brief survey of common approaches to net-
working in multiplayer videogames. This includes an overview of the
TCP and UDP protocols and their impact on time sensitive network ap-
plications, such as videogames. This paper also briefly introduces some
of the potential security concerns associated with network videogames,
in the context of manipulating the flow of player control data. Specific
focus is given to the ‘‘state saturation’’ attack, introduced as a novel
technique, within this paper. Three videogame titles are analyzed as
case studies depicting both contemporary examples of the networking
approaches surveyed in this paper, as well as exploitable elements of

∗ Corresponding author.
E-mail address: saiedian@ku.edu (H. Saiedian).

their design that exhibit aspects of security concerns also introduced
in this paper. Additionally, a novel attack, referred to as ‘‘state satura-
tion’’, is introduced as a security concern and demonstrated within the
final case study of the paper.

Empirical evidence is collected through experimentation to measure
game client network traffic generation and validate hypothesis pertain-
ing to the ‘‘state saturation’’ attack. Additionally, anecdotal evidence is
collected through analysis of social media to measure potential effects
of suspected ‘‘state saturation’’ on player satisfaction during gameplay.
This paper concludes with recommendations on modifications to game
network models and protocols to retain the benefits of a technique
referred to as ‘‘animation canceling’’ yet reduce the negative impacts
it has on game performance and player satisfaction.

2. Background

This section provides a brief overview of standard networking ap-
proaches and their suitability for adoption in videogame communi-
cations, as well as current approaches to network protocol design in
videogames.

2.1. Suitability of TCP vs UDP for videogame networking

Compulsory education in computer networking establishes a funda-
mental understanding of two overarching approaches to network proto-
col development: reliable and guaranteed delivery vs best-effort deliv-
ery protocols. The de facto protocol for reliable network data transfer
vailable online 20 April 2021
389-1286/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2021.108128
Received 9 August 2020; Received in revised form 14 April 2021; Accepted 15 Apr
il 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:saiedian@ku.edu
https://doi.org/10.1016/j.comnet.2021.108128
https://doi.org/10.1016/j.comnet.2021.108128
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108128&domain=pdf


Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
is the Transmission Control Protocol (TCP) published in RFC 793 circa
1981. The TCP protocol is extended by several additional RFCs. TCP
related RFCs pertinent to this discussion follow: security improve-
ments (RFC 1948), high-performance tweaks for large bandwidth–delay
product networks (RFC 1323), congestion control (RFC 5681) and
modifications to message acknowledgment options (RFC 2018). The
User Datagram Protocol (UDP), published in RFC 768 circa 1980, is
the primary alternative to the TCP protocol, and merely defines the
absolute minimum amount of data and formatting required to send
messages via internet protocol (IP) networks. Developers of networked
applications are essentially limited to these two options when creating
programs that communicate via the ubiquitous internet protocol (IP).
It is possible to send data across a network without using TCP or
UDP, with programs such as SOCAT; however, such a drastic approach
would not be conducive to the development of cross-platform software
intended for consumption by the general public leveraging commodity
operating systems.

On the surface, TCP may appear to be the logical best choice for
developing a secure and reliable networking protocol for videogames.
It ensures data integrity by retransmitting messages that may have been
lost in transit and provides mechanisms for ensuring all components
of a message are reassembled in the proper order. The protocol im-
plements a framework for addressing bandwidth contention between
multiple hosts on a network resulting in equal share of resources and
protects network infrastructure from being overwhelmed with traffic.
Furthermore, TCP is a ‘‘connection oriented’’ protocol that establishes
a persistent relationship between two communicating parties through
which future messages may be contextualized. All these features are
desirable in a videogame network environment; however, the means
through which these features are implemented results in undesirable
performance degradation for real-time applications that are highly
sensitive to latency. John Carmack, the author of the influential Quake
engine, commented publicly on his challenges in implementing TCP
based communications when developing one of the first internet based
first person shooter titles [3].

Other works have evaluated the suitability of TCP based protocols in
high-performance networks and identified challenges with core compo-
nents of TCP which drastically impact bandwidth utilization or increase
latency, namely the use of the Additive Increase Multiplicative Decrease
(AIMD) approach to congestion control, the means by which congestion
is identified, and the cumulative round trip time (RTT) associated with
the TCP protocol’s dependence on acknowledgment messages [4–8].

In summary, the TCP protocol is unable to tolerate packet loss.
This is a desirable quality in many applications but is not necessary in
certain real-time applications such as networked videogames. Packet
loss under TCP based protocols initiates two intrinsic components of
TCP. First, TCP assumes that all packet loss is indicative of network
congestion and immediately implements congestion avoidance algo-
rithms. There are several variations of these algorithms; however, one
constant is that they all result in an immediate drastic decrease in
bandwidth utilization followed by a much slower bandwidth increase
to return to previous utilization levels. This network oscillation not
only degrades performance in real-time applications, but may also
be exploited to provide unequal bandwidth to different hosts, as was
outlined in Li et al. [7]. The second issue associated with lost packets
is the requirement to resend lost packets after detecting the loss. At
a minimum, this re-transmission will incur an additional round trip
time (RTT) to reach the recipient and have an associated ACK message
routed back to the sender. In practice, the re-transmission penalty
is greater than a single RTT as loss is either detected via a packet
timeout or a total of four ACK messages for the packet sequence number
proceeding the lost packet (the original ACK for the previous packet,
followed by three duplicate ACK messages).

Another limitation of the TCP protocol is its approach to dealing
with modern networks consisting of gigabit or higher capacity links ex-
2

tended over large distances. The TCP protocol contains fields within its
packet headers to indicate the size of buffers between communicating
hosts referred to as ‘‘window size’’. Window size is used to indicate the
amount of data that may be sent between communicating parties before
receiving acknowledgment (ACK) messages and is intended to be used
as a throttling mechanism. The original TCP specification outlined in
RFC 793 used a 16-bit field to indicate window size, meaning hosts
could send at most 64kb of data before receiving an ACK message. RFC
1323 addressed this issue by providing extension options to increase
the window size of TCP up to 1 gigabyte. However, implementation of
RFC 1323 extensions may be inconsistent across operating systems and
networking devices along the path between hosts.

Another limitation of the TCP protocol is its approach to dealing
with modern networks consisting of gigabit or higher capacity links ex-
tended over large distances. The TCP protocol contains fields within its
packet headers to indicate the size of buffers between communicating
hosts referred to as ‘‘window size’’. Window size is used to indicate the
amount of data that may be sent between communicating parties before
receiving acknowledgment (ACK) messages and is intended to be used
as a throttling mechanism. The original TCP specification outlined in
RFC 793 used a 16-bit field to indicate window size, meaning hosts
could send at most 64kb of data before receiving an ACK message. RFC
1323 addressed this issue by providing extension options to increase
the window size of TCP up to 1 gigabyte. However, implementation of
RFC 1323 extensions may be inconsistent across operating systems and
networking devices along the path between hosts.

The final issue with TCP based protocols is that TCP is imple-
mented within a computer operating system at the kernel level. As
such, developers of videogames have little control over which specific
TCP features are implemented or how they are implemented across
various systems. This variation in TCP implementations could result
in complications when attempting to implement deterministic timing
between networked client and server videogaming platforms [9].

In the end, ironically, many of the features of TCP that make it
desirable as a videogame protocol are implemented in a manner which
will drastically inhibit performance. Fiedler’s work indicates that as
little as 200 ms RTT delay and 2% packet loss in a TCP connection
is enough to render a videogame unplayable [9].

What is truly needed is something between the traditional TCP and
UDP models of either guaranteed reliability or no reliability. Unfor-
tunately, it is impossible to decouple desirable components of TCP in
order to tailor them to suit videogame networking. As such, videogame
developers are required to develop UDP based protocols, essentially
from the ground up, in order to implement some TCP-like capabilities
without incurring latency associated with TCP overhead. The primary
means through which this may be accomplished is by accepting packet
loss and adjusting how acknowledgment messages are sent and handled
between hosts.

2.2. General approaches to videogame network protocols

Fiedler’s work provides an overview of the three dominant ap-
proaches toward encoding videogame data to synchronize physics en-
gines between hosts [9]. The primary goal of each of these approaches
is to synchronize representations of the virtual environment between
remote systems participating in the game simulation. The three ap-
proaches are: deterministic lockstep, snapshot interpolation and state
synchronization. Each of these approaches impact the bandwidth re-
quirements for synchronizing physics engines between hosts, as well as
their ability to tolerate network latency.

2.2.1. Deterministic lock-step networking
The deterministic lockstep approach requires the least amount of

data as it merely passes user input instructions to a remote host
running an identical simulation synchronized with the sending hosts.
However, this smaller packet size comes at the expense of an increase

in both server and client side processing. One critical limitation of



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
Fig. 1. UDP-based deterministic lock-step networking approach.

this approach is that the extreme processing demands placed on the
server drastically limits the number of clients that may participate in
networked games. According to Fiedler, the recommended maximum
number of connections is limited to four clients to one server [9]. The
Unreal Engine documentation also cites lack of persistence, lack of
player scalability and lack of frame rate scalability as critical limitations
of this approach [10]. Additionally, this approach requires games to
be constrained to identical platforms due to difficulty in maintaining a
deterministic state between different operating systems, hardware and
compilers. Fig. 1 depicts this approach to implementing reliability via
the unreliable UDP protocol.

The deterministic lock-step approach achieves reliable data trans-
mission by requiring the client to send consecutive packets containing
all unacknowledged user inputs. This effectively communicates the
client packet buffer to the server until it is acknowledged, at which
point, the client buffer is reduced to merely unacknowledged inputs.
However, unlike the function of TCP acknowledgment packets, the
client is not throttled by the lack of server acknowledgments. The
advantage of this approach over TCP is obvious in that the client
may continue to update its buffer and the server without incurring an
additional round trip time (RTT) delay. It is also worth noting that
simulations running on the server must wait until input instructions
are received from the client in order to proceed with the simulation.
This is one of the key differences between this approach and state
synchronization discussed later.

2.2.2. Snapshot interpolation
The snapshot interpolation technique, depicted in Fig. 2, adopts a

slightly different approach and sends a representation of the current
state of the simulation between hosts. Typically, the server sends only
3

Fig. 2. UDP-based snapshot interpolation networking approach.

the objects a client must draw in order to depict a frame represent-
ing the game world, then the client processes user input commands
and sends the newly rendered state of objects previously sent from
the server. This exchange will undoubtedly require more information
than simply replicating user inputs. As such, bandwidth requirements
increase, and games are less tolerant of network latency. Furthermore,
bandwidth requirements with snapshot interpolation are dependent
upon the number of game objects that must be updated making this
a poor choice for simulations with many object interactions.

Snapshot interpolation overcomes the unreliable nature of UDP by
assuming that some packets will occasionally be lost, but gaps in data
may be addressed by mathematically inferring a trend line between the
two states received. For instance, if the recipient receives snapshots
for state 1 and state 3, but not state 2, the recipient can simulate a
transition between the two states received and avoid waiting to receive
state 2.

An unfortunate side effect of this approach is the need to buffer mul-
tiple state snapshots prior to sending packets. This buffering introduces
additional delay on top of network delay and is dependent upon the
simulation framerate in the form of the equation latency=R/B; where
R represents the framerate and B represents the number of packets to be
buffered. Typically, networked games operate on a standard 60 frames
per second refresh rate, meaning a buffer of three snapshots would
incur a delay of 50 ms in addition to the network latency. Fig. 3 depicts
the concept of buffering snapshots in order to prevent data gaps due to
lost packets.

Despite its limitations, snapshot interpolation overcomes the issues
associated with the deterministic lockstep approach, namely head-of-
line blocking waiting on packets to arrive and requirements for strict
control over client and sender hardware/software configurations.

2.2.3. State synchronization
The state synchronization approach effectively builds upon the ad-

vances made from the previous two techniques. Namely, simulations



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
Fig. 3. Snapshot interpolation buffering.
are run on both client and server systems which render simulations in
response to inputs generated on the client and are sent to the server.
However, unlike the deterministic lock-step approach, the server does
not wait for inputs if they do not arrive, but rather predicts what would
happen based on previous inputs and reconciles differences if/when
client inputs arrive. Additionally, the client-side rendering is subject
to modifications based on state updates sent from the server’s repre-
sentation of the game world. However, unlike snapshot interpolation,
wherein the entire game world is sent, only a subset of object updates
must be sent to the client for rendering. Which objects are sent in
updates is based on a priority queue. Fiedler devised a technique known
as a priority accumulator that tracks the priority of objects persistently
between frames and accrues additional priority based on how stale
the object is; meaning objects that have not been sent recently will
naturally move to the front of the queue and ensure they are eventually
sent [9]. Fig. 4 depicts this behavior.

The priority accumulator essentially maintains the status of ob-
jects that must be rendered in each frame whilst applying cumulative
weights to objects that are most impactful on the gaming experience.
For instance, player character objects will have a high priority, pro-
jectiles in shooting games will have the highest priority (even above
player characters), and static objects will have the lowest priority.

The priority accumulator is an effective bandwidth reduction tool in
that it may selectively send only the most important objects, and defer
less critical objects for future updates. This also allows this technique
to adhere to strict bandwidth limitations imposed by the game engine,
potentially to ensure fairness amongst clients.

Also, it is worth noting, that the cumulative nature of the aptly
named priority accumulator ensures that even low priority objects will
be updated eventually, as their previous priority persists and accrues
additive priority between frames until they are sent in a packet.

3. Industrial application of networking approaches

The following section provides examples of videogames that have
implemented the networking approaches introduced in 2.2.

3.1. Deterministic lock-step example — DOOM to starcraft II

The first person shooter DOOM, circa 1994, was based upon a
peer-to-peer networking model implementing the deterministic lock-
step approach [11]. The DOOM network implementation consisted
of multiple hosts running identical software serving as both client
and server systems, with no logical ‘‘authoritative’’ system within the
network. Each peer node would sample user input 35 times a second,
package said input into a data structure called a ‘‘tick’’ and sent ticks
4

to all other peer systems on the network. The simulation could not
progress until all clients had received all ticks from every other peer.

Network latency under this model was addressed by buffering inputs
until all outstanding ticks were received from peers. Though the simu-
lation appeared to be stalled, once the final tick message was received,
multiple buffered ticks could be processed in rapid succession. Unfor-
tunately, as simulation progression was dependent upon tick delivery
to all peer nodes, game responsiveness to user input was directly tied
to RTT delay within the network. This made the quality of game play
highly dependent upon both the number of peers and the reliability of
the underlying network infrastructure.

The synchronous nature of this approach also introduced several
challenges. Pairing players with one another was a complicated task,
as joining an existing match in progress was not possible. Furthermore,
slight variations in client hardware was suspected of causing floating
point drift errors, such as different graphics card manufactures gen-
erating slightly different renderings of game objects. The end result
being that hitboxes and player positioning were not consistent between
different player realities, ultimately degrading the quality of the game
experience.

The peer-to-peer approach was also criticized for being vulnerable
to client-side cheats. Though a client could not modify the collective
state directly, they could alter their perception of reality by modifying
source files on their local game engine. The end result was the ability to
remove visualization inhibitors, such as seeing through walls, or other
obstacles intended to obfuscate player movement [11].

Despite the limitations in this approach, some modern games still
leverage peer-to-peer deterministic lock step approaches. Blizzard’s
Starcraft II real-time-strategy (RTS) offering still leverages a peer-to-
peer architecture; however, Blizzard made slight changes to the routing
architecture to implement an intermediary server to store and forward
packets between peers [12,13]. Despite the introduction of a client–
server implementation, the underlying protocols, packet structure, and
simulation behavior remains a peer-to-peer deterministic approach in
current implementations of the Starcraft II game.

3.2. Snapshot interpolation example — Counterstrike

The first person shooter Counterstrike Global Offensive leverages
the snapshot interpolation approach [14]. An example exchange lever-
aging this model is depicted in Fig. 5. Rather than relay user input
between peers, the Valve architecture relays user input from clients
to a central server which renders the inputs into its representation of
the simulation world. Snapshots of the server representation are redis-
tributed to all clients at a rate determined by configurations specific
to each game. The Counterstrike game operates on a tick rate of 66



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
Fig. 4. Fiedler’s priority accumulator [9]
Fig. 5. Valve multiplayer networking model [15].
simulations per second, while Fig. 5 reflects a slower tick rate of 33
per second.

Comparative analysis of the Valve snapshot approach and Blizzard’s
deterministic lock-step approach indicate that snapshot traffic is prone
5

to higher bandwidth consumption bursts and produces less consistent
traffic patterns [16]. This variation in traffic patterns is expected as
snapshot-based message schemes will produce varying data require-
ments as the state of the simulation world varies. Claypool et al. noticed



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
Fig. 6. Valve snapshot lag compensation [15]. (For clarity, a color version of this
figure is available on the web version of this article).

large variations in Counterstrike traffic following the introduction of
a new player or the virtual death of an existing player object. Addi-
tionally, the lack of client level synchronicity in the Valve network
implementation enabled players to join or leave existing game sessions
in an ad hoc manner. This fluctuation in client membership may have
also attributed to variations in the Counterstrike traffic pattern.

The Valve snapshot implementation broadcasts the world state
amongst all clients participating in a simulation [14]. This results in
all clients maintaining a common representation of the game world,
including objects that should not be known based on a player’s current
virtual perspective. Sharing a common representation of the virtual
world introduces the possibility of client-side hacks to expose data
that should be hidden from players, like those seen in peer-to-peer
architectures. Valve has attempted alleviate the prospect of client-side
exploits by implementing a specialized version of malware detection
via its proprietary Valve Anti-Cheat System (VAC).

The asynchronous nature of the Valve snapshot implementation
also introduces some unique gameplay issues discussed in [11,15]. The
Valve snapshot interpolation technique leverages local prediction on
clients to process input commands prior to receiving state updates from
the authoritative server. This phenomenon is depicted in Fig. 5 as the
difference in tick IDs between the client and server, with the server
operating on more recent snapshot ticks than the client. Fig. 6 depicts
the impact this lag in state processing has on a client.

Fig. 6 depicts the current client’s perspective as red mesh hitboxes
and the server’s state perspective as the sprite of the soldier to the left.
The blue mesh hitbox represents the server’s attempt to ‘‘roll back’’
game time and coordinate the player’s previous input with how it
would have been interpreted when the input was transmitted. Despite
advances in client and server prediction models, it is possible for
measurement errors to result in simulated projectiles ‘‘trailing’’ targets
or potentially missing targets all together.

3.3. State synchronization example — Tribes to fortnite

The multiplayer online game Starsiege Tribes, circa 1998, was one
of the first games to implement the state synchronization approach
[17]. The Tribes networking model was built around three distinct
components depicted in Fig. 7. The simulation layer is responsible
for maintaining the tick rate of the simulation, determining which
objects to update in state messages and conducting client prediction.
The Stream layer is responsible for exchanging datagrams between the
host and server nodes and is responsible for compression, encoding,
and selection of quality of service. The connection layer is responsible
for implementing the different quality of service guarantees determined
by the stream layer, essentially by managing whether packets must be
acknowledged (via the connection manager) or are sent via best effort
6

delivery (through the platform packet module). The stream layer of the
Tribes model is the most pertinent to this paper and will be elaborated
upon further.

The stream layer is comprised of several sub-components called
managers. Each manager is responsible for determining what data
should be inserted into packets to be sent via the connection layer.
These managers are effectively used to establish the priority and means
by which data is transferred and takes the place of the priority accu-
mulator described by Fiedler.

The Ghost Manager is responsible for generating state data based on
object scoping established by simulation layer. Object scoping refers
to the process of determining which subset of world objects should
be selected as ‘‘dynamic’’ elements in the simulation, such as player
characters, or things players can interact with. ‘‘Ghosted’’ objects will
maintain a state matrix representing sub-components that have been
modified since the last state update had been sent via a state mask. A
state mask is essentially a dirty bit approach to identifying changes in
the ghost object properties. Ghost Manager state data is transmitted to
clients similar to how snapshots operated in the snapshot interpolation
approach; however, ghost data only consists of a subset of objects
within the simulated world. Additionally, ghost snapshots are consid-
ered volatile data and only the most recent snapshot will be processed,
meaning reliable delivery is less important than timely delivery.

The Move Manager is responsible for packaging player input data
to be sent to the simulation layer running on the server, similar to
how input was delivered in the deterministic lock-step approach. Input
data is considered the highest priority data and intended to be sent as
soon as possible. However, surprisingly, input data is not sent using
an acknowledgment scheme controlled by the connection manager.
Instead, reliability of input data is achieved by sending input data in
every packet from the client and transmitting each user input into three
consecutive packets and maintaining a sliding window of outstanding
moves. User input instructions are removed from the sliding window
buffer once they have reflected in state updates received via the Ghost
Manager.

The Datablock Manager is responsible for providing guaranteed
delivery of relatively static objects. This may be thought of as the initial
loading time when data stored in environment variables must be passed
to clients in order to properly render the simulation on client machines.

The Tribes approach to establishing a dedicated stream layer is
unique in that it provides the capability to establish an upper bound
on bandwidth. Since the stream layer is responsible for reconciling data
priority scheduling as well as bit packing for transmission, it can send
priority data via available bandwidth and delay, or fragment, transmis-
sion of less critical data across subsequent packets. This property makes
the Tribes state synchronization technique one of the most appealing
approaches from bandwidth and latency perspectives.

Another benefit of the Tribes approach to state synchronization is
that partial state updates distributed via the Ghost Manager effectively
prevents exposure of unintended state data to players via manipulation
of client side binaries.

The popular game Fortnite is based upon the Unreal game engine
which also operates under a state synchronization networking approach
[10]. Many of the same approaches to data exchanges between clients
and servers were preserved in the Unreal engine’s implementation
of this approach, though obviously terminology for concepts were
changed when implemented by a different development team. The
Unreal engine also uses a ‘‘dirty bit’’ scheme to identify subsets of game
objects to be included in state updates sent to clients. However, it is
worth noting that the Unreal engine specifically uses player perspective
to determine object scoping, meaning objects within a player’s view, or
able to effect a player, should be the only things sent to said player
in updates. This approach offers the benefits of reduced bandwidth
overhead in updating unnecessary objects as well as preventing leakage
of other player state data.



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
Fig. 7. Tribes network model components [17].
4. Security concerns with networked videogames

The background section of this paper described the unique net-
working challenges and approaches videogame developers apply to
delivering simulated experiences. This section evaluates potential ap-
proaches attackers may use to exploit vulnerabilities in networked
videogame implementations.

4.1. Client-side exploits

Documentation associated with each of the example implemen-
tations of the deterministic lock-step and state synchronization ap-
proaches cited concerns with unethical players attempting to modify
client-side binaries to gain an unfair advantage during game play
[3,11,15,18]. One of the critical weaknesses of these two approaches
is that they rely on broadcasting complete state data to all clients. As
such, unethical players may modify their systems to remove intended
restrictions on client interpretation of state data.

For example, the real time strategy game Starcraft II, and other
similar titles, implement a ‘‘fog of war’’ effect, wherein players may
only see a certain portion of the map that would be visible to units
within their control. However, client-side modifications to the way in
which the player’s version of the game renders state data could result
in disclosure of the entire map, giving one player a marked advan-
tage over others. First-person-shooter client-side exploits could include
aimbots or trigger bots that generate ‘‘hit’’ notifications on behalf of a
player once they are within range of a competitor’s character.

4.2. Timing exploits

Snapshot interpolation and state synchronization approaches imple-
ment client-side prediction models and lag compensating techniques
that allow for the queuing of player inputs and replaying of past
server-side state models to detect ‘‘would be’’ collisions from delayed
player input [10,14]. This feature may be exploited by modifying the
timestamp associated with player input updates, or merely adjusting
the client clock time during play. This was specifically cited as a
concern within the Epic Unreal Engine networking documentation [10].
Unfortunately, as all of the networking approaches described in this
paper rely on best effort delivery, precise timing is impossible due to
the possibility of lost packets.
7

4.3. State saturation

The state synchronization approach may be susceptible to a novel
exploit presented in this paper known as ‘‘state saturation’’. State
saturation refers to the process of intentionally stimulating an exces-
sive amount of objects to be rendered within the scope of another
player’s simulation. As state synchronization approaches operate under
the premise that only a portion of simulation world objects must be
rendered by clients, and therefore consume bandwidth in periodic
updates, and further more objects are determined to be in scope based
on the visual perspective of a player’s virtual character, an unethical
player could attempt to force a disproportionately larger number of
objects to be generated on a victims machine than on their own.

A notional scenario wherein this could occur would be something
akin to causing an environmental avalanche, or detonating several
graphically intensive explosions within a victim’s view, while simul-
taneously out of the attackers view. In theory, the rapid introduction
of new objects that must be rendered by the victim would adversely
effect priority scheduling for the victim’s state updates and either
exhaust their bandwidth available to process moves, or inhibit their
ability to render the attacker’s actions in a timely manner, effectively
reducing their available reaction time. This could give one player a
marked advantage over another during a competition, but would be
highly dependent upon the game’s state scoping model and potentially
simulation specific environmental factors.

4.4. Volumetric denial of service

All network based game models are susceptible to bandwidth ex-
haustion associated with volumetric denial of service attacks. However,
surprisingly, the oldest networking approach, using strict determinism,
may be the best approach for thwarting such attacks. Deterministic
lock-step networking approaches force the simulation to halt and await
input from each client prior to progressing. An attacker attempting
to exhaust a victim’s bandwidth to introduce lag into their simula-
tion could unintentionally introduce lag into their own experience as
well. However, the effectiveness of this technique will vary between
game implementations, depending on whether the networking model
enforces strict determinism or allows for input loss.

5. Case studies

The following section of this paper provides contemporary exam-
ples of videogames using networking approaches described previously
within Section 3, combined with potentially exploitable security con-
cerns described in Section 4. Each of these examples depict scenarios



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
where players familiar with the underlying network model, and ex-
ploitable features, may leverage both to gain unfair advantage during
game play.

5.1. Case study I- risk of rain 2 - client-side exploitation

Risk of Rain 2 is a first-person shooter rogue-like game designed to
support up to four players in simultaneous cooperative gameplay. The
primary objective in the game is to discover a special teleporter in each
level that unlocks a boss fight and leads to a series of new level maps.
Waves of procedurally generated adversaries, of increasing power and
number, appear to pose challenges to players during their search for the
teleporter. Additionally, players may find several randomly generated
power-up objects that improve the power and/or behavior of their
characters during an attempt to beat the game. If all player characters
die, then the game restarts and all powers gained during a previous
attempt are lost. Variability in powers acquired by players between
game runs is the main draw for the player base of this game.

A short-lived feature introduced into game play between August 04
to August 14 2020, involved the combination of two power-up items,
one called ‘‘forgive me please’’ and the other called the ‘‘soulbound
catalyst’’ [19]. The ‘‘forgive me please’’ power-up implemented an
ability that immediately triggers any effects that would normally occur
once an enemy was killed; while the ‘‘soulbound catalyst’’ reduced the
cooldown timer of an item once something was killed. Surprisingly, the
‘‘forgive me please’’ item was considered as both an usable item and a
kill-able object.

Conditions suitable for rapid successive uses of the ‘‘forgive me
please’’ item were easily attained by killing an enemy, thus imple-
menting the ‘‘soulbound catalyst’’ cooldown reduction, then using the
‘‘forgive me please’’ item, which itself counted as a kill and triggered
another ‘‘soulbound catalyst’’ cooldown reduction, allowing for an
immediate reapplication of the ‘‘forgive me please’’ item. The end
result of combining these two objects was that the intended throttling
mechanism, e.g. a cooldown timer, of the ‘‘forgive me please’’ item
would approach zero after it was used two consecutive times [20].

To further compound this bug, a third power-up item called ‘‘gesture
of the drowned’’ forces usable items to automatically activate once their
cooldown timer expires. As previously demonstrated, the cooldown
timer of the ‘‘forgive me please’’ item would effectively reach zero
almost instantaneously when combined with the ‘‘soulbound catalyst’’
item. Therefore, players could easily initiate a chain reaction resulting
in the destruction of all enemies currently in existence.

The cooldown timer was originally intended to prevent players
from using items in rapid succession, which this combination violated.
Furthermore, potential on-kill effects that could be coupled with the
‘‘forgive me please’’ item included damage producing explosive effects
or player healing effects, both of which generated visual objects to
be drawn on player’s screens. The rapid generation of visual objects
resulted in extreme degradation of system performance, to the point
of either reducing game frame rates to unacceptable levels or causing
players to be booted from the game due to system crashes.

The Risk of Rain 2 peer-to-peer network model implemented a
deterministic lock step approach. Therefore, drastic reduction of one
player’s game performance resulted in uniform performance reductions
across all players, as each player depended on updates from all remain-
ing players before progressing through the simulation. Additionally,
the nature of the game focused on cooperative, rather than adversarial
gameplay. As such, the performance impacts of the ‘‘forgive me please’’
bug did not introduce a competitive advantage per say, other than al-
lowing a small population of players to beat the final boss of the game,
or garner speed run achievements, with a trivial level of difficulty.

The client-side exploit illustrated in this example demonstrates the
potential negative effects of bypassing client-side throttling mecha-
nisms, e.g. cooldown timers, and generating an excessive amount of
8

objects for clients to render. The ability to cause network lag by
overwhelming a single node is a hallmark sign of the deterministic lock-
step networking approach; however, the ability to bypass client-side
throttling mechanisms may also be detrimental to other networking
approaches, as will be illustrated by case study III in Section 5.3 of
this paper.

5.2. Case study II — dead by daylight — timing exploitation

Dead by Daylight is a player versus player survival horror video
game designed to support five players. The viewpoint of the game is
a hybrid first-person and third-person perspective, split between two
competing teams. One team consists of a sole player, known as the
‘‘killer’’, while the other team is comprised of four players known
as ‘‘survivors’’. The ‘‘killer’’ team views the game from a first-person
perspective, while the ‘‘survivors’’ view the game from a third-person
perspective.

The gameplay is competitive in nature and requires the sole ‘‘killer’’
to eliminate each of the ‘‘survivors’’, while ‘‘survivors’’ attempt to solve
puzzles toward the goal of eventually escaping from a maze-like level.
Players on both teams may perform actions that improve their score and
generate in-game currency which they may use to purchase desirable
upgrades.

From a networking perspective, Dead by Daylight implements a
state synchronization-based hybrid peer-to-peer and client–server
model. Players establish ad-hoc client and server relationships, with
one player randomly serving as the authoritative server, while all other
players act as clients. The player that is selected as the authoritative
server is afforded a distinct advantage over other players in that latency
mitigation techniques defer to the server to dispute differences between
its predicted simulation state and updates provided by other players.

Savvy players have discovered that intentionally delaying the re-
ceipt of update messages from ‘‘client’’ players allow for the ‘‘server’’
player to manipulate the game state in strategically significant ways
during game play. The practice of manipulating network connectivity
has become so commonplace that players have created devices known
as ‘‘lag switches’’ that include physical toggles designed to serve and
restore physical network connections at will [21].

For an example as to how this may benefit a player, if a ‘‘killer’’
player’s system is acting as the game server and they identify a ‘‘sur-
vivor’’ player is near, they may temporarily disable their network
connection, then move to the ‘‘survivor’’ player and defeat them before
reestablishing their network connection. As the ‘‘killer’’ player system
served to maintain the authoritative game state, any actions attempted
to be transmitted in updates by the ‘‘survivor’’ character to evade or
counter the ‘‘killer’s’’ actions would be discarded. The end result is the
victim ‘‘survivor’’ player merely receives an update message indicating
their character was killed, from what appears to be a teleporting
‘‘killer’’.

Likewise, a ‘‘survivor’’ player, acting as the authoritative server,
may move to one of the necessary puzzle objects required to win
the challenge, start solving the puzzle, then disable their network
connection and move away from the puzzle object. Once the ‘‘survivor’’
reinstates their network connection, their current position, which is
now no longer stationary in front of the puzzle object, will update
all client systems, creating the appearance that the ‘‘survivor’’ tele-
ported. A ‘‘killer’’ player observing this would see a ‘‘survivor’’ instantly
teleporting across the screen. A savvy ‘‘survivor’’ player could maxi-
mize this technique by strategically ‘‘teleporting’’ between objects that
obscure a ‘‘killer’s’’ view.

The ability to control client access to the authoritative server was
trivial to attain in this example; however, despite the ease with which
this exploit may be conducted, this scenario provides insight to the po-
tential dangers of preventing select game clients from providing timely
updates to communal authoritative severs. The ability to delay player
update messages sent to the authoritative server is a key component
of the exploit exhibited by case study III in Section 5.3 of this paper.
Specifically, the ability to delay transmission of select client updates
being sent to the authoritative game server may afford an asymmetric

competitive advantage to players controlling network traffic flow.



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
5.3. Case study III — the elder scrolls online — state saturation

The Elder Scrolls Online is a AAA massive multiplayer online role-
playing game which claims to have accrued more than 15 million
players between its launch in 2014 and January of 2020 [22]. The
Elder Scrolls Online caters to multiple audiences, ranging from players
who are drawn to the social aspect of an online community, to players
who are diehard competitors interested in player-versus-player (PVP)
combat or achieving leader board status in player-versus-environment
(PVE) content. This case study focuses primarily on players who ascribe
to the competitive category. However, the social element of The Elder
Scrolls Online’s community provided a wealth of social media data via
comments posted to the game’s official message forum.

5.3.1. The elder scrolls online network model
Though the exact innerworkings of The Elder Scrolls Online network

communication layer is unknown, Zenimax Online Systems publicly
stated that early development of the game made use of the publicly
available game engine known as the HeroEngine platform [23]. The
official HeroEngine documentation outlines the inter server commu-
nication model used to send updates between its component servers
[24]. Game client information is replicated to area servers which serve
as load balancers for communications to the master game server. As
players’ characters traverse the game world, their character model in-
formation is replicated between area servers and handoff is performed
during a brief loading screen presented to the game client and player.

HeroEngine documentation indicates that bandwidth optimization
techniques, similar to those described in Fiedler’s state synchronization
approach, are employed to decrease the size of each replication mes-
sage sent between game clients as well as between area proxy servers
and the master game server. Area servers track player character posi-
tion information to be implemented as a factor in determining spatial
awareness and determining object priority for replication. Objects that
are further away from a player character object will have a lower
priority in replication and may be throttled to decrease replication
bandwidth. Furthermore, replication messages are optimized with bit
packing so only byte streams are sent between the client and servers
with special bit offsets mapped to data fields in lookup tables on game
servers. This drastically decreases bandwidth consumption but makes
reverse engineering of the protocol problematic.

The bandwidth optimization techniques appear to be effective in
setting hard limits on player client communication rates. Client data
rates are limited to the maximum amount of information the client
may communicate within a one second burst, not to exceed 40,960
bytes. Furthermore, the size of individual replication messages may
not exceed 4096 bytes. This indicates that only 10 maximum size
replication messages may be sent between the game client and the game
servers in a single second.

Zenimax Online Systems may have implemented a custom game
engine between 2012 and 2014, the period between their leasing of the
HeroEngine and the release of The Elder Scrolls Online game, however
analysis of pcap data collected via Wireshark indicates there are several
similarities between the Zenimax Online Systems game engine and the
HeroEngine. The Zenimax Online Systems engine implemented in The
Elder Scrolls Online appears to implement several different servers that
the game client communicates with, as indicated by the variety of IP
addresses contained within their communication. Furthermore, these IP
addresses change when a player’s character transitions between differ-
ent areas of the game. Additionally, the number of update messages
sent between the client and the server increase in proportion to the
number of dynamic game objects (such as other player characters)
within proximity to the current game client-controlled character. The
game engine used in The Elder Scrolls Online also makes exclusive use
9

of the TCP protocol, like the HeroEngine.
5.3.2. Analysis of social media data
The Elder Scrolls Online exhibits a healthy social community of

players who host content on private websites or stream content via
outlets such as Twitch or Mixer, all of which benefit from ad revenue
associated with viewership. Actual subscriber numbers are not known
to the public; however, active player counts may be extracted from
statistics contained within the Steam content delivery service. Steam-
charts.com reports concurrent player count typically fluctuates between
20,000 to 30,000 players online at a given time, with a peak volume
of 49,000 concurrent players [25].

A web scraping program was developed to gather data from the offi-
cial user forums and support traditional SQL based relational queries to
draw inferences from forum posts [26]. A total of 3.2 million messages,
representing 164,000 distinct conversations, were analyzed. References
to player action priority or mentions of a client-side exploit were of
particular interest for this study.

Analysis of social media data indicates the Elder Scrolls Online
fosters an active and vocal competitive player-versus-player (PVP)
community. 6.75% of all forum topics analyzed were dedicated to
discussion of PVP gameplay and 35.2% of all discussion topics con-
taining at least one message referring to PVP activities. 34.03% of
discussions contain a reference to game fairness, balance, or relative
difficulty adjustments for player characters. The player community also
comment on tactics or techniques used to improve performance within
the game indicated by 15.6% of discussion topics containing at least
one reference to the damage-per-second (DPS) statistic used to measure
player performance within the game. The community also comments
on the game’s performance, with 3.2% of discussions referencing game
performance or network lag.

DPS is often determined through skillful execution of player actions
within an optimal sequence, referred to as a parse or rotation. Refer-
ences to this prioritized action sequence occurs in 6.2% of discussions,
and a concept known as ‘‘animation canceling’’, which will be expanded
upon later in this paper, occurs in 3.98% of discussions.

Analysis of message composition for specific topics pertaining to
DPS performance indicates that ‘‘rotation’’ or ‘‘parse’’ appears in
16.79% of messages that also contain the term ‘‘DPS’’. Furthermore,
10.96% of messages that reference ‘‘parse’’ or ‘‘rotation’’ also reference
animation canceling. Interestingly, 9.77% of topics pertaining to anima-
tion canceling also contain at least one reference to ‘‘bugs’’ in the Elder
Scrolls code. Forum discussions such as these ultimately exposed the
presence of exploitable features within The Elder Scrolls Online game
client that may be used by players to bypass player input throttling
mechanisms covered in the following section of this paper.

5.3.3. Exploiting client side validation — animation canceling and weaving
The previous section of this paper introduced references to the

terms ‘‘animation canceling’’ and ‘‘weaving’’ in the context of an exploit
within The Elder Scrolls Online game. Despite the low percentage of
message volume within the forums dedicated to these topics, many
expert and competitive players in The Elder Scrolls Online community
laud this technique as one of the most important elements of high-
performance game play. Unfortunately, Zenimax Online Systems has
not released an official statement explaining how their network code
and client-side validation operate in concert. There are some clues
hidden within the developer patch notes, but there are also several
references and explanations provided by the player community.

One of the earliest references to the concept of animation canceling,
within the official Elder Scrolls Online forums, dates back to May
2015 [27], which in itself references a quoted response from the
game developer in 2014 stating that ‘‘[animation canceling is] not
exactly intended, but not an exploit. It is one of those things we did
not really expect’’. An even earlier reference to animation canceling
may be found within the web-based guides developed by a prominent
YouTuber named Deltia, who also hosts the website Deltia’s Gaming.

Deltia boasts over 116,000 subscribers to their YouTube channel, and



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
Fig. 8. Elder scrolls online player input processing.
Fig. 9. Scenario 1: Elder scrolls online intended input throttling behavior.
over 85,000 views of their animation canceling video [28]. Deltia’s
guide on animation canceling was released in October of 2014, just
six months after the release of The Elder Scrolls Online in April of
2014. Another popular authority on competitive gameplay with the
Elder Scrolls Online community, who goes by the name of Alcast,
published a recent animation canceling guide in August of 2019 on
his private webpage [29]. Additionally, several YouTube personalities
regularly post periodic videos of their character’s damage potential
between different patch versions of the Elder Scrolls Online game.
These videos provide objective data points for comparing relative per-
formance impacts that developer modifications introduce on gameplay
as the software continues to evolve. One such YouTube personality,
who goes by the name of Arzyel, claims that all of their performance
evaluations make heavy use of animation canceling, and even links
viewers to a video explaining how to perform animation canceling [30].

As stated previously, there are no official documents provided by
Zenimax Online Systems that outline the actual user input processing
design implemented within their game client. However, user feed-
back and community developed instructional material, such as those
referenced in the previous paragraph, provided insight of user input
processing that inspired the development of Figs. 8 through 12. Fig. 8
depicts the order of operations conducted when processing player
input. First, the player input is received by the client and assessed
to be associated with one of several types of actions. Seven types of
actions are depicted within the figure, each associated with a different
player-initiated input. Some forum posts indicate that there may be
10
additional actions, not associated with user input, such as procedurally
generated effects based upon chance. However, the model depicted in
this paper is specifically limited to player provided input as this is
critical to evaluating the competitive nature of the exploit. Procedurally
generated effects are assumed to be attributed to one of these seven
inputs for simplicity. The third step in the player input processing
model entails three simultaneous actions initiated after user input
has been validated and accepted by the client. These three actions
are, playing an animation sequence of the accepted input, initiating a
‘‘global cooldown’’ timer, and sending an update of actions performed
to the game server. The final step in this model is the acceptance of
new input from the player.

It is important to note that each of these seven possible user input
types are assigned a different level of priority, which will prove to be
an important factor when discussing input throttling. Fig. 9 reflects the
intended throttling mechanism to be used for player provided input,
which shall be referred to as ’scenario 1’. If the player attempts to
submit additional inputs of the same type, and therefore same priority,
these additional inputs will not be accepted until all actions described
in the preceding paragraph have been completed, which occurs at time
𝑇4 in Fig. 9. Note that if a player repeatedly attempts to submit multiple
consecutive actions of the same type prior to completion of the steps
outlined in the previous paragraph, then the input will be rejected and
not processed by the game engine.

Another scenario exists, however, wherein a player begins to ini-
tiate an action, but then chooses to react to another player or other



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
Fig. 10. Scenario 2: Elder scrolls online intended interrupt behavior.
Fig. 11. Scenario 3: Elder scrolls online unintended interrupt behavior.
environmental stimuli within the game. In these situations, the de-
veloper chose to allow for interrupts to override the original input
processing paradigm, which previously entailed strict delays of user
input. Interrupts occur when the user enters an input command of
a different type than the currently processed command. The most
frequent example of this behavior is when a player initiates an attack
against another player, but then chooses to initiate a block command
to defend against incoming damage. Fig. 10 represents this behavior,
wherein a player initially submitted input for a ‘‘light attack’’ command
at time 𝑇0, followed by a ‘‘block’’ command at time 𝑇1. The block
command is associated with a higher priority than the previous ‘‘light
11
attack’’ command being processed, and results in an additional input
being processed.

Processing the block command initiates an additional update being
sent to the game server and requires a new animation sequence to
be rendered, thus canceling the in-progress animation sequence of the
previous command. Note, even though the block command effectively
canceled the animation associated with the previous ‘‘light attack’’ in-
put, there may still exit a global cooldown timer prohibiting additional
user input of this type, as is depicted by the user input being rejected
at time 𝑇2.

It is important to note that the actual global cooldown timer for
an action may be shorter than the animation sequence rendered by the



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
Fig. 12. Scenario 4: Elder scrolls online unintended throttling behavior.
client. This is because some moves of the same type may have different
animations to add variety to the game experience. These variations in
animation time may inhibit player actions as they wait for animations
to finish prior to processing the next input, as depicted by the model
described in Figs. 8 and 9. However, note that at time 𝑇3 in scenario
2, described by Fig. 10, the block command effectively canceled the
animation of the previous light attack, and its own animation concluded
prior to the beginning of time 𝑇3. This means that the user may
effectively enter a new ‘‘light attack’’ command at time 𝑇3 that will
be processed by the game client. The introduction of a second ‘‘light
attack’’ command at time 𝑇3 indicates the conclusion of a two ‘‘light
attack’’ sequence in one less time period than the previously depicted
model; therefore, implementing animation canceling in this manner
resulted in a 20% increase in light attack frequency.

The ability for a player to sneak in an additional attack in one
out of five input cycles by injecting the occasional block command
might not have been what the developer of The Elder Scrolls On-
line intended; however, it also will not necessarily make one player
drastically outperform another. That is, unless there was a way to
sneak even more actions into the input cycle. Fortunately, for highly
competitive players, there is. Fig. 11 depicts the behavior that the
game developer admitted was unintended and that is lauded by players
as being vital to outperforming their competitors. The key difference
depicted in Fig. 11, and what shall be referred to as ’scenario 3’, is
the introduction of a different type of attack, referred to as a ‘‘skill’’
command, as an interrupt, rather than a block command used in the
’scenario 2’ depicted in Fig. 10. ‘‘Skill’’ commands may be used to
implement various effects in the game but are generally reserved for the
highest damage scoring actions. Therefore, implementing the highest
number of ‘‘skill’’ commands within the shortest period will result in
the best game performance.

Scenario 3, depicted in Fig. 11, is initiated with a ‘‘light attack’’
command at time 𝑇0, like scenarios 1 and 2 depicted in Figs. 9 and
10 respectively. However, a ‘‘skill’’ command is introduced at time
𝑇1, which now cancels the animation of the command entered at time
𝑇0, issues a new server update to initiate the skill effect, and initiates
a global cooldown for future ‘‘skill’’ commands. Note, at time 𝑇2,
attempts to introduce another ‘‘light attack’’ command will be rejected
due to the global cooldown initiated at time 𝑇 ; however, a ‘‘light
12

0

attack’’ command will be accepted at time 𝑇3 and effectively cancel the
animation of the ‘‘skill’’ command introduced at time 𝑇1. This order of
commands introduces two ‘‘light attack’’ and two ‘‘skill’’ commands in
the same amount of time that just two ‘‘light attack’’ commands would
have been processed under ’scenario 1’, the intended throttling model.
Scenario 3, described in this paragraph, represents the most common
application of animation canceling implemented by the Elder Scrolls
Online community.

There is however at least one more scenario, as is depicted in
Fig. 12. This is the scenario where player input is processed dur-
ing every possible input cycle and is most likely to occur during
player-versus-player (PVP) content. ‘‘Light attack’’ and ‘‘skill’’ com-
mand weaving, depicted in Fig. 11, encompass the most efficient input
pattern to produce high damage-per-second (DPS) scores, and therefore
is the most heavily used pattern in player-versus-environment (PVE)
content. However, defensive commands, such as ‘‘blocking’’, ‘‘bashing’’,
and ‘‘dodge rolling’’ may also be employed to counter environmental
obstacles or other player attacks. Like the pattern described in the
previous paragraph associated with Fig. 11, ‘‘light attack’’ and ‘‘skill’’
commands are interwoven to optimize damage output. However, rather
than omit a ‘‘light attack’’ command, or issue a rejected ‘‘light attack’’
command, the player may introduce a defensive maneuver, such as
‘‘block’’ during times 𝑇2 and 𝑇5 in Fig. 12. This final scenario repre-
sents a near constant flood of user input messages being processed by
the game client and sent forward to the game server for additional
processing. Unfortunately, the Elder Scrolls Online does not appear to
have been designed for dealing with the drastic spikes in network traffic
that may appear as a result of this fourth scenario, resulting in drastic
variations in both the number of frames per second rendered on the
game client and the average response time between client and server
traffic from increased network load. Fluctuations in frames per second
or network responsiveness both heavily impact the quality of the user
experience within the game.

5.3.4. Improving player performance through animation canceling
The Elder Scrolls Online community represents all walks of life.

Players are often helpful to one another within the official forums, and
many have published guides for assisting new players in navigating
the nuances of the game. Some players have even gone as far as



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
to develop custom applications that may be integrated within the
Elder Scrolls Online game to increase functionality. One such addon
is called ‘‘Combat Metrics’’ and may be used by the player community
to generate objective measurements of their damage potential within
the game [31]. The Combat Metrics addon is used heavily within the
community to evaluate a player’s performance potential and therefore
standing within the community, which may also influence their ability
to participate in game content with other players.

Alcast’s animation canceling guide makes use of this add on when
comparing character performance without using animation canceling
and performance while using animation canceling. The method em-
ployed by Alcast mirrors the technique described in ‘scenario 3’ of
the preceding section and illustrated in Fig. 11. Alcast claims that
employing animation canceling techniques resulted in an damage-per-
second (DPS) increase from 70,000 points to 107,000 points, with
no other changes to the character design. This means that animation
canceling could potentially result in a 50% increase in performance
potential for an experienced player.

5.3.5. Animation canceling impact on network performance
The Wireshark protocol analyzer software was used to capture

network packets during game play of the Elder Scrolls Online and
verify the type of network protocols used. Analysis of captured traffic
indicates The Elder Scrolls Online makes use of TCP based protocols
exclusively. Overreliance on the TCP protocol to handle all client and
server communication within the Elder Scrolls Online could be partially
responsible for the challenges Zenimax Online Systems is facing in
improving the network performance of their game.

Traffic analysis also revealed that The Elder Scrolls Online game
is divided into separate ‘‘zones’’, like how a state may segregate its
territories into separate counties and cities. Each of these zones appears
to send network traffic from a different IP address indicating that they
are likely associated with separate servers processing client requests.

Additional Wireshark packet captures were collected to measure
variations in network traffic volume due to player actions in the game.
Comparisons between player driven input were conducted within a
player character ‘‘housing’’ instance, where no other player characters
would be sending commands processed by the server. The Wireshark
packet capture indicated that the player housing instance was associ-
ated with a separate IP address than other zones with higher player
counts, adding credibility to the hypothesis that data collected within
the housing instance would reflect a controlled environment.

Player actions replicating scenarios 1, 3, and 4 were monitored via
the Wireshark packet capture program for approximately 30 s. The 30 s
duration was chosen as in game resourcing mechanisms, such as virtual
character fatigue, prevent sustained high rates of action beyond 30 s.
The intent of these tests was to measure the potential for peak burst
activity in the worst-case scenario. A Logitech G600 programmable
mouse was used to store macros of input commands associated with
each scenario.

Scenario 1 involved a persistent series of ‘‘light attack’’ actions
initiated by a persistent loop of: left mouse click, followed by a 50
millisecond delay, followed by a left mouse release, followed by a 50
millisecond delay; resulting in approximately 10 mouse clicks per sec-
ond sent to the game client. Scenario 2 was not modeled as it represents
reactive player behavior which is expected to occur at random times.

Scenario 3 involved a more complex macro pattern, as merely
attempting to loop between alternating ‘‘light attack’’ and ‘‘skill’’ com-
mands resulted in inconsistent input blocks submitted by the client.
Ideally, a ‘‘light attack’’ input is entered at the beginning of the client
input capture phase, followed by a ‘‘skill’’ input command. If that order
is reversed, the higher priority ‘‘skill’’ command may actually impede
the ‘‘light attack’’, as ‘‘light attacks’’ cannot ‘‘cancel’’ ‘‘skills;’’ therefore,
incurring unintended throttling behavior. To address this, additional
delays were introduced into the macro logic. The final macro logic for
13

’scenario 2’ is: left mouse click, followed by a 50 millisecond delay,
followed by the left mouse release, followed by a 50 millisecond delay,
followed by ‘‘skill’’ command, followed by 100 millisecond delay, fol-
lowed by left mouse click, followed by 50 millisecond delay, followed
by left mouse release, followed by 50 millisecond delay. This pattern
ensures that a ‘‘light attack’’ and ‘‘skill’’ weave pattern will complete
within 350 ms, fitting two weave attempts nicely within the 1 s client
input refresh rate, and increasing the likelihood that ‘‘light attack’’
commands, represented by left mouse clicks, will be the first command
entered in subsequent input phases. Even though two weave attempts
occur within each input cycle, only the first sequence will be processed
due to global cooldowns enforced by the client. The macro repeats in
350 millisecond bursts, rather than clean fractions of a second in order
to account for the possibility of input drift incurred from either network
lag or initiating the macro sequence midway through a client refresh
cycle.

Scenario 4 involved the incorporation of a ‘‘block’’ command, which
retains the highest priority and will effectively interrupt any other
command. The macro logic was a very straight forward input loop with
50 millisecond delays between ‘‘light attack’’, ‘‘skill’’ and ‘‘block’’ com-
mands, since there is no risk of any of the input commands impeding
each other.

Table 1 depicts the number of network packets sent and received
during player input testing. While a player’s character is idle, the game
client sends a single packet approximately every four seconds and
receives a packet every five seconds. This may be a heartbeat used to
determine if a player is still active before ejecting them from the game.
Player actions such as walking or ‘‘sprinting’’ generate a consistent
input message to the client and result in an average of 4.14 packets
sent and 4.14 packets received per second. The constant input stream
generated by moving the character may be used as a baseline for the
number of packets the game client expects to process.

Scenario 1, wherein a player clicks their mouse as rapidly as pos-
sible to generate ‘‘light attack’’ actions, generates an average of 4.2
packets sent and 4.89 packets received per second. This is a negligible
1.4% increase in packets sent over the baseline and an 18.1% increase
in packets received. The increase in packets received above the base-
line may be due to additional ‘‘damage’’ scores being generated from
random effects associated with ‘‘light attack’’ actions.

Scenario 3, wherein the player initiates a ‘‘light attack’’ action
rapidly followed by a ‘‘skill’’ action to cancel the animation of the ‘‘light
attack’’, generates an average of 4.96 packets sent and 5.66 packets
received per second. This is a 19.81% increase in packets sent and
36.71% increase in packets received over the baseline.

Scenario 4, wherein the player initiates a ‘‘light attack’’ action,
followed by a ‘‘skill’’ action, followed by a ‘‘block’’ action, each in rapid
succession, generates an average of 11.4 packets sent and 10.9 packets
received per second. This is a 175.36% increase in packets sent and
163.29% increase in packets received over the baseline. This is also the
first scenario where the number of packets sent is less than the number
of packets received. The decreased ratio of messages received to sent
may be due to the fact that the ‘‘block’’ action did not generate chance
bonus actions like the ‘‘light attack’’ and ‘‘skill’’ actions may, resulting
in overall fewer update responses required from the game server.

These tests appear to validate the hypothesis that animation can-
celing increases the amount of network traffic generated between the
client and server. Merely clicking the left mouse button in rapid succes-
sion did not generate a flood of network messages, indicating that client
input validation has been optimized to reduce superfluous player in-
puts. Additionally, the modest increase in message traffic from scenario
3 activity, associated with the most popular ‘‘animation canceling’’
technique, also appears to indicate the developer has attempted to
optimize network response to this behavior. However, the drastic in-
crease in network traffic from scenario 4, which involves integrating
defensive interrupts such as ‘‘block’’ actions within the input stream,
indicates that the game is susceptible to extreme network broadcast

storms when players replicate this behavior. This may explain why



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
Table 1
Case study client and server message volume.

Action #packets sent #packets recvd Time (s) avg packets
sent/s

avg packets
recvd/s

% sent above
baseline

% sent above
baseline

Idle 8 6 32.11 0.25 0.19
Walking 144 144 34.79 4.14 4.14
Sprinting 132 133 32.15 4.11 4.14
Scenario 1 142 165 33.77 4.2 4.89 1.45 18.12
Scenario 3 171 195 34.48 4.96 5.66 19.81 36.71
Scenario 4 366 350 32.11 11.4 10.9 175.36 163.29
players who prefer player-versus-player (PVP) type activities frequently
complain about network performance or lag. It appears Zenimax Online
Systems may also be aware of this phenomenon, as a software patch
to client released on May 26th 2020 included optimizations to the
way ‘‘block’’ actions were processed in an attempt to curtail ‘‘block
canceling’’ behavior [26].

5.3.6. Animation canceling impact on gameplay
As alluded to in the previous sections, implementing animation

canceling techniques may increase the number of messages that are sent
to, and therefore must be processed by, the game server. Analysis of
official forum discussions indicates that player concerns pertaining to
network performance are reflected within 35%–60% of discussions that
deal with competitive PVE or PVP game play. PVP game play, which
is expected to have a larger negative impact on network performance
due to its use of scenario 4 in the previous section, exhibits a higher
percentage of complaints about network performance within forum
discussions than PVE.

Discussions pertaining to player-versus-environment (PVE) game
play are expected to contain references to the terms ‘‘dungeon’’, or
‘‘trial’’. This type of game play is limited to ‘‘instanced’’ small group
environments within the Elder Scrolls Online game with either four or
twelve players at a time participating in a logically separated portion
of the game, potentially even hosted on a separate server than the
‘‘base’’ game. ‘‘Dungeon’’ instances are limited to four players at a
time and are open to players of all skill levels and experience with the
game. 40% of discussions pertaining to dungeons on the forums contain
at least one reference to complaints of network performance. ‘‘Trial’’
instances are larger than ‘‘dungeon’’ instances and allow for twelve
players to participate in more difficult environmental challenges. Trials
are limited to only players who have attained high level characters and
therefore are expected to be more experienced at the game. ‘‘Trials’’
participants would be expected to be more familiar with animation can-
celing techniques and therefore generate a larger amount of network
traffic. In fact, it is common practice for elite player groups to prohibit
players who are not accustomed to performing animation canceling
from participating in trials groups. However, surprisingly, discussions
pertaining to trials only contain references to negative network perfor-
mance in 36% of discussions, which is a 7% decrease from references
in dungeon discussions. This may indicate that game servers dedicated
to trials content are better suited to handle the increased load, or
that more experienced players focus less on what they cannot control,
e.g. the amount of latency within the network infrastructure.

Discussions pertaining to player-versus-player (PVP) game play are
expected to contain references to the terms ‘‘battle ground’’ or ‘‘cy-
rodiil’’. ‘‘Battle grounds’’, like dungeons, are small instanced environ-
ments hosted on a separate server from the base game and limited
to twelve players at one time. Unlike ‘‘dungeons’’, players are playing
against one another, with little to no interaction with the virtual envi-
ronment such as procedurally generated monsters or other typical game
challenges. Therefore, PVP game play is expected to be more reactive
in nature with players attempting to counter stimuli received from
other players’ inputs, rather than recurring patterns of procedurally
generated challenges. This type of behavior is expected to more closely
resemble scenario 4 described in the previously, and is suspected to
14

cause the greatest increase in network traffic, and therefore have a
greater negative impact on network performance on game play. Not
surprisingly, 55% of discussions dedicated to ‘‘battle grounds’’ con-
tained at least one reference to negative network performance. This is a
12% increase over mentions of network performance within ‘‘dungeon’’
discussions and a 19% increase in mentions over ‘‘trials’’ discussions.

The term ‘‘cyrodiil’’ refers to a special player-versus-player (PVP)
environment where hundreds of players may compete against one
another. The official claim from Zenimax Online Systems regarding the
number of players allowed within the ‘‘cyrodiil’’ environment is 1800
players (roughly 600 for each of the three possible teams or alliances
in the game) [32]. However, it appears that the number of available
simultaneous players has been adjusted over the years to account for
complaints of network performance issues. It is currently estimated by
the player community to be approximately 200 players per faction, for
a total of 600 players at a time [33]. Not surprisingly, 61% of player
discussions pertaining to PVP activities on the cyrodiil servers contain
references to negative network performance.

5.3.7. Developer response to animation canceling
The official response from Zenimax Online Systems, the developer of

the Elder Scrolls Online, has been mixed regarding the use of animation
canceling within the game. The original responses reflected within the
forums circa 2014 indicate the developer did not feel that animation
canceling was a ‘‘game breaking’’ issue and did not need to devote
much attention to fixing the behavior. Later, as the game continued to
evolve through consecutive patch cycles, it appears that the developer
began to embrace animation canceling as a desirable aspect of the
game and even incorporated unique bonuses associated with player
attainable items that were triggered by frequently alternating between
light attacks and skills within the game. However, the developer’s most
recent attitude toward animation canceling appears to be focused on
limiting its impact on network performance.

Zenimax Online Systems implemented patch 5.3.4 on February 20,
2020 and specifically references modifications to the ‘‘core mechanics
to block canceling’’ in order to improve network performance [34].
Several prominent streaming personalities reacted to the changes in-
troduced in the February 2020 patch, to include an individual by the
name Thogardpvp. Thogardpvp demonstrated the effect of the new
changes in one of his YouTube videos in March of 2020 [35]. Within
the Thogardpvp video, it appears that Zenimax Online Systems decided
to implement server-side validation checks for ‘‘block’’ commands is-
sued by the player, rather than perform client-side validation. This
unfortunately results in a round-trip-time (RTT) delay in processing the
player input, as the message must be acknowledged by the server and
then processed again by the game client. This results in performance
like that of TCP based netcode, which was deemed to be unacceptable
within Section 2.1 of this paper. This also appears to be an attempt
by the developer to remove the possibility of animation canceling
akin to scenario four outlined within Section 5.3.3 and Fig. 12 of this
paper. Animation canceling that incorporates ‘‘light attack weaving’’
with ‘‘skills’’, associated with scenario three and Fig. 11 of this paper,
does not appear to have been affected by the February patch to the
game. Despite an increase in forum posts condemning the changes
to animation canceling in February of 2020, player counts measured
via steamcharts.com indicate a minor drop in players in the month of

February, followed by a massive increase in player count in the month



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
of March 2020. The increase in players is most likely due to the release
of a new expansion bringing additional content to the game. However,
player counts continue to register above the levels prior to the February
2020 patch, even after the novelty of a new expansion is expected to
have dwindled.

6. The impact of client-side and timing exploits in network-based
videogames

The first two case study titles: ‘‘Risk of Rain 2’’ and ‘‘Dead by
Daylight", demonstrated the potential exploitative effects of introducing
latency between updates to the underlying game engine. ‘‘Risk of Rain
2’’ demonstrated that procedurally generated effects may be combined
to produce unintended chain-reactive behavior which may ultimately
overwhelm the ability for game clients to render objects or handle the
sending and receiving of game update messages. ‘‘Dead by Daylight’’
demonstrated the ability for savvy players to gain competitive advan-
tage over others by directly controlling access of client update messages
sent to the authoritative game server. Both of these titles emphasize the
importance of processing game client updates in a timely manner, and
in the proper order.

Case study III, based on ‘‘The Elder Scrolls Online’’, effectively
combined aspects contained within both of the previous case stud-
ies. Client-side exploitation of intended throttling mechanisms allowed
players to produce more game update messages than were intended by
the game developer. In case study I, bypassing throttling mechanisms
resulted in holistic network degradation for all game clients; however,
the state synchronization model depicted in case study III, merely
interpreted increased update messages into increased network message
generation. Understanding of the network capacity limits inherent to
the state synchronization model of "The Elder Scrolls Online’’ indicates
that only a portion of updateable objects may be transmitted in a
given update cycle; meaning that periods of network congestion may
result in delayed delivery of object update messages. This insight draws
correlation between case studies II and III wherein the ability to delay
update message transit to the authoritative game server may allow for
certain players to gain a competitive advantage over others during real-
time game play. This ability to impact game play through manipulation
of state synchronization update message queues was introduced as a
security concern in Section 4.3 of this paper.

Empirical measurement of network traffic data captured during
execution of animation canceling scenarios within ‘‘The Elder Scrolls
Online’’ indicate the technique may be used to drastically increase
network data generation on demand. Furthermore, anecdotal evidence
derived from analysis of social media posts pertaining to ‘‘The Elder
Scrolls Online’’ forum indicate a direct correlation between complaints
of network performance degradation and the execution of game ac-
tivities that benefit most from the application of animation canceling
techniques. These observations provide credibility to the hypothesis
that savvy players may be able to gain a competitive advantage by
exploiting client-side throttling mechanisms, and likely at the cost of
network performance and satisfaction of other players.

6.1. The role of animation canceling in state saturation

The ‘‘Risk of Rain 2’’ case study, described in Section 5.1, demon-
strated the potential for catastrophic performance degradation from the
generation of more game objects than can effectively be processed by
a game client. The most likely culprit of this performance degradation
was the generation of visual objects within game clients; however, it is
feasible to consider that network message generation may also increase
as a product of responding to similar conditions in network-based
games that allow for more than four players, such as an MMORPG.

The ‘‘Dead by Daylight’’ case study, described in Section 5.2, demon-
strated the potential strategic advantages of denying state update mes-
sages between game clients and servers. This phenomenon was directly
15
measurable based on the ability for players to rotate between client and
server roles. Larger games, with dedicated server infrastructure, such
as ‘‘The Elder Scrolls Online’’, do not exhibit this unique peer-to-peer
hybrid model; however, asymmetric message generation between game
clients and servers is common, and well documented within reference
material, such as the HeroEngine documentation.

The network model used within ‘‘The Elder Scrolls Online’’, outlined
in Section 5.3.1, may explain the correlation between increased up-
date message generation and complaints of degraded gameplay due to
latency. Network message handling described within the HeroEngine
reference material [24] indicates that bandwidth and message count
constraints may be applied to decrease the amount of traffic that a
game client may generate. Network messages generated by game clients
are directly related to player input, but also the product of updating
status changes resulting from other environmental effects or actions
initiated by other players, similar to the ‘‘Risk of Rain 2’’ case study.
Additionally, limitations on update message generation are performed
asynchronously, meaning client message generation is throttled, while
server message generation is not, similar to the ‘‘Dead by Daylight’’
case study. In the chance occurrence that players generate more update
message requirements than are allowed via bandwidth throttling, mes-
sage prioritization procedures are implemented to send only priority
messages during periodic updates. This effectively institutes head-of-
line blocking for player input commands, which will have a lower
priority than other status updates. Additionally, this explains why social
media data pertaining to ‘‘The Elder Scrolls Online’’ seems to indicate
increased latency in processing player commands within environments
with higher player counts and higher proclivity to animation canceling.
Animation canceling techniques, by design, introduce more player
input commands into update messages, which will increase as a product
of player count. Ultimately, this combination results in eventual throt-
tling of player input messages, as was theorized in Section 4.3 of this
paper.

6.2. Recommended solutions to improve game performance

As outlined within Section 2.1 of this paper, a seemingly obvious
solution to addressing latency concerns in videogames would be to
transition from TCP based network protocols to UDP based imple-
mentations. This is often the case in real-time sensitive competitive
games, such as first-person-shooter style games. Implementing UDP
would decrease the per-packet bandwidth costs of messages, increasing
the potential number of messages sent. Additionally, the ability for UDP
messages to be discarded, without retransmission, may directly address
head-of-line blocking issues with large TCP-based traffic queues.

However, MMORPG games tend to implement TCP based network-
ing almost exclusively. At least eight MMORPG game titles have been
identified that allow for animation canceling: ‘‘Guild Wars 2’’, ‘‘The
Elder Scrolls Online’’, ‘‘Everquest 2’’, ‘‘Lineage 2’’, ‘‘Aion’’, ‘‘ArcheAge’’
and ‘‘Star Wars The Old Republic’’ [36]. All of these titles imple-
ment TCP-based networking, with the exception of ‘‘Everquest 2’’ that
implements both TCP and UDP-based networking. MMORPG game
titles are highly dependent upon data integrity and reliability as their
userbase expects to maintain persistence in between gaming sessions.
Additionally, the ability to progressively improve or update players’
virtual persona is deeply ingrained within the game experience, and
is expected to accurately reflect several months, if not years, worth of
gaming time invested into character development. These requirements
are often translated into the implementation of a database server, which
most likely requires TCP or TCP-like reliability.

Previous research has been conducted into developing alternative
protocols for MMORPG titles [37]. This work focused on the per-
formance of theoretical protocols created within the ns-2 network
simulator, and ultimately concluded that not all traffic generated within
an MMORPG should be treated equally, and therefore exhibits different

performance requirements. Drastic performance gains were achieved



Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
by segregating traffic into different classes and only implementing
costly TCP-like mechanisms on data with high integrity or reliability
requirements, such as database updates.

Unfortunately, MMORPG games like ‘‘The Elder Scrolls Online’’
or ‘‘Star Wars the Old Republic’’, which leverage variations of the
HeroEngine network model, appear to encapsulate their update data
into a single message format. Bandwidth control in this context, is
implemented through head-of-line blocking on the client and reduces
the amount of information that will be loaded into the payload of
update messages. Modifying the engine to use variable types of repli-
cation messages could allow for differentiating between player input
actions and other state updates. This could potentially decouple player
input actions from being negatively impacted from the effects of state
saturation incurred through an excessive amount of other priority
update data. Additionally, player input actions could be transmitted via
UDP to capitalize on lower latency and prevent network-based head-of-
line blocking, while permanent state updates to character status could
be reserved for TCP transmission.

7. Conclusions

This paper provided a brief overview of historical and contempo-
rary approaches toward the implementation of networked multiplayer
videogames. Three general approaches toward networked game devel-
opment were presented: deterministic lockstep, snapshot interpolation,
and state synchronization. Security concerns associated with potential
player cheating were discussed within the context of these three general
networking approaches. It is apparent that each game’s exposure to
security issues is dependent upon the chosen approach to implementing
networking.

Three videogame titles, ‘‘Risk of Rain 2’’, ‘‘Dead by Daylight’’ and
‘‘The Elder Scrolls Online’’, were evaluated as case studies depicting
exploitable aspects of current networked games. These exploitable
aspects were then used to explain the potential impact of ‘‘animation
canceling’’ on networked games, specifically the MMORPG genre, and
the possibility of state saturation attacks in state synchronization-based
network models.

‘‘Animation canceling’’ appears to be a common aspect of competi-
tive gameplay and is frequently used as a discriminator in determining
varying levels of player skill in a game. As such, it has been adopted as
a desirable feature in competitive games, though not without potential
negative impacts on network and game performance. The case study
involving ‘‘The Elder Scrolls Online’’ depicted a potential increase
in game client generated network traffic by more than 175% when
applying certain animation canceling techniques. Anecdotal evidence
from social media data indicates increased references to complaints
about network performance in types of gameplay that involve both
higher concurrent player counts and proclivity for animation canceling
via performance checks (e.g. maximal damage-per-second throughput).
The most extreme animation canceling scenario, involving chaotic and
reactive gameplay, was attributed to player-versus-player environments
within the MMORPG realm. Likewise, social media depicted the high-
est percentage of references to complaints about degraded network
performance within player-versus-player environments.

TCP-based networking protocols may be a contributing factor in
degraded network performance for competitive real-time networked
videogames. However, reliable data transfer protocols are still nec-
essary within certain game genres, such as MMORPG games, which
depend on persistent and consistent long term data storage and re-
trieval through database systems. Videogame protocols may be partially
converted to use a combination of UDP and TCP or TCP-like protocols
to address data reliability requirements and apply varying degrees of
service guarantees to different types of traffic. This is the approach
recommend by this paper to address performance shortcomings, while
maintaining the possibility of player skill differentiation via leveraging
16

animation canceling techniques.
CRediT authorship contribution statement

Blake Bryant: Conceptualization, Formal analysis, Writing - origi-
nal draft, Data curation. Hossein Saiedian: Conceptualization,
Methodology, Validation, Resources, Writing - review and editing,
Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to thank the following students from the
University of Kansas IT780 (Communication Networks) course for per-
forming experimentation in support of the ‘‘Dead before Daylight’’
case study: Niels Hansen, Annika Kuhnke, Aravind Pothuri, and Nayab
Shaik. The authors would also like to thank Logan Bryant and Gabriel
Bryant for their support in demonstrating the ‘‘Risk of Rain 2’’ exploit
referenced as case study I in this paper. Finally, the authors would like
to thank the anonymous reviewers for their helpful comments and work
toward improving this paper.

References

[1] K. Webb, Business insider, 2019, https://bit.ly/36SDCAw, Retrieved from The
Fortnite World Cup Finals start this Friday, and $30 million is on the line. Here’s
what you need to know about the competition: businessinsider.com.

[2] D. Hanson, The 10 richest twitch streamers in 2019: moneyinc.com, 2019,
https://moneyinc.com/richest-twitch-streamers-in-2019/.

[3] J. Carmack, Quakeworld by John Carmack. Retrieved from fabiensanglard.net,
1996, http://fabiensanglard.net/quakeSource/johnc-log.aug.htm.

[4] Y. Gu, R.L. Grossman, UDT: UDP-based data transfer for high-speed, Comput.
Netw. 51 (2007) 1777–1799.

[5] B. Eckart, X. He, Q. Wu, Performance adaptive UDP for high-speed bulk data
transfer, in: 2008 IEEE International Symposium on Parallel and Distributed
Processing, 2008, pp. 1–10.

[6] Z. Yue, Y. Ren, J. Li, Performance evaluation of UDP-based high-speed transport
protocols, in: 2011 IEEE 2nd International Conference on Software Engineering
and Service Science, IEEE, Beijing, China, 2011, pp. 1–5.

[7] Y.-T. Li, D. Leith, R.N. Shorten, Experimental evaluation of TCP protocols for
high-speed networks, IEEE/ACM Trans. Netw. 15 (5) (2007) 1109–1122.

[8] S. Biplab, S. Kalyanaraman, K.S. Vastola, Analytic models for the latency and
steady-state throughput of TCP Tahoe, Reno, and SACK, IEEE/ACM Trans. Netw.
11 (6) (2003) 959–971.

[9] G. Fiedler, Physics for game programmers : networking for physics programmers,
in: Game Developer’s Conference, (pp. Video Recording https://bit.ly/31z4nbj),
San Francisco, 2015.

[10] Inc. Epic Games, Unreal networking architecture, 2012, Retrieved from UDK
Networking Overview https://bit.ly/30BZ9Ml.

[11] J. Van Waveren, The doom III network architecture, 2006, Retrieved from
mrelusive.com: https://bit.ly/304GBVv.

[12] A. Dainotti, A. Pescape, G. Ventre, A packet-level traffic model of strarcraft, in:
Second International Workshop on Hot Topics in Peer-To-Peer Systems, IEEE,
San Diego, 2005.

[13] C.-S. Lee, The revolution of starcraft network traffic, in: NetGames ’12 Proceed-
ings of the 11th Annual Workshop on Network and Systems Support for Games,
IEEE, Venice, 2012.

[14] Valve, Networking entities, 2019, Retrieved from Valve Developer Community:
https://developer.valvesoftware.com/wiki/Networking_Entities.

[15] Valve, Source multiplayer networking, 2019a, Retrieved from Valve Developer
Community: https://bit.ly/3ks3UQS.

[16] M. Claypool, D. LaPoint, J. Winslow, Network analysis of counter-strike and
starcraft, in: Conference Proceedings of the 2003 IEEE International Performance,
Computing, and Communications Conference, IEEE, Phoenix, 2003.

[17] M. Frohnmayer, T. Gift, The TRIBES engine networking model, in: Proceedings
of the Game Developers Conference, 2000, Retrieved from gamedevs.org: https:
//www.gamedevs.org/uploads/tribes-networking-model.pdf.

[18] Valve, Valve anti-cheat system (VAC), 2017, Retrieved from Steam Support:
https://support.steampowered.com/kb/7849-RADZ-6869/#whatisvac.

[19] Hopoo, Hopoo games development thoughts #17, 2020, Retrieved from
Steampowered.com: https://bit.ly/3d612ao.

https://bit.ly/36SDCAw
https://moneyinc.com/richest-twitch-streamers-in-2019/
http://fabiensanglard.net/quakeSource/johnc-log.aug.htm
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb7
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb7
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb7
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb8
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb8
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb8
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb8
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb8
https://bit.ly/31z4nbj
https://bit.ly/30BZ9Ml
https://bit.ly/304GBVv
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb12
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb12
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb12
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb12
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb12
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb13
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb13
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb13
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb13
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb13
https://developer.valvesoftware.com/wiki/Networking_Entities
https://bit.ly/3ks3UQS
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb16
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb16
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb16
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb16
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb16
https://www.gamedevs.org/uploads/tribes-networking-model.pdf
https://www.gamedevs.org/uploads/tribes-networking-model.pdf
https://www.gamedevs.org/uploads/tribes-networking-model.pdf
https://support.steampowered.com/kb/7849-RADZ-6869/#whatisvac
https://bit.ly/3d612ao


Computer Networks 192 (2021) 108128B. Bryant and H. Saiedian
[20] Astephen542, Forgive me please soulbound catalyst = OP. Retrieved from reddit,
2020, https://bit.ly/3t92df5.

[21] SeeDee, What is lag switching? 2017, (Online forum post). Retrieved from Steam
Community: https://bit.ly/3d9Akhc.

[22] C. Talbot, Elder Scrolls Online player count hits 15 million: Pcgamesn.com, 2020,
https://www.pcgamesn.com/the-elder-scrolls-online/player-count.

[23] A. Biessener, Why the elder scrolls online isn’t using heroengine, 2012, Retrieved
from Gameinformer.com https://bit.ly/3wHeM3r.

[24] HeroEngine, Heroengine wiki. Retrieved from hewikiheroengine.com, 2012, http:
//hewiki.heroengine.com/wiki/Replication_Tutorial.

[25] Steamcharts, Elder scrolls online: Steamcharts.com, 2020, https://steamcharts.
com/app/306130.

[26] The Elder Scrolls Online Forum, PC/Mac patch notes v6.0.5 - Greymoor & update
26: The elder scrolls online forum, 2020, Retrieved from : https://beth.games/
3a7BWF9.

[27] Uberkull, Animation canceling good for the game? 2015, Retrieved from The
Elder Scrolls Online Forum: https://beth.games/30FDeEb.

[28] Deltia, ESO animation canceling guide, 2014, Retrieved from Deltias gaming
http://deltiasgaming.com/2014/10/16/eso-animation-canceling-guide/.

[29] Naranarra, Weaving beginner guide animation canceling for elder scrolls online.
Retrieved from altcasthq, 2019, https://alcasthq.com/eso-weaving-beginner-
guide-animation-canceling/.

[30] Arzyel, ESO- how to increase your DPS | animation canceling guide, 2019,
Retrieved from YouTube Channel https://bit.ly/2XCAwgK.

[31] Decay2, Combat metrics, 2020, Retrieved from https://bit.ly/33Bw1qu.
[32] Elder Scrolls Online Forum, How will the player population be limited? 2015,

Retrieved from The Elder Scrolls Online Forum: https://help.elderscrollsonline.
com/app/answers/detail/a_id/6533.

[33] Elder Scrolls Online Forum, How many players are allowed in a campaign? 2016,
Retrieved from The Elder Scrolls Online Forum: https://beth.games/2XEbL3H.

[34] Elder Scrolls Online Forum, PC/Mac patch notes v5.3.4 - harrowstorm & update
25, 2020, Retrieved from The Elder Scrolls Online Forum: https://beth.games/
3fE31AP.
17
[35] Thogardpvp, The problem with removing animation cancelling, 2020, Retrieved
from Youtube: https://www.youtube.com/watch?v=CIzNq2exFHs.

[36] MMORPG Forum, Discussion / addressing animation canceling in games, 2015,
Retrieved from MMORPG.com: https://forums.mmorpg.com/discussion/432344/
addressing-animation-canceling-in-games.

[37] C. Wu, K. Chen, C. Chen, P. Huang, C. Lei, On the challenge and design of
transport protocols for MMORPGs, Multimedia Tools Appl. 45 (1–3) (2009) 7–32.

Blake D. Bryant, MS, CISSP, MCITP, CCNA, completed his
MS degree in information technology at the University of
Kansas in spring of 2016 and is currently pursuing his Ph.D.
degree in Computer Science. He is a security professional
with 15+ of experience in leading computer security or-
ganizations (private and military) and is currently serving
as a professor of practice teaching courses in information
technology at the University of Kansas

Hossein Saiedian (Ph.D., IEEE PSEM, Kansas State Univer-
sity, 1989) is currently an associate chair, the director of IT
degree programs, and a professor of computing and informa-
tion technology at the Department of Electrical Engineering
and Computer Science at the University of Kansas (KU) and
a member of the KU Information and Telecommunication
Technology Center (ITTC). Professor Saiedian has over 160
publications in a variety of topics in software engineering,
computer science, information security, and information
technology. His research in the past has been supported by
the NSF as well as other national and regional foundations.

https://bit.ly/3t92df5
https://bit.ly/3d9Akhc
https://www.pcgamesn.com/the-elder-scrolls-online/player-count
https://bit.ly/3wHeM3r
http://hewiki.heroengine.com/wiki/Replication_Tutorial
http://hewiki.heroengine.com/wiki/Replication_Tutorial
http://hewiki.heroengine.com/wiki/Replication_Tutorial
https://steamcharts.com/app/306130
https://steamcharts.com/app/306130
https://steamcharts.com/app/306130
https://beth.games/3a7BWF9
https://beth.games/3a7BWF9
https://beth.games/3a7BWF9
https://beth.games/30FDeEb
http://deltiasgaming.com/2014/10/16/eso-animation-canceling-guide/
https://alcasthq.com/eso-weaving-beginner-guide-animation-canceling/
https://alcasthq.com/eso-weaving-beginner-guide-animation-canceling/
https://alcasthq.com/eso-weaving-beginner-guide-animation-canceling/
https://bit.ly/2XCAwgK
https://bit.ly/33Bw1qu
https://help.elderscrollsonline.com/app/answers/detail/a_id/6533
https://help.elderscrollsonline.com/app/answers/detail/a_id/6533
https://help.elderscrollsonline.com/app/answers/detail/a_id/6533
https://beth.games/2XEbL3H
https://beth.games/3fE31AP
https://beth.games/3fE31AP
https://beth.games/3fE31AP
https://www.youtube.com/watch?v=CIzNq2exFHs
https://forums.mmorpg.com/discussion/432344/addressing-animation-canceling-in-games
https://forums.mmorpg.com/discussion/432344/addressing-animation-canceling-in-games
https://forums.mmorpg.com/discussion/432344/addressing-animation-canceling-in-games
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb37
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb37
http://refhub.elsevier.com/S1389-1286(21)00200-0/sb37

	An evaluation of videogame network architecture performance and security
	Introduction
	Background
	Suitability of TCP vs UDP for videogame networking
	General approaches to videogame network protocols
	Deterministic lock-step networking
	Snapshot interpolation
	State synchronization


	Industrial application of networking approaches
	Deterministic lock-step example — DOOM to starcraft II
	Snapshot interpolation example — Counterstrike
	State synchronization example — Tribes to fortnite

	Security concerns with networked videogames
	Client-side exploits
	Timing exploits
	State saturation
	Volumetric denial of service

	Case studies
	Case study I- risk of rain 2 - client-side exploitation
	Case study II — dead by daylight — timing exploitation
	Case study III — the elder scrolls online — state saturation
	The elder scrolls online network model
	Analysis of social media data
	Exploiting client side validation — animation canceling and weaving
	Improving player performance through animation canceling
	Animation canceling impact on network performance
	Animation canceling impact on gameplay
	Developer response to animation canceling


	The impact of client-side and timing exploits in network-based videogames
	The role of animation canceling in state saturation
	Recommended solutions to improve game performance

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


