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a b s t r a c t 

Today’s information networks face increasingly sophisticated and persistent threats, where new threat 

tools and vulnerability exploits often outpace advancements in intrusion detection systems. Current de- 

tection systems often create too many alerts, which contain insufficient data for analysts. As a result, the 

vast majority of alerts are ignored, contributing to security breaches that might otherwise have been pre- 

vented. Security Information and Event Management (SIEM) software is a recent development designed to 

improve alert volume and content by correlating data from multiple sensors. However, insufficient SIEM 

configuration has thus far limited the promise of SIEM software for improving intrusion detection. The 

focus of our research is the implementation of a hybrid kill-chain framework as a novel configuration of 

SIEM software. Our research resulted in a new log ontology capable of normalizing security sensor data 

in accordance with modern threat research. New SIEM correlation rules were developed using the new 

log ontology, and the effectiveness of the new configuration was tested against a baseline configuration. 

The novel configuration was shown to improve detection rates, give more descriptive alerts, and lower 

the number of false positive alerts. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The goal of any network security monitoring solution is timely,

ccurate and actionable network threat alerts. Such alerts are cited

s an axiom of mature security organizations such as the U.S. De-

artment of Homeland Security Grano et al. (2005) . Unfortunately,

ecurity alerts are often prone to false positives based on sensor

ocation within the network, limitations in their ability to apply

dvanced rule logic, or the inability to represent complex organi-

ational data hierarchies such as: user accounts, critical computing

esources, subnet risk levels, and work hours. Additionally, indi-

idual security devices themselves may be susceptible to exploita-

ion by savvy attackers, affecting the integrity of data they provide

arcia et al. (2018) . These limitations result in a multitude of alerts

ooding security analysts, or a lack of alerts due to overzealous

lert suppression. 

Recently, leading information security companies have devel-

ped specialized correlation software designed to aggregate data

rovided by disparate sensor feeds, thus enabling holistic analysis

f all network data from a single, centralized, alert feed. Analysis of
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ata from these devices may reveal patterns of activity conducive

o fingerprinting individuals or threat groups, based on a trail of

ata spread across an entire network of sensors. However, it is the

evelopment of custom algorithms designed to analyze this data in

he context of phased attack ontologies that truly provide additive

alue in threat detection and prevention. 

Additionally, there is a trend of chatty data feeds, such as fire-

all logs, drastically outnumbering more forensically valuable data

eeds such as endpoint operating system logs. Observation of secu-

ity analysts operating in a commercial Security Operations Center

ndicated that a vast majority of security alerts were ignored by

nalysts. Furthermore, many security experts argue that weeding

hrough every alarm is impractical and often must be combined

ith some form of automation for attack attribution Aminanto

t al. (2019) , Zhong et al. (2016) and Zhong et al. (2019) . Unfortu-

ately, merely aggregating data from sensors does not greatly im-

rove detection rates nor decrease false-positive ratios. 

Discerning notable security events from log data, and imple-

enting timely remediation for incidents, is a daunting task with-

ut an effective alerting engine employed to filter, categorize and

scalate security events appropriately. Security data must be nor-

alized into a standard ontological framework, analyzed within

he context of known attacker methodologies, and finally allowed

https://doi.org/10.1016/j.cose.2020.101817
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
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to accrue suspicion dynamically as threat activity progresses

throughout the network to fully realize the axiom of timely, ac-

curate and actionable alerts. 

1.1. Significance 

Advanced correlation software in SIEM systems is designed for

real-time alerting of potential security events, as well as to in-

crease the investigative and data retrieval functions associated

with those events. Analysis of raw sensor feeds is overwhelming

for human analysts due to the high volume of alerts and high false

positive ratios. Some studies have revealed as few as 29% of alerts

in a SOC environment are actually inspected by analysts, of which

an average of 40% are determined to be false positives Zhong et al.

(2019) . Implementing programmatic analysis decreases false posi-

tive ratios and provides mechanisms for the abstraction of human

labor functions to a higher analytical plane via a unified graphical

user inter-face (GUI). This in turn enables the establishment of an-

alyst pools ultimately improving process efficiency and decreasing

the mean time required to triage and respond to net-work security

events. 

However, current software solutions for data normalization and

threat action modeling within SIEM software are limited. These so-

lutions merely provide a framework for normalizing disparate data

feeds and performing logical comparisons of the metadata con-

tained therein. Such tools are often used to implement static trig-

ger criteria based on either volumetric thresholds or watch lists

containing threat signatures, but this methodology is prone to false

detection. 

A method of implementing dynamic suspicion escalation

through contextualized data, aggregated from multiple sources,

and attributable to specific threat actions is not found within SIEM

software by default. A threat framework must first be adopted to

attribute malicious activity to specific threat objectives. This frame-

work can then be leveraged to attribute various levels of risk and

suspicion according to the extent to which activities satisfy the

threat objective phases. 

This paper analyzes existing threat frameworks for inclusion

within a SIEM solution, with the goal of providing more timely,

accurate and actionable alerts through threat attribution and

dynamic suspicion escalation. Ultimately, a novel threat model

was devised based on the competing threat models evaluated.

This novel model was implemented through modifications to the

database structure of a commercially available SIEM system. 

1.2. Research methodology 

An empirical research methodology was applied to evaluate

existing research associated with intrusion detection technology,

SIEM software, and network attack methodologies. This study was

conducted over a period of two years and included immersion

within a commercial Security Operations Center (SOC) to observe

security analysts conducting alert triage and investigation during

real-world security incidents. The concepts of data triage, suspi-

cion escalation, threat actor groups, and models for representing

threat methodologies were evaluated within this environment. This

study led to the selection of a commercial SIEM product for eval-

uating the efficacy of implementing ontological frameworks used

to represent security data in a normalized format. The LogRhythm

SIEM was chosen as it was the dominant SIEM system leveraged by

the security analysts during the observation period. Finally, a lab-

oratory environment was constructed to validate insights gained

from observing SOC analysts by implementing the newly devised

SIEM framework within a controlled environment. The laboratory

environment consisted of a security device sensor array, multiple
ecurity devices configured in series, and the selected SIEM prod-

ct. Fig. 1 illustrates this laboratory design. Fig. 14 , within the test-

ng and evaluation section, illustrates the network architecture and

rovides context for network traffic flow. 

SIEM correlation rules were implemented in accordance with

he model devised in this paper. Detection performance was eval-

ated in relation to a baseline SIEM configuration with vendor rec-

mmended correlation rules. 

. Background 

.1. Hacker categories 

Research on network intrusion detection systems, and security

vent management systems have existed for several years; how-

ver, most research focus on technical challenges associated with

ata analysis rather than psychological motivations of attackers

enning (2001) , Denning (1987) , Garcia-Teodoro et al. (2009) and

aleur et al. (2004) . An ontological framework representing how

ersistent threat groups penetrate networks and exploit vulnera-

ilities is seldom addressed in contemporary research on intrusion

etection. 

However, some work has been done to understand the human

actors associated with cyber criminals. Hald and Pedersen catego-

ized threat actors based on expertise and motivation, as depicted

n Fig. 2 ( Hald and Pedersen, 2012 ). Such work associated with the

ttribution of actions to specific types of threat actors is an impor-

ant step in eventually establishing a pattern of behavior conducive

o data correlation and attribution of malfeasance. 

This paper focuses primarily on the Information Warrior (IW)

ategory described by Hald and Pedersen. As such, though the se-

urity landscape is filled with commodity malware or drive-by ex-

loits, such events are not the focus of this study. The intent of this

aper is not to discount the threat of abbreviated cyber attacks,

ut rather focus on the more challenging multi-stage incidents that

equire greater analytical rigor by security analysts. Therefore, this

aper focuses on the well resourced, focused and persistent actions

ypically associated with organized threat groups. 

.2. The attack lifecycle: kill-chains 

The term “kill-chain” emerged in security circles in the

arly2010’s as a way to describe the lifecycle of a security inci-

ent. The term kill-chain is derived from the Department of De-

ense joint targeting process, which was designed for the positive

dentification and attribution of culpability to actions associated

ith suspected actors. The US targeting kill-chain is epitomized by

he acronym F2T2EA, which consists of six phases: Find, Fix, Track,

arget, Engage and Assess. This is similar to a pipe and filter model

n software engineering, with the product of one phase providing

nput to subsequent phases in a serial fashion. Disruption of any

hase within this chain will result in the dissolution of the pro-

ess in its entirety. The following studies outline kill-chain model

esearch. 

The Lockheed martin intrusion kill-chain The most prominent

odel associated with the term “kill-chain” within network secu-

ity research is the Lockheed Martin Intrusion Kill-Chain depicted

n Fig. 3 . In this model, Advanced Persistent Threats (APTs) em-

loy a methodical targeting process similar to the DoD kill-chain

 Eric Hutchins and Amin, 2011 ). Lockheed Martin’s “intrusion

ill-chain” describes the seven phases of activities APTs conduct to

ompromise a system: Reconnaissance, Weaponization, Delivery,

xploitation, Installation, Command and Control, and Actions on

he Objective. However, the Lockheed Martin model does not

dequately address actions other than data exfiltration which can

ccur after a persistent threat has compromised a system. For
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Fig. 1. Laboratory concept configuration depicting an array of multiple security sensors reporting to a SIEM system Figure 16 . 

Fig. 2. The Hald and Pedersen motivation/skill-level circumplex Hald and Pedersen 

(2012) depicts varying skill levels associated with categories of hackers. 
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nstance, lateral reconnaissance to determine more susceptible

ystems, followed by repetition of phases one through six, is not

ddressed by this model. It is uncommon for an advanced threat

o attempt to transfer data from the initial compromised system,
Fig. 3. The Lockheed-Martin Killchain Eric Hutchins and 
ince such activity increases suspicion and may risk loss of the

ystem as a persistent access point into the network. 

Mandiant APT attack lifecycle model The Mandiant Corporation

evised an eight phase model, depicted in Fig. 4 , called the “Man-

iant APT Attack Lifecycle,” which includes the iterative process at-

ackers employ to gain additional footholds within a network fol-

owing the initial compromise ( FireEye, 2013 ). This model consid-

rs the possibility of branch and recursion at phase five, spawning

ub-phases associated with lateral infection. The Mandiant model

reatly simplifies the initial phases of the Lockheed Martin kill-

hain by incorporating the weaponization, delivery, exploitation,

nd installation phases into a single phase called initial compro-

ise. The Mandiant model also labels phases based upon intent

ather than action, helping to aggregate actions that serve a com-

on purpose. Another key differentiator between the Lockheed

artin model and the Mandiant model is the escalate privileges

hase. Mandiant identifies multiple tools used by APT groups to

ain access to additional resources on the compromised system,

hich provide behavioral signatures that may serve as key indica-

ors of compromise and differentiate between routine and persis-

ent threat activity. 

Both the Lockheed Martin and Mandiant frameworks inspired

ecurity analysts to provide methodical approaches to security

ata triage within the context of an attacker’s perspective. Ad-

itionally, these frameworks focused on consolidating threat ac-

ivities into discrete groups based on attacker objectives, rather

han exhaustive lists of tools, techniques or signatures observed

n the wild. The ability to organize threat activity in this manner
Amin (2011) depicts a seven phase attack lifecycle. 



4 B.D. Bryant and H. Saiedian / Computers & Security 94 (2020) 101817 

Fig. 4. Mandiant Attack Lifecycle FireEye (2013) depicts an eight phase attack lifecycle with possible recursion. 

Fig. 5. The MITRE ATT&CK TM framework MITRE (2014) depicts a twelve phase model and provides references to techniques used in each phase. 

 

 

 

 

 

 

 

w  

f  

u

2

 

2  

(  

a  

t  
provides a mechanism for methodical triage of security data, rather

than weeding through a sea of disjointed security alarms. 

2.3. Hacker methods 

The Mitre organization developed the ATT&CK 

TM framework in

2018, depicted in Fig. 5 , as a way to categorize observed threat be-

havior across a twelve phase model along with observed threat

techniques associated with each phase Strom et al. (2018) . This

model is the logical evolution of applying the attack lifecycle con-

cepts championed by the Lockheed Martin and Mandiant models
ith the traditional approach of developing attack signatures. This

ramework is available on the Mitre organization’s website and is

pdated as new adversary tactics and techniques are identified. 

.4. Security information and event management (SIEM) software 

Amrit Williams and Mark Nicolett coined the term SIEM in

005 to describe the convergence of Security Event Management

SEM) and Security Information Management (SIM) software into

 single consolidated product Williams and Nicolett (2005) . His-

orically, SIM software was focused on post-incident review and
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nalytics, while SEM software was designed to provide real-time

lerting of intrusions or other security incidents. SIEM products

dditionally provide log management services since log collection,

nalysis, and retention are integral parts of the SIEM process. 

Several papers have been written to address individual compo-

ents that provide data for SIEM systems, such as improving de-

ection ratios in low level sensors Kim et al. (2013) , log retention

nd management data structures Madani et al. (2011) , and packet

nspection Silowash et al. (2013) . However, few studies have been

onducted on SIEM software and its underlying mechanisms: secu-

ity event management, threat taxonomies, attack ontologies, and

ncident weighting. Understanding these mechanisms provides in-

ight to potential areas for optimization. 

SEM systems focus on the process of actively detecting security

vents as they occur. The following SEM models established the

heoretical basis for future SIEM systems. 

.5. Progression of dangerousness 

Legrand addressed the task of wading through holistic network

nalysis alerts by subjecting normalized SEM data to a static causal

vent ontology based on five factors: why, who, where, how and

hat Legrand et al. (2008) . Each ontological factor must be satis-

ed by an observable network event and the summation of these

vents constitutes an action. The result of this ontological analysis

s run through a threat algorithm called the progression of dan-

erousness, where actions are weighted to identify which are the

ost threatening to network assets. Action weighting is calculated

ia the function 

f (a ) = (d 1 (a ) , d 2 (a ) , · · · , d p (a )) 

here each observable action a is iteratively evaluated against all

ntological dimensions d 1 through d p . This model relies heavily on

he intrinsic detection capabilities of sensors. 

Chien et al. proposed a two-layer attack framework where

rimitive attack (PA) sensor information feeds into an attack sub-

lan layer, based upon attack subontology and attacker intent

hien et al. (2007) . The ontology has three classes: reconnaissance,

enetration, and unauthorized activity. This signifies the transition

rom static ontological analysis to a dynamic ontology with classes

ependent upon the state transitions between PAs. Chien also in-

roduced the notion of assigning confidence values to detection

n a per sensor basis. Chien’s primitive attack layer expands upon

ther event verification module concepts as well as incorporating

egrand’s concept of ontological integration. Higher level subplan

emplates are used to align disparate PA information into a coher-

nt attack based on known or suspected attack methodologies. 

Visualization and graphical tools SIEM software may be improved

ith visualization tools for postmortem incident auditing and pre-

ictive analysis. Kotenko and Novikova outlined the essential func-

ions of a SIEM visualization subsystem: Real time data monitor-

ng, integration with a historical data repository, graphical inter-

ace for rule editing and generation, attack modeling, and resource

anagement Novikova and Kotenko (2013) . Histograms, linear dia-

rams, and dashboards are all useful. 

Filtering and Correlation Flynn focused on implementing kill-

hain methodologies in SIEM software and stressed collecting

vent data on routine activity so holistic analysis may be con-

ucted on security incidents Flynn (2012) . A continuum of pro-

ressive suspicion is needed, similar to Legrand’s progression of

angerousness. Flynn proposed an “event pipeline” framework con-

isting of blacklisting, identity translation, correlation, context, and

nalysis. Blacklisting in this context is the removal of known false

ositives, such as those which match signatures stored on in-

rusion detection systems, but which are associated with operat-

ng systems that are not in the network. Identity translation en-
ails maintaining a record of internal machines, users, and IP ad-

resses for future correlation. Correlation has two sub-phases: the

ttack plane and the kill-chain Flynn (2012) . The attack plane com-

ares disparate events with some shared identifying characteris-

ics to determine group events for context and suspicion escala-

ion. The Lockheed Martin model is the basis for the kill-chain,

hich provides criteria for attack plane grouping. Context is the

using of external information surrounding the detection, such as

ross-referencing network diagrams. In Analysis, a correlated and

ontextualized alert is provided to a human for review. 

. Security operations center study and observations 

.1. SOC environment overview 

The authors of this paper were provided with unfettered ac-

ess to a leading Managed Security Services Provider’s (MSSP) Se-

urity Operations Center (SOC) over a two year period. Data pro-

essed within the SOC was associated with a growing list of clien-

ele reaching more than 120 distinct clients across the globe by the

nd of the study. Client profiles extended across multiple industry

erticals including: retail, health services, gambling, utilities, edu-

ation, hotels, and the public sector. 

The MSSP employed a total of 22 SOC security analysts dur-

ng the study period. Analysts were aligned within a three-tiered

odel based on analyst experience and rigor of expected inves-

igative effort. T ier 1 analyst s were responsible for alert triage and

scalation of routine incidents to clients. Tier 2 analysts were re-

ponsible for handling internal escalations for abnormal activity or

alidation of suspected false positive events relayed by tier 1 an-

lysts. Tier 3 analysts were responsible for in depth investigations

nd response actions associated with known or suspected security

reaches or client initiated investigations. 

SOC analysts were responsible for responding to alerts and per-

orming investigations within several different SIEM systems in-

luding: McAfee ESM (formerly Nitro Security), IBM QRadar, Arc-

ight, Splunk and LogRhythm. Alarms were provided to analysts ei-

her via a remote console into the SIEM management system or via

mail alerts automatically generated by the SIEM system. The Lo-

Rhythm SIEM system was configured as a multitenant system ser-

icing the majority of the MSSP clients simultaneously via a cloud-

ased deployment. 

The multitenant LogRhythm deployment provided a consistent

asic SIEM correlation rule set across multiple clients, with the op-

ion for select clients to request additional rules above the base

onfiguration. Single client SIEM deployments varied greatly from

ne another in terms of correlation rule construction, data source

ntegration and possibly metadata parsing standards. Single client

IEM systems were not a primary focus during this study due to

he large variance in system configuration and relative complexity

n accessing systems vice the convenience of a multitenant con-

ole. Therefore, the SOC study focused primarily on data collected

ithin the LogRhythm SIEM as it provided direct access to SIEM

ata via a management console, allowed for real-time log queries,

nd contained the largest variety of client data across multiple in-

ustry verticals. 

The MSSP also employed a total of five SIEM engineers, also

ligned within a three-tiered model. SIEM engineers provided sup-

ort to each of the SIEMs analysts operated within. SIEM engineers

ere expected to be experts in at least one SIEM system, but also

ossess working knowledge of all other systems. The authors were

llowed to provide recommendations for potential correlation rules

o SIEM engineers during the study period, presenting the oppor-

unity to review existing and pending correlation rule construction.

bservation of SIEM correlation rule construction provided insight
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into the relative complexity of correlation as well as best practices

for rule development. 

Security data processed by SIEM systems and analysts grew at

an exponential rate as clients flocked to the MSSP. The multitenant

SIEM serviced 12 clients at the beginning of the study and grew to

more than 60 by the end of the two-year period. By the end of the

study, several million logs were processed by the LogRhythm SIEM

on a daily basis resulting in over 40 0 0 alarms for analysts to triage,

investigate and/or escalate to clients at the peak of the study. Ana-

lysts were expected to conduct initial triage and client notification

(if warranted) with a 15-minute service level agreement. 

3.2. Security analyst overview 

Analysts operated across five different shifts in order to pro-

vide 24x7x365 coverage, were expected to work on holidays, but

were offered additional vacation days to make up for holiday as-

signments. The weekday day shift operated from 0800 to 1600h

on Mondays through Fridays. Monday through Thursday were aug-

mented by a “swing” shift from 1200 to 2200 h, and an evening

shift from 2100 to 0900 hrs. The weekend shifts worked Friday

morning to Monday morning from 0800 to 2100 and 2000–0900. 

Symptoms of analyst burnout and alert fatigue were most

prevalent during the weekday day shift from 080 0-160 0hrs. The

weekday day shift was particularly problematic for security ana-

lysts as they were responsible for addressing client inquiries via

email or phone while also responding to SIEM generated alerts.

Client inquiries typically tapered off by 1600 client local time,

except for Friday afternoons, which exhibited a large increase in

client inquiries between 150 0–170 0 client local time. The large in-

crease in Friday client inquiries is suspected to be associated with

client attempts to investigate incidents during the week without

MSSP involvement and escalating unresolved issues to the MSSP

prior to retiring for the weekend. 

Analyst interactions with clients proved to be a very time-

consuming process. Typical email exchanges between clients and

analysts took an average of five minutes to draft per message.

Phone calls between analysts and clients typically took longer than

email correspondence and eventually became burdensome to the

point where select clients were scheduled for prearranged 30-min

calls with dedicated analysts on a weekly basis. Eventually the

MSSP created a new section responsible for handling interactions

with clients in an effort to alleviate the pressure placed on ana-

lysts. However, analysts were often required to continue to attend

client calls based on a lack of security expertise on the part of the

newly appointed client services team. 

Analysts used the US CERT Federal Agency Incident Categories

in order to standardize incident reporting to clients. The US CERT

categories are based on a seven level zero based system, with

lower categories representing more pressing issues. Category 0 is

reserved for known security tests and was omitted from report-

ing requirements by analysts. However, blind penetration tests con-

ducted by clients were expected to be reported by analysts and

would have been considered a category 1 event. Category 1 was re-

served from a suspected security breach resulting in unauthorized

access. Category 2 was reserved from successful denial of service

attacks. Category 3 was reserved from malware or other malicious

code detection. Category 4 was reserved for “improper usage” and

was seldom defined or implemented in client environments. Cat-

egory 5 was reserved for scans, probes or attempted but unsuc-

cessful access attempts. Finally, category 6 was reserved from un-

confirmed incidents and served as a “catch all” for alerts analysts

chose not to escalate to clients. 

Every alert in the multitenant SIEM was expected to be manu-

ally assigned one of the 7 US CERT categories by an analyst. More

severe alert categories (CAT1-CAT3) required immediate escalation
nd a phone call to a client. Category 5 and 6 alerts only required

mail notifications or consolidation into daily or weekly reports

ased on client preference. The vast majority of alerts were as-

igned to the “category 6 catch all” category. The analyst triage

rocess typically began by reviewing the name of alarms produced

y the SIEM. Well named alarms provided analysts with insight

ertaining to which actions should be conducted during triage.

oorly named or vague alerts were typically ignored by analysts,

nless they were occurring very frequently, in which case they

ere escalated to SIEM engineers for “tuning” or removal from the

ystem. 

Furthermore, alarms that could not be easily explained by ana-

ysts were often not sent to clients. The was likely due to client

ushback after receiving several escalations from analysts that

ere interpreted as being unactionable. The most common alarms

hat analysts received pushback from clients for were associated

ith IP blacklists, wherein one or more systems were observed

ommunicating with a system previously known for malicious ac-

ivity. These alerts were typically triggered off of network data,

ith little context, and did not provided insight as to the nature

f the offense. Clients quickly developed a policy of inquiring for

ore data following escalations, such as account names involved,

rocesses running on target systems, and actions performed by the

ttacker, all of which required additional resources from analysts

o collect. Ultimately, escalation rates for alarms were directly pro-

ortional to analysts’ ability to rapidly identify malicious activity

nd collect adequate forensic evidence to make remediation rec-

mmendations to clients. If the evidence required for the latter

as lacking, analysts opted not to escalate alarms. 

.3. SIEM engineer overview 

SIEM engineers operated predominantly during the weekday

ay shift hours and maintained an on-call roster for after-hours

mergencies. SIEM engineers occasionally scheduled work during

venings or weekends if prearranged maintenance windows were

equested by the client for large installations or major system

odifications. SIEM engineers operated off of a ticket based work-

ow wherein configuration requests could be initiated by either

lients or SOC analysts. Client requests typically involved the con-

guration of sensor data feeds, managing alert thresholds (also

nown as tuning), and custom SIEM alert rule development. Ana-

yst requests typical involved alert threshold configuration requests

o silence “chatty” or “bad” SIEM alert rules. SIEM alerts that were

valuated as “bad” by tier 1 or 2 analysts were required to be re-

iewed by a tier 3 analyst before being escalated to SIEM engineers

or resolution. Tier 3 analyst review of alarm quality was required

o prevent lower tier analysts from merely removing alerts they

id not wish to report from the system. 

SIEM engineers were expected to interact with clients on a

egular basis in order to maintain customer satisfaction with the

ervices provided. During initial client integration, SIEM engineers

onducted calls or video meetings with clients several times a

eek to install or configure security data streams. Data streams

ere monitored for an approximately two-week period before set-

ing baselines or alarm thresholds. After this learning period, alerts

ere enabled and began flooding SOC analyst consoles. Excessively

oisy alerts were reported by SOC analysts to SIEM engineers as

andidates for tuning. This tuning process typically lasted for two

eeks following the initial log baselining period. 

The variety of security data sources evolved as the study pro-

ressed. During the initial phases of the study, clients primarily

orwarded firewall and IDS alerts to the SIEM but did not forward

perating system audit logs or specialized security devices (aside

rom network based IDS). A few select clients chose to forward

etwork device logs from routers and switches. Eventually clients
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egan integrating more exotic data sources into the SIEM environ-

ent. This was partially motivated by media reports of high-profile

ecurity breaches, but also the adoption of larger companies as

lients with more mature security organizations. Eventually moni-

ored data sources expanded to include operating system logs, spe-

ialized anti-malware solutions, host-based IDS, web proxies, and

ulnerability scanners. Developing parsing rules for this large vari-

ty of heterogeneous data sources eventually posed the most sig-

ificant challenge to SIEM engineers; especially due to the fact that

o agreed upon standard existed for metadata normalization, and

ot every SIEM normalized data in the same manner. Though most

ystem vendors, such as firewall manufacturers, provided similar

ata for like systems, each did so with proprietary labels that had

o be interpreted by the SIEM into a common representation for

orrelation. 

The SIEM used to automatically triage log data and generate

larms implemented a system of event classification labels in or-

er to prioritize observed traffic. All log data ingested by the SIEM

eceived a classification label during the initial data normaliza-

ion phase, wherein metadata was aligned with standardized fields

or correlation across disparate data streams. Normalized log data

ould also be used to create “events” stored in the LogRhythm

atabase. Events were similar to logs, in that they could be re-

rieved during investigations and could be used to generate alerts;

owever, events, unlike logs, could be generated off of one or more

ogs or events using if-this-then-that logical operations. Addition-

lly, newly generated events could be labeled with classification

ategories or event titles different from the labels associated with

he logs or events used to generate them. 

By default, the LogRhythm SIEM was configured with three top

evel classifications “security”, “operations” and “audit”. During this

tudy, SIEM alarms were predominantly created to trigger from

ogs with the security or operations classifications, while audit logs

ere primarily used for generating daily activity reports. Fig. 6 de-

icts the default classification labels available to SIEM engineers

sing the LogRhythm SIEM. 

SIEM correlation rules could be used to generate alarms, which

ould be sent to the analyst consoles for triage, or via email notifi-

ation, or both. Additionally, correlation rules could be constructed

o convert observed logs or events into additional events. Events

ould be queried from the SIEM database during investigations,

sed to generate future alerts and events, or included in reports

s desired. 

The practice of generating non-alerting events was not heav-

ly used by SIEM engineers during the SOC study. SIEM engineers

ere typically told by clients or analysts to generate alert noti-

cations for specific events or the presence of well-known sig-

atures within log data. SIEM engineers employed multiple ap-

roaches to SIEM rule construction and attended regular vendor

raining sessions to discuss rule construction techniques. The dif-

erent approaches SIEM engineers used toward rule construction

re explained in the following paragraphs. 

Single block rules These rules were the simplest to construct

nd the most likely to generate alarms on a consistent basis.

his type of rule simply involved querying the SIEM log or event

atabases for specific elements of normalized metadata and gen-

rating an alert. The most common method for creating these

ules was by comparing metadata fields with lists of known in-

icators. For example, lists of IP addresses associated with known

alware or threat groups could be used to generate alerts when-

ver said IP addresses were observed within log or event metadata

elds. 

Multi block rules These rules were constructed using multiple

f-this-then-that conditional statements executed in series. These

ules were intended to perform automated triage and potentially

rovide additional context for alerts generated. However, there
ere several limitations to this approach that eventually caused it

o fall out of favor with SIEM engineers. 

First, this approach required several conditions to be met in or-

er to trigger an alert. The likelihood that all conditions would

e met decreased with each subsequent rule block. Originally, this

henomenon appeared to work as intended, as too many alerts

verwhelm analysts. However, there was no mechanism for in-

orming analysts or SIEM engineers that some, or most of the alert-

ng criteria had been satisfied, but an alert was not triggered be-

ause of a technical oversight or faulty configuration setting. The

nd result was that this type of SIEM rule was highly prone to false

egatives, wherein an alarm should have been generated, but was

ot. 

The second issue with this approach was that it often resulted

n poor forensic value to analysts. This was due to the way the

ogRhythm SIEM retrieved data from its log and event datastores

hen generating alerts. SIEM engineers were required to select at

east one metadata field as the “primary” field when generating

orrelation rules. The primary field was used to satisfy conditions

or the rule. Engineers could optionally select additional “group by”

eta data fields which would be included as populated meta data

elds in the newly generated event or alert if the primary condi-

ion was met and the “group by” meta data field was not null. If a

ule was configured with a specific “group by” meta data field, and

 log or event met the primary criteria for the rule block, but did

ot contain data in one or more “group by” fields, the rule block

ould fail to fire for that log or event. Initially, SIEM engineers at-

empted to include as many “group by” fields as possible to sat-

sfy security analyst and client demands for more detailed alarms;

owever, overzealous attempts to populate alarms with additional

eta data resulted in most of these alarms failing to trigger. As

uch, this approach to SIEM rule construction resulted in rules ei-

her containing very few additional “group by” fields or being re-

tricted to specific data sources with known consistent meta data

elds to query. 

Statistical rules These rules were intended to implement

nomaly detection functionality within the SIEM. All of these rules

perated in a multi block fashion consisting of two rule blocks,

ith the first block establishing the primary criteria for observa-

ion and a learning period from which a baseline could be estab-

ished. The second block was used to establish the threshold be-

ond the baseline for triggering an alarm. 

This type of alarm suffered from the same limitations as the

ulti block rules, in that few, if any, meta data fields would be

eturned within alerts. However, this rule also introduced an addi-

ional performance penalty associated with storing statistical data

n memory for continual comparison with real-time data. This per-

ormance tax eventually resulted in this type of rule being reserved

or only select use cases. Despite its limitations, this type of rule

ould be beneficial in generating suspicious events for inclusion in

ulti stage rules, as the title of events generated by this approach

ould be included in a multi stage rule and provide context, even

f most or all meta data fields were omitted in the statistical event.

Multistage rules These rules were rarely used by SIEM engineers

ut offered the best tradeoff between forensic value and perfor-

ance impact on the SIEM. Multistage rules relied on the ability of

he SIEM to generate events for suspicious behavior, leverage sus-

icious events as alert criteria, and then eventually aggregate said

vents into single alerts containing data from each event observed.

hese rules operated in a similar fashion to multi block rules, as

ultiple criteria were required to be satisfied prior to generating

n alert. However, unlike multi block rules, multistage rules were

ot limited to the construction of rule blocks configured in se-

ies within a single correlation rule. Rather, multistage rules relied

eavily on the ability of a SIEM to use conditional statements to

enerate events and apply appropriate classification labels to said
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Fig. 6. LogRhythm SIEM log and event classification labels. 
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events. Once suspicious events were generated in the first stage,

their classification label could be used as the primary criteria for

generating another event or alarm in the second or subsequent

stages of the series of rules. Since the first stage in this approach

was merely intended to create a new event with the appropriate

classification label and a descriptive title, there was little risk in

applying too many “group by” fields for extracting meta data from

observed logs or events as there was no second rule block that

could fail. Additionally, any data source that was incapable of pro-

viding adequate meta data would be omitted from future correla-

tion stages, thus preventing SIEM rules from failing due to config-

uration issues in later stages. 

Despite the benefits of this approach, there were two key lim-

itations to its implementation. The first limitation was that there

was a performance cost to generating new events in each stage.

Specifically, new events required storage space within the SIEM

event database. At a minimum, every interesting event or log that

met stage one criteria would result in at least one more duplicate

event being generated, all be it with a different classification and

event title. In the worst-case scenario, a single event or log could

meet the criteria for multiple stage one rules, and therefore result

in a multiplicative increase in events. This was especially problem-

atic in statistical baseline rules that were sensitive to drastic in-

creases in events. Theoretically, one highly suspicious event could

result in a storm of suspicious residual events. This phenomenon

could be beneficial in prioritizing suspicious traffic but could also

result in false positives and data retention issues if not configured

properly. 

The second limitation was that this type of rule was limited to

classification labels available to SIEM engineers during rule con-

struction. The LogRhythm SIEM classification labels, previously al-

luded to in Fig. 6 , were not always easy to map to observed be-
avior. Technically, multistage rules did not require engineers to

se the classification meta data field as primary criteria; however,

oing so was helpful in ensuring at least one data source con-

ained the necessary meta data fields for optimizing “group by”

eld inclusion when generating alerts. SIEM rule names could also

e used as primary criteria, however this approach often resulted

n commission of unexpected data sources which could have pro-

ided useful context when generating alarms. Labeling suspicious

ogs and events with similar classification labels allowed for data

rovided from multiple disparate data feeds to be used as crite-

ia in multistage rules. If analysts requested that an alert contain

ertain pieces of meta data to provide context during triage, each

f those fields could be used as “group by” criteria in establish-

ng an event for that stage of an attack and remove logs or events

hat did not contain them. However, unlike the multi block rules,

hich exhibited a high false negative rate due to null queries for

eta data within one or more rule blocks in series, if a rule block

ailed in a multi stage approach, that stage was simply omitted,

ut a terminal alert rule could still trigger off of other rules in

ifferent stages. Essentially, multistage rules could tag data within

ach stage, extract meta data if appropriate for said stage, and

hen be aggregated in an alert at the final stage of construction

n necessary. Additionally, each stage could be used to satisfy mul-

iple terminal rules, essentially creating several options for partial

etection. 

Although the multistage rule approach appeared to be the best

ption, it was seldom used by SIEM engineers. Creating these rules

equired a large amount of planning and a framework for guiding

ule stages as well as classification labels. Unfortunately, the de-

ault SIEM classification labels were not appropriate for mapping

o logical stages, and a consistent framework did not exist for de-

cribing attacker actions. 
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Table 1 

SIEM alert names observed during blind penetration test. 
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.4. Significant data points 

At least four data breaches, and more than a dozen blind pen-

tration tests were observed during the study period. Each of the

ata breaches was initially undetected by security analysts and was

scalated to the SOC by the client. Approximately half of the blind

enetration tests were detected during the study period. All of the

ecurity breaches and penetration tests that did not result in client

otifications resulted in demands for investigations from the client.

hese investigations required tier 3 analyst review for a period

anging from 48 hours to a week in order to determine root cause

nalysis and incident response actions. 

.5. Analysis of data collected 

A few common themes were observed during these investiga-

ions. Every investigation identified some form of inadequacy in

ata provided to SIEM systems. In some cases, the compromised

ystem was simply not sending data to the SIEM. In other cases,

he system was sending data to the SIEM, but was not properly

onfigured to audit actions in the level of detail required to detect

he action (such as failing to audit process creation, or system log

n events). In two instances the initial vector of compromise was

ocial engineering resulting in the successful phishing of an em-

loyee’s credentials and produced no observable data prior to the

ompromise. Several instances were identified where log data ex-

sted, but SIEM correlation rules did not fire based on strict thresh-

ld or sequencing requirements for alert triggering. In the final in-

tance, a logically sound SIEM correlation rule could fail due to the

ack of one or more data elements expected to be present in log

ata but was missing. 

Aside from issues associated with data being collected by the

IEM, alarms configured to notify analyst were woefully vague.

able 1 depicts the unique SIEM alert titles presented to analysts

uring a blind penetration test. Over 48% of the alarms generated

erely bore the title “critical condition”. A few other alerts pro-

ided slightly better descriptions such as “high severity IDS/IPS

lert”, “successive attacks” and “external: host compromised: at-

ack/compromise followed by process starting.” As stated previ-

usly, none of these alerts were escalated to the client during the
enetration test as they were deemed too generic to be action-

ble by SOC analysts. Analysts were able to investigate alarms and

etrieve logs responsible for triggering the notification. In retro-

pect, the alarm “External: host compromised: attack/compromise

ollowed by process starting” should have been investigated fur-

her and was likely omitted due to analysts being overwhelmed

ith other alarms during the observed period. 

Analysts were routinely bombarded with an extreme volume of

ogs and alerts generated daily. 48 h worth of log data were re-

rieved from the SIEM during postmortem analysis of the penetra-

ion test discussed previously. The client in question had generated

ver 5.5 million logs during the collection period, resulting in over

00 alarms being sent to analysts for triage. None of the alerts

enerated during the blind penetration test were associated with

audit” classified data. Fig. 7 depicts the classification of logs con-

ained within alerts generated during the blind penetration test.

ote, none of the alerts generated contained logs classified as “au-

it”. 

Despite not being associated with any of the alarms generated

or analyst triage, logs classified as “audit’ by the SIEM accounted

or over 55% of log data generated during the investigation period.

dditionally, none of the alarms generated accurately reflected the

ctions performed by the security assessment team conducting the

enetration test. Additional investigation into the nature of audit

ogs revealed that some of the most forensically useful information

as contained within them, specifically the rarest occurring audit

ogs. Fig. 8 depicts the Windows audit logs that occurred most fre-

uently during the penetration test, and Fig. 9 depicts the Win-

ows audit logs that occurred the least frequently. 

Local firewall data, specifically acknowledgment of allowed con-

ections, accounted for over 1.7 million logs collected or approxi-

ately 55% of audit data. Account logon and logoff data accounted

or roughly 45% of the remaining audit data. However, analysis

f the least frequent audit events, accounting for 121 logs out of

ver 3 million collected during the investigation, provided detailed

nsight into actions performed by the security assessment team.

ote, not all of these logs were associated with the assessment

eam; however, the actions being audited were much better suited

or describing threat actions than the generic “security”, “opera-

ions” or “audit” labels used previously. 
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Fig. 7. SIEM event classification labels observed during blind penetration test (out of 2,573,479 logs observed). 

Fig. 8. Occurrence of most frequent Windows event IDs within audit data during penetration test (out of 3,146,389 Windows logs observed during investigation period). 
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4. Development of a novel SIEM configuration: Revising the log 

classification ontology 

4.1. Overview 

Observations during the SOC study indicated that merely gen-

erating SIEM alerts for suspicious activity did not increase the rate

at which security analysts responded to events. In fact, it could be
rgued that too many SIEM alerts had an adverse effect on analyst

esponse rates. Excessive alerts were either ignored by analysts or

onsumed vast resources to gather enough data to explain the na-

ure of the alarms. 

As was introduced within the SIEM engineer overview section

f the SOC study, multistage rules could be used as a mechanism

or increasing the amount of meta data contained within alerts

s well as triage data sources during evolution through stages of
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Fig. 9. Occurrence of rarest Windows event IDs within audit data during penetration test (out of 3,146,389 Windows logs observed during investigation period). 
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uspicion. However, data derived from confirmed breaches and

enetration tests indicated that classification labels used in log

arsing and event generation were inadequate for properly rep-

esenting attacker actions on an ontological level. Furthermore, a

tandardized framework which could be used to describe attack

tages had not been adopted between SIEM engineers, security an-

lysts and clients. 

The SOC study identified merit in being able to use broad clas-

ification labels when developing SIEM correlation rules from a

IEM engineering complexity viewpoint and alarm naming view-

oint for analyst triage. Ideally these correlation rule classification

abels would align with kill-chain phases, and furthermore con-

ain consistent metadata fields for reliable correlation with similar

vents in the same phase or allow for pivoting to data in hetero-

eneous phases. Unfortunately, none of the existing models, dis-

ussed in the background section, were ideal for suiting both hu-

an investigative processes and automated SIEM correlation. 

The Lockheed Martin, Mandiant and Mitre models each devel-

ped a framework conducive to categorizing observed data through

he perspective an adversary, which seemed to mirror the logi-

al investigative process SOC analysts migrated toward during in-

idents. However, none of these models considered sequencing or

etadata requirements for automated SIEM correlation rule devel-

pment. The Mitre framework provided additional detail by includ-

ng adversary techniques and potential indicators of compromise

ssociated with each objective phase, but Mitre phase categories

o not neatly align with consistent sensor metadata groupings, and

herefore could have been problematic in use as classification la-

els in multi stage rule construction. 

Despite the lack of a “drop in” solution for a correlation frame-

ork, the kill chain approach appeared to be consistent with an-
 w  
lyst observations that recurring patterns of evidence emerged

ithin certain phases of an attack lifecycle. A framework repre-

enting different attacker objectives, tasks, and related forensic

ata was created to serve as a new SIEM log ontology based upon

hese observations, deviating from either of the “kill-chain” models

escribed previously Bryant and Saiedian (2017) . 

.2. Development of the novel framework 

The proposed framework was initially inspired by the Lockheed

artin kill chain and the Mandiant APT1 attack lifecycle models

hat were published circa 2013. These frameworks were used as

he basis for investigating routine escalations or performing post-

ortem analysis of key events during the SOC study. Note, these

ctions were primarily associated with tier 2 and tier 3 analyst

ctivities and not routine tier 1 analyst triage. Additionally, many

f the phases depicted by these frameworks were not compatible

ith creating automated alert logic via SIEM systems, ultimately

equiring manual review of raw log data. 

After several months of investigations while referencing the

ockheed Martin and Mandiant frameworks, it became apparent

hat neither model was suitable for creating strict deterministic

orrelation rules similar to the ones used in the default SIEM rule

ase. For instance, no clean rules existed for determining that

n “initial compromise” had occurred. It was understood that a

ompromise must take place to access the system, but opinions

mong analysts varied as to what indicators would reliably in-

icate a system was compromised without having a large num-

er of false positive cases. In such instances where a compromise

as suspected, or alleged by a client demanding an investigation,
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Fig. 10. Investigation framework phases derived from the four logical domains of: network, endpoint, domain and egress. 

Fig. 11. Data source alignment with novel killchain phases. 
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analysts immediately began collecting information on the alleged

compromised system and pivoting off of metadata identifiers such

as IP addresses, host names, account credentials, port numbers, or

processes to confirm suspicious activity was occurring around the

system in question. 

During this investigative process, distinct phases were identified

with homogeneous metadata provided reliably by sensor feeds. Ad-

ditionally, these phases could be aligned with discrete and de-

scriptive actions, rather than generic labels such as “compromise”

or “exploit.” Aligning reliable metadata sources with logical pivot

phases was imperative for analyst data queries in attempts to make

root cause determination for a suspected breach and could be used

to perform automated pivots and data aggregation by the SIEM via

multistage correlation rules. 

The novel model was eventually developed around seven de-

scriptive phases: reconnaissance, delivery, installation, privilege es-

calation, lateral movement, actions on the objective and exfiltration

depicted in Fig. 10 . These phases were further grouped into four

logical domains: network, endpoint, domain and egress, based on

the types of systems that provided reliable metadata for detection

and correlation. Fig. 11 depicts phase alignment with reliable data

sources for each phase. The egress phase included both network

data and endpoint data, but was differentiated by specific adver-

sary tactics or techniques 

Many of these phases align with phases of the Mitre ATT&CK 

TM 

framework, with the exception that the Mitre framework appears

to focus on end point analysis and omits phases that cleanly align

to network device data, such as “reconnaissance” and “delivery”.

It is worth noting that network device data could prove useful to

pivot from data associated with a compromised end point observed

network traffic useful for determining the initial entry into the net-

work, or other potential pivot points. 
. Applying the kill chain to SIEM software 

.1. SIEM platform selection 

The LogRhythm commercial SIEM platform was selected as the

referred system to evaluate inclusion of a kill-chain model based

n the authors’ prior experience with the system and access to his-

orical data conducive to evaluating multiple production environ-

ents. The IBM Qradar, McAfee Nitro, and Splunk platforms also

xhibited potential to be modified to incorporate this model, but

ere not evaluated within this paper since none of them operated

n a multi-tenant fashion and fewer SOC analysts were dedicated

o triaging alerts generated within these systems. 

The LogRhythm system consists of multiple distinct data pro-

essing subsystems. The first subsystem, referred to as the log

anager, is responsible for initial data ingestion and parsing free

ext into normalized metadata fields. The second subsystem, the

vent manager, is responsible for creating and labeling interesting

events” based on normalized log data or other events generated

y the SIEM. The third subsystem, the advanced intelligence engine

AIE), is responsible for implementing advanced correlation logic

o logs or events previously generated by the SIEM and generating

ew events with custom names or labels. Either the event manager

r AIE subsystems may be used to generate alerts by the system;

owever, the AIE subsystem is the only subsystem capable of im-

lementing multiple logic blocks and was therefore the preferred

ubsystem for developing correlation rules within LogRhythm. 

The LogRhythm data flow model implements suspicion escala-

ion and data triage functions by parsing sensor information into a

hreat ontology and applying descriptive classification labels to ob-

erved events. The classification label is potentially applied in two

ifferent stages of the data flow model; either during the initial
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Fig. 12. Reliable Pivot Metadata by Killchain Phase. 
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arsing and normalization phase by the message processing engine

ithin the log manager, or by the AIE during correlation and sub-

equent reclassification. Fig. 6 illustrates the default classification

abels available for classifying log and event data. 

The ability to use the AIE to mutate a log or event into a new

vent with a custom classification label was a critical component

n implementing the novel framework within the SIEM. This pro-

ided a mechanism for creating a new event comprised of meta-

ata contributed by dissimilar but related sources and attributing

his newly created event to specific phase-aligned activity. This dis-

overy became a fundamental element in implementing data en-

ichment and aggregation within the SIEM platform. Fig. 13 depicts

he introduction of new classification labels within the LogRhythm

IEM conducive to alert creation and log aggregation within sub-

lanes and associated alert phases. 

Unfortunately, the AIE subsystem relied upon specific SQL

ueries to populate metadata fields in events or alerts it created.

or instance, if one desired to include the account name, process

ame, source IP address and destination IP address associated with

 remote access program, each of these fields must be included as

group by” fields within the AIE SQL query. If any of these desired

etadata fields were null, then the entire query would fail, result-

ng in a false negative. It was very rare for all desired metadata

elds to exist within a single data point sent to the SIEM system.

urthermore, since each desired metadata field was required by the

IE system, data points with partial detections would be omitted

rom an AIE event or alert. Partial detections assisted in providing

ontext to analysts and providing insight to root cause attribution.

herefore, it was necessary to aggregate metadata from multiple

artial detections to be included within AIE events or alarms. 

Aggregation with the new model was performed in a multi-

taged process described in the following sections. The first aggre-

ation stage was associated with combining related metadata ele-

ents from dissimilar sources to create intermediary events suit-

ble for AIE correlation. The second aggregation stage was associ-

ted with combining events and alerts into a manageable number

f notifications to be sent to human analysts for review. 

.2. Data enrichment and intermediary event construction 

Analyst postmortem analysis of known security events indi-

ated a need to use specific metadata fields within each phase to

ivot between log sources and generate an accurate depiction of

uspected malicious actions. This observation shaped the develop-

ent of the new hybrid model wherein each newly devised phase

as a natural “aggregation” metadata field depicted in Fig. 12 . 
For instance, “reconnaissance” aligns naturally to network data

f the source machine (i.e. source IP address), while “delivery”

ligns naturally to network data of the destination machine (i.e.

estination IP address). These fields (source IP and destination IP)

ere normalized by the SIEM log manager sub-system during log

ngestion. Later stages, such as “installation”, could potentially con-

ain several types of metadata, from network data (IP and MAC

ddress) to user information (account names, privilege levels, se-

urity groups). These stages were therefore segregated based on

hich metadata fields were most pertinent to detecting and de-

cribing action within them, rather than where the detection oc-

urred. 

It is possible for a single data source or event to contribute

o multiple phases, such as “installation” and “privilege escala-

ion” events. Both phases are likely to be observed within endpoint

perating system logs. However, knowing that “installation” logs

re machine based (e.g. aggregation is conducted on hostname or

ther computer identifier) and “privilege escalation” events are ac-

ount based (e.g. aggregation is conducted on account/username),

rovides insight as to how to best combine data within their re-

pective logical phases. 

Ideally distinct metadata from multiple dissimilar data sources

ould be combined automatically by the SIEM using these natural

etadata pivot points. The hybrid model was originally designed

o that each phase would contain metadata fields necessary to

erform automated event combination. Fig. 12 depicts the natu-

al metadata fields conducive to aggregating logs or events from

isparate sources within the same logical phase. This relational

atabase approach was motivated by the fact that the LogRhythm

IEM utilized SQL queries to perform correlation functions. How-

ver, phase labeling may prove beneficial to other systems that are

ot using the SQL language. 

Unfortunately, not every data source provided all metadata

elds necessary for proper correlation via the AIE. It became appar-

nt that it was necessary to create intermediary events that com-

ined disparate metadata fields from dissimilar but related sources

ithin phases. This observation led to the development of sub-

hases within the hybrid model. Each parent phase of the hybrid

odel was expanded to include three sub-phases. Two of the sub-

hases were designed to label log data that contained partial ele-

ents of ideal metadata fields and a third sub-phase was designed

o indicate primitive alerts within the parent phase. 

Partial data sub-phases provided an elegant solution for suspi-

ion escalation in a manner similar to the subplan-based correla-

ion scheme described by Chien et al. (2007) . These events were

ot suitable for creating alarms based solely upon the data they
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Fig. 13. Comparison of SIEM classification labels after modifying the LogRhythm database . 
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model. 
contained; however, they were beneficial for combination with

other related events to create a more complete picture of activity

within the network. Events tagged with a partial data sub-phase

could easily be combined with other events with the same, or ad-

jacent sub-phases to create more complete events containing ideal

metadata fields. The reason two sub-phases were used for this pur-

pose was to allow for data sources to potentially provide insight

to transition between parent phases. Knowing that events with

specific classifications are guaranteed to contain certain metadata

fields provides for the development of reliable correlation rules

and transition between logical phases of the model. 

An example of adjacent phase transition with sub-phase la-

beling may include network-based IDS data which contributes to

two phases of the hybrid model, “reconnaissance” and “delivery.”

The aggregate metadata field associated with the “reconnaissance”
hase is the “source IP” field, while the aggregate metadata field

or the “delivery” parent phase is the “destination IP” field. As the

ub-phase of “enumeration” exists on the border between “recon-

aissance” and “delivery”, it must contain both “source IP” and

destination IP” metadata fields at a minimum. Further extend-

ng the network-based IDS example, IDS signatures attributed to

nterrogating services running on target systems could be com-

ined with data attributed to the “host access” sub-phase of “de-

ivery.” “Host access” classified data must contain “source IP” data

s well as “destination IP” data. Therefore, response or firewall al-

ow messages from a victim machine should be classified as “host

ccess” to allow for natural correlation between “reconnaissance’

nd “delivery” phases of the hybrid model. Fig. 11 shows how

ata sources may contribute to phase transitions within the hybrid
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Fig. 14. Laboratory logical architecture depicting network configurations and IP space. 
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It is possible that a single event may contain all ideal meta-

ata associated with a parent phase, meaning it satisfied minimal

etadata fields for both child sub-phases. In such cases, the event

ould be classified with the parent phase classification, such as

privilege escalation.” Events labeled with the parent phase classi-

cation are referred to as intermediary events. Even though inter-

ediary events contain the ideal amount of metadata fields, they

ay not necessitate generation of an alarm or analyst notification.

ntermediate events were primarily intended to enrich other alarm

enerating events with as many metadata fields as possible to con-

extualize the alarm. Additionally, intermediary events were ideal

or combination with other intermediary events in adjacent phases,

s they would contain minimal metadata fields for combination

ith both the phase preceding and following the phase in which

hey were associated with. 

The “alarm” sub-phase label was reserved for events that were

ell known or high confidence indicators of phase activity. These

vents were worthy of generating an alert in and of themselves

ut may benefit from additional context through combination with

artial data sub-phases or intermediary events. Once an event was

enerated with the “alarm” sub-phase label, all other partial or in-

ermediate events within that phase would be combined into a

ingle alarm leveraging the natural aggregate field associated with

heir parent phase. The resultant alarm would be presented to an

nalyst with all distinct metadata values associated with phase

lassifications, ultimately automating several secondary or tertiary

nvestigations analysts would have previously performed manually.
 a  
 more thorough explanation of alarm construction for metadata

nd alarm aggregation is reserved for the following section. 

.3. Alert fusion 

The LogRhythm SIEM allowed for two different approaches to

reating alerts to be sent to analysts for triage. The “traditional”

pproach leveraged the event manager subsystem of the SIEM

nd was only capable of performing pattern matching queries for

etadata fields contained within events stored within the event

atabase. However, despite this limitation, the “traditional” ap-

roach performed a greedy query and all records returned would

ontain data in any metadata fields that were not blank. The sec-

nd approach to creating alerts leveraged the AIE subsystem. 

The AIE subsystem presented several advantages over the tradi-

ional approach, but also had several key limitations. Advantages of

he AIE system over the traditional approach included the ability to

onduct statistical baselining as well as the ability to create a se-

ies of conditions that must be met to trigger an alarm. Addition-

lly, the AIE subsystem was able to extract data from either logs

r events. Logs represented the purest form of data in the SIEM

nd consisted of a copy of the free text message sent to the SIEM

s well as parsed and normalized metadata fields extracted from

aid message. A classification label was still assigned to log data,

owever generating an alert from log data was not possible in the

raditional approach; only event data could be leveraged to gener-

te traditional alarms. Events were often comprised of one or more
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logs and contained an additional metadata tag used to describe the

event called a “common event name.” The intent of converting logs

into events was to allow for innocuous or chatty logs to be imme-

diately archived and decrease the amount of data the alarm engine

would need to travers to generate alerts. The AIE engine could con-

vert one or more logs into intermediary events, as was described

in the previous section of this paper. 

The primary limitation of the AIE subsystem was that it did not

perform greedy queries and would only produce alerts or events if

all metadata fields contained within conditional statements were

present within log or event data. This meant that the AIE subsys-

tem was prone to a high false positive rate if intermediary events

were not created prior to attempting to implement more advanced

correlation rules or conditional statements in series. Additionally,

if a query succeeded, only the fields requested would be returned.

If a log or event that satisfied alert criteria contained additional

metadata fields, not contained within the AIE conditional state-

ments, this data would be omitted from the final alert resulting

in the need for analysts to perform additional manual queries to

retrieve context for the alarm. 

Despite its limitations in capabilities for advanced correlation

logic, the “traditional” approach was ideal for aggregating data

from multiple events or alarms into a single consolidated notifica-

tion sent to analysts. This complemented the AIE subsystem well

in that it provided a mechanism for implementing greedy data

retrieval of related events, while the AIE subsystem provided the

ability to construct intermediary events and apply custom clas-

sification labels. Alerts generated using the traditional approach

contained a summary of all distinct values for every metadata

field and could be grouped by one or more “aggregate” fields that

needed to be identical across records. 

The most simplistic implementation of event fusion was to cre-

ate a “traditional” alarm that queried for the presence of any event

with the “alarm” sub-phase classification, then combine related

events based on identical values in the natural aggregate field for

the phase the “alarm” label belonged to. The default labels de-

picted in Fig. 6 unfortunately lacked such alarm labels, or the level

of detail necessary to implement the metadata aggregation scheme

described in the previous section of this paper. 

Ultimately, the two-staged process of leveraging the AIE subsys-

tem to perform intermediary event construction and using the tra-

ditional alarm approach to aggregate metadata fields was adopted

as the preferred method to alert construction. The use of novel

classification labels associated with the hybrid model was essen-

tial to proper event construction and aggregation when using this

approach. 

6. Testing and evaluation of the novel SIEM configuration 

Other works have established evaluation frameworks to comare

disparate SIEM systems Safarzadeh et al. (2019) . However, the data

environment available to this study predominantly relied upon a

specific SIEM plaftorm, namely LogRhythm. As such, the evaluation

and testing performed in this work was limited to implementing

the novel framework in just one platform and did not implement

comparative frameworks such as the one devised by Safarzadeh

et al. (2019) 

A sophisticated network security laboratory environment was

designed to evaluate the efficacy of the SIEM configuration modi-

fied with a novel ontology and is depicted in Fig. 14 . Two identical

laboratory environments were constructed with the single variable

between deployments being modifications to the SIEM database

used to detect security events. This section focuses on the design

of the laboratories and the details of the experiment for which

they were used. 
.1. Laboratory network design 

A virtual network was constructed to evaluate baseline and

nhanced SIEM configurations. Two separate but identical virtual

nvironments were constructed, with the exception that the Lo-

Rhythm SIEM system in one environment was configured with

endor recommended default correlation rules and the other envi-

onment contained a LogRhythm SIEM system enhanced with ad-

itional classification fields reflecting the hybrid kill-chain model. 

Microsoft operating systems were selected as the basis for the

ajority of virtual systems within the laboratory network due to

ecurity analysts’ familiarity in conducting forensics investigations

ased on Microsoft technology as well as a more robust library

f default SIEM correlation rules designed for Microsoft systems.

ervices hosted on Microsoft systems included: directory services,

mail hosting, web services, and a SQL database. A suite of McAfee

nti-malware products was deployed to endpoints to provide an-

ivirus and host based intrusion prevention system data via a cen-

rally managed server. A pfSense virtual machine was deployed to

erve as a virtual layer three device, necessary for network traffic

haping, as well as a platform to host open source security tools

ncluding: Snort IDS, Squid proxy, and network based firewall ca-

abilities. All Microsoft endpoints were configured with host-based

rewall settings to provide an additional layer of security beyond

etwork based filtering as well as provide supplementary data for

orrelation with data provided by network centric sensors. Audit

olicy settings on all Microsoft endpoints were adjusted to pro-

ide additional forensic details omitted by default configuration

ettings, such as logging network traffic denied by host-based fire-

alls or process creation. 

.2. Attack experiment design 

Real world security breaches do not always reflect every stage

epresented by the hybrid kill-chain model. As such, a custom

cenario was devised to stimulate sensors and ensure coverage

f all seven stages. This scenario combined traditional reconnais-

ance and probing techniques, indicative of opportunistic attacks,

s well as targeted attacks typical of advanced persistent threats.

able 1 depicts the types of actions that were performed during

he attack scenario. 

.3. Detection rate comparison 

The modified SIEM ontology outperformed the baseline SIEM

ntology in alert metrics with a 96% true positive detection rate

y generating an alert for 25 out of 26 test scenarios. The baseline

IEM ontology and LogRhythm default rule set had a 26.9% detec-

ion rate with alerts generated for 7 out of 26 of the test cases.

dditionally, the modified ontology generated aggregate alerts with

etadata from multiple events for 76% of alerts (19 of 25). The re-

aining six alerts were associated with singular events where no

dditional data was available for aggregation. 

It is worth noting the difference in alert volume in addition to

mprovements in the true positive rate. The baseline SIEM gener-

ted 83 alerts during the evaluation, however they were only as-

ociated with 7 of 26 test cases. An open vulnerability assessment

ystem (OpenVAS) vulnerability scanner test case resulted in nearly

alf of the baseline SIEM alerts with 41 separate alerts. Conversely,

he modified SIEM generated five alerts during the same test case,

ontaining aggregate metadata from 401 correlated events, and 46

lerts from all test cases. This data indicates the ability to aggre-

ate data via a logical identifier metadata field proved to be an ef-

ective mechanism for decreasing alert volume. A detailed compar-

son of alerts between the baseline and modified SIEMs are listed

n Table 2 . 
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Table 2 

Comparison of baseline and modified SIEM alert performance: Alert comparison. 

Fig. 15. Typical email alert generated by baseline SIEM. 
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.4. Alert forensic value comparison 

The primary motivation for developing the new SIEM ontology

as to provide a mechanism for the aggregation of pertinent and

elated metadata into alert notifications to decrease the investiga-

ive effort associated with explaining security alerts. The baseline

IEM ontology combined 47 OpenVAS test case alerts into a sin-

le email containing 7154 words. It was not obvious which meta-

ata field was used to correlate these events, since none of the
elds were common across all 47 alerts. The email batching pro-

ess merely listed alerts, rather than combining them in a logical

anner. Only 41 alerts were generated within the analyst GUI con-

ole during the OpenVAS scan test case, indicating six additional

lerts must have been aggregated from previous scan activity. It

ppears this aggregation was most likely performed based on the

arge increase in alerts generated within a short time frame dur-

ng the scan, resulting in combination based on temporal proxim-

ty, rather than through metadata correlation. Many of the alerts
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Fig. 16. Email alert generated by modified siem depicting log aggregation and framework phase attribution. 
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in the batch of 47 alerts generated during the OpenVAS scan

correctly identified abnormal net-work connections to the Win-

dows 7 host W7host with IP address 10.13.201.94, as was repli-

cated during the scan; however, no additional information was

provided to indicate which computer(s) were attempting to com-

municate with the workstation, nor what aspect of the commu-

nication was considered abnormal. An analyst would be required

to review all 47 alerts generated in order to identify the attack-

ing machine or the scope of the probes conducted within the

network. 

Ten of the alerts in the pool of 47 correctly identified the at-

tacker machine as the origin host with IP address 172.16.0.3, but

it was not obvious what actions this host was conducting within

this batch of alerts. One alert indicated a machine with IP address

172.16.0.3 was suspected of being associated with a system com-

promise or lateral movement, but there were no metadata arti-

facts associated with the alert to indicate how the conclusion was

reached. In reality, the attacker had not yet successfully compro-

mised a machine at this point. 
Four of the 47 batched alerts indicated suspicion of a port scan,

ut only one of these four alerts indicated both the source and

estination machines associated with the port scan activity. The

emaining three alerts only indicated the targeted machine. Figs.

5 –17 compare email alerts generated by the baseline SIEM config-

ration and the modified SIEM with extended classification labels. 

Modified SIEM ontology email alert analysis In contrast to the 47

atched alerts generated by the base-line SIEM ontology, the mod-

fied SIEM ontology accurately identified the scan activity with a

ingle alert. This was achieved by aggregating metadata fields from

ultiple events within the alert. The event field within the alert

hows that 92 related events were combined. All alert notifications

enerated in the baseline configuration were comprised of a single

vent, even when batched. The modified SIEM alert title, depicted

n the email subject line, identified the event as being associated

ith suspected reconnaissance activity and the aggregate field for

orrelation was the origin host field. The origin host, was correctly

dentified as the Kali Linux machine with IP address 172.16.0.3.

he entire list of targeted machines was provided within the alert.
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Fig. 17. Email alert generated by modified siem depicting log aggregation. 
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upporting metadata, including port numbers and names for ag-

regated events, were also provided. 

Alert forensic value conclusions 

The modified SIEM alerts provided considerably more corre-

ated data than the baseline SIEM alerts. As a result, security ana-

ysts were more likely to receive enough information to draw con-

lusions regarding the nature of the activity, requiring fewer man-

al queries to validate their hypothesis. The alerts presented us-

ng the baseline SIEM configuration often required a considerable

mount of analysis of similar alerts to determine what data was

ctually detected and what data may warrant additional investiga-

ion. From a forensic perspective, the data contained in the modi-

ed alerts was superior to the data contained in the baseline SIEM

lerts. 

Email alert volume comparison 

The baseline SIEM configuration generated 2364 alerts during

xperiment period, averaging 100 alerts per day. Conversely, the

odified SIEM configuration generated eight alerts from the con-

inued experiments, averaging one alert per day. The decreased

lert volume may be attributed to the decreased number of de-

ection rules configured between the two deployments. The mod-

fied SIEM had less than a third of the rules of the baseline SIEM,
 c
nd 99% fewer alerts when test data was not being generated. The

aseline SIEM rules generated an average of 0.78 alerts per rule per

ay, while the modified SIEM rules generated an average of 0.025

lerts per rule per day. In light of the modified rule set’s improved

rue positive detection rate, it is determined the decrease per alert

ule rate during non-testing conditions reflects a decreased false

ositive rate. 

.5. SIEM rule complexity comparison 

The baseline SIEM rule set consisted of 128 correlation rules

hile the modified SIEM rule set consisted of 39 rules. This was

chieved by segregating rules into separate groups consisting of

pecific event queries and aggregate alarm queries, while the base-

ine SIEM configuration used only specific queries. The decreased

umber of queries required to detect threat actions is assessed to

e an improvement over the base model due to the assumption

hat fewer administrative actions will be required by SIEM engi-

eers to maintain the system. Additionally, the queries contained

ithin the modified SIEM rule set hierarchy were generally less

omplex than the baseline rule when compared side by side. 
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Fig. 18. Modified SIEM rule constructed using static indicators to generate an “internal reconnaissance classified event. 
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Baseline SIEM rule complexity analysis Many baseline SIEM rules

leveraged statistical analysis rules implementing a baselining or

learning logic block and a threshold comparison logic block. The

baselining stage constructs a dynamic list of unique values during

the learning period, which is configured to be seven days by de-

fault, and generates an average number of unique values observed

by host. The threshold stage searches for deviations from the base-

line. One such rule searched for more than five unique processes

running in memory beyond the average determined by the base-

line. This rule consumed approximately 17% of the memory allo-

cated to the Advanced Intelligence Engine service running on the

SIEM. 

Some baseline SIEM rules were based off of the multi block ap-

proach, intended to observe a series of discrete events and gener-

ate alerts based on “if this then that” logic blocks. However, these

types of rules suffered from several limitations. The first prob-

lem with these rules was their inability to tolerate the absence

of an expected event in the rule chain. For instance, a rule de-

signed to indicate system compromise by triggering an alarm if

an administrator logon event with Windows event ID 4672 oc-

curred following several failed logon attempts would fail to trig-

ger if no administrator logon event with Windows event ID 4672

was logged by the target system. However, there may be several

indicators of an administrator logging on to a system, which may

need to be evaluated, especially if the target system was not con-

figured to explicitly log privileged system accounts. A whitelist

of known administrator accounts could be used as a reference

for analysts to verify administrative access for instance. Using a

whitelist/blacklist instead of the Windows event 4672 event would

require the creation of an additional SIEM rule, as there is no

elegant mechanism for informing the SIEM that a 4672 event
nd a whitelist/blacklist of administrator account names are equal

vents. 

The second limitation of the traditional “if-this-then-that” logic

pproach with the basic SIEM structure is the requirement for

trict sequencing of events. SIEM engineers are required to make

everal different correlation rules anticipating every possible com-

ination of adversary actions in order to trigger complex rules. To

urther complicate matters, data from multiple systems may vary

ith incorrectly synchronized system times between data sources.

his could create the illusion that events occurred out of order, and

onfound correlation rules based on strict sequencing. 

Modified SIEM rule complexity analysis. Unlike the baseline SIEM

ules, modified SIEM rules implemented a multistage approach and

everaged intermediary events to satisfy rule conditions. Event cri-

eria in each stage mapped to static lists of indicators observed

hile using the novel framework during investigations, rather than

 baselining mechanism. Using a static indicator list removed the

eed to implement a memory intensive baselining and threshold

stablishment. For example, a modified rule designed for detect-

ng rogue processes was configured to generate an event within

he SIEM event database for any process name observed but not

isted on the static list of approved processes. The memory re-

ources consumed by a modified SIEM rule query were negligible

nd reported as 0% of the total resources available to the Advanced

ntelligence Engine process running on the SIEM. This is a marked

mprovement over the baseline SIEM rule constructed to perform

he same function. 

Additionally, since the modified SIEM was expanded to include

everal new descriptive classification labels, rules could be con-

gured to categorize observed logs as either interesting events,

r alerts requiring analyst triage. Unlike the baseline SIEM rules,
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Fig. 19. Correlation rule for log aggregation via subplane classification. 
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here sophisticated attack detection required a series of multi

lock rules to account for all possible indicators of compromise; for

nstance one multi block rule for administrator logon events with

indows event 4672 and another multi block rule for administra-

or logon events detected by a whitelist/blacklist. Expanded clas-

ification labels allowed for one rule to be created to label any

ogs observed with one of several characteristics of an administra-

or logon as privilege escalation activity. This rule could include

he presence of a Windows 4672 log, a specific account name on a

hitelist/blacklist, the system account running a user process, ad-

itions to certain security groups, a network device known ven-

or/default account etc. 

Once all indicators of “privilege escalation” activity were as-

igned the appropriate label by the first log classification rule, a

econd rule could then search for any “privilege escalation” labeled
vents within a certain time frame, or suspicious subplan activ-

ty that would not normally generate alarms in isolation. This sim-

le two stage construction method effectively replaced the need to

ake an exhaustive and convoluted series of every possible per-

utation of privilege escalation events within the SIEM. Further-

ore, this labeling and greedy query approach provided an elegant

olution to aggregating similar events, with compatible meta data,

as not dependent upon strict event sequencing, nor was it sus-

eptible to false negatives due to system time drift. 

Fig. 18 depicts a modified SIEM correlation rule being created

o detect processes associated with internal reconnaissance activ-

ty. The newly created classification label of “internal reconnais-

ance” will be applied to the newly created event. Multiple meta 

ata fields will be populated within the newly created event for

uture correlation such as: account name, event rule title (stored
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- 
as MPE rule), data source name, process name, command argu-

ments (stored as URL) and impacted host (the dereferenced host

name and IP address resolved by the SIEM database). Fig. 19 de-

picts a multi block rule designed to aggregate suspicious events,

such as the one created by the previous rule, with other similarly

classified events if a high confidence alert is generated within the

“lateral movement alarm” classification. 

Investigation framework analysis The pool of resident security

analysts at the MSSP was used to evaluate the efficacy of the novel

framework during investigations. Benefits noted from this evalua-

tion include: 

• Identification of potential false negatives due to data omission

or errors in programmatic SIEM correlation logic. Newly created

multistage rules were less likely to fail to generate alarms based

on missing data, poorly configured data sources, or improperly

configured “group by” meta data fields. 

• Improved communication between analysts, SIEM engineers

and stakeholders. The new framework provided a mechanism

for describing and contextualizing alerts generated by the SIEM

in a manner that was shared across the entire SIEM user base;

analysts, engineers and clients. Additionally, the phased struc-

ture of the framework allowed for predictive analysis of po-

tential preceding or expected future events based on observed

alerts. 

• Operational process efficiency gains due to reduction in redun-

dant queries. More descriptive alert names and aggregate data

contained within alarms provided analysts with additional in-

formation useful in developing recommendations to clients. Ad-

ditionally, clients were less likely to request additional informa-

tion from analysts, thus reducing the requirement for manual

queries or investigations. 

7. Conclusions 

The modified ontology appears to be an improvement over the

baseline SIEM ontology in every dimension measured in this pa-

per. The modifications resulted in a drastic reduction in the num-

ber of alerts that provide little forensic value to analysts. Addition-

ally, the amount of data provided on a per alert basis was greatly

improved through the novel aggregation mechanism of pairing the

modified log ontology classification labels with identity metadata

fields specific to each kill-chain phase. Though the primary moti-

vation for the modified log ontology revolved around alert forensic

value, marked improvements in SIEM resource consumption were

noted following the implementation of simplified correlation rule

queries. Additionally, it is assessed that simpler correlation queries

will result in decreased administrative effort to maintain the SIEM

system. These improvements are assessed to have improved the

mean time required to detect security events based on the follow-

ing factors: 

• Increased visibility during network security attacks through im-

proved detection rate (roughly 70% improvement in number of

test cases detected). 

• Increased number of metadata fields contained within alerts

generated. 

• Decreased total alert volume. 

• Decreased effort required by engineers to deploy detection

rules. 

• Decreased system resource requirements preventing potential

processing bottlenecks. 
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