Transactions on Dependable and Secure Computing

A New Approach to Predict Security Vulnerability Severity in
Attack Prone Software Components Using Architecture and
Repository Mined Change Metrics

Journal:

Transactions on Dependable and Secure Computing

Manuscript ID

Draft

Manuscript Type:

Regular Paper

Keywords:

D.4.6.e Invasive software < D.4.6 Security and Privacy Protection < D.4
Operating Systems < D Software/Software Engineering, D.2 Software
Engineering < D Software/Software Engineering, D.2.11 Software
Architectures < D.2 Software Engineering < D Software/Software
Engineering, D.2.15 Software and System Safety < D.2 Software
Engineering < D Software/Software Engineering, D.2.19 Software
Quality/SQA < D.2 Software Engineering < D Software/Software
Engineering, K.6.5 Security and Protection < K.6 Management of
Computing and Information Systems < K Computing Milieux

SCHOLA

RONE™
Manuscripts

Page 1 of 18

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 1

A New Approach to Predict Security Vulnerability

Severity in Attack Prone Software Components

Using Architecture and Repository Mined
Change Metrics

Daniel Hein, Member, IEEE and Hossein Saiedian, Senior Member, IEEE

Abstract—Billions of dollars are lost every year to successful cyberattacks that are fundamentally enabled by software vulnerabilities.
Modern cyberattacks increasingly threaten individuals, organizations, and governments, causing service disruption, inconvenience,
and costly incident response. Given that such attacks are primarily enabled by software vulnerabilities, this work examines the efficacy
of using change metrics, along with architectural burst and maintainability metrics, to predict modules and files that might be analyzed
or tested further to excise vulnerabilities prior to release. Traditional code complexity metrics, along with newer frequency based churn
metrics (mined from software repository change history), are selected specifically for their relevance to the residual vulnerability
problem. We compare the performance of these complexity and churn metrics to architectural level change burst metrics, automatically
mined from the git repositories of the Mozilla Firefox Web Browser, Apache HTTP Web Server, and the MySQL Database Server, for
the purpose of predicting attack prone files and modules. We offer new empirical data quantifying the relationship between our selected
metrics and the severity of vulnerable files and modules, assessed using severity data compiled from the NIST National Vulnerability
Database, and cross-referenced to our study subjects using unique identifiers defined by the Common Vulnerabilities and Exposures
(CVE) vulnerability catalog. Specifically, we evaluate our metrics against the severity scores from CVE entries associated with
known-vulnerable files and modules. We use the severity scores according to the Base Score Metric from the Common Vulnerability
Scoring System (CVSS), corresponding to applicable CVE entries extracted from the NIST National Vulnerability Database, which we
associate with vulnerable files and modules via automated and semi-automated techniques. Our results show that architectural level
change burst metrics can perform well in situations where more traditional complexity metrics fail as reliable estimators of vulnerability
severity. In particular, results from our experiments on Apache HTTP Web Server indicate that architectural level change burst metrics

show high correlation with the severity of known vulnerable modules, and do so with information directly available from the version

control repository change-set (i.e., commit) history.

Index Terms—Software Vulnerability, Vulnerability Prediction, Software Security Metrics, CVSS Metrics, Mining Software Repositories

1 SECURITY VULNERABILITIES AND SOFTWARE

HE economic externalities stemming from exploited se-
T curity vulnerabilities in software are a multi-billion dol-
lar problem [35]. Each year, world-wide economies, corpora-
tions, and individuals shoulder financial damage stemming
from successful attacks on computers and networks-attacks
ultimately enabled by software vulnerabilities. Such attacks
lead to lost productivity, data disclosure, and identity theft.
In response, several organizations have adopted secure soft-
ware development practices, including practices such as
code review, use of static analysis tools, and penetration
testing to remove these attack enabling vulnerabilities.

The goal of secure software development practices is to
eliminate vulnerabilities before they enter the field. How-
ever, exhaustive application of secure development practices
for all code is often not feasible or cost effective. While it
may seem reasonable for an organization to apply secure
development practices to all newly written code, one must

e Dan Hein, Ph.D., is with Garmin International, Olathe, KS, 66062.
E-mail: daniel hein@garmin.com
e Hossein Saiedian, Ph.D., is with the University of Kansas.

This work was supported in part by Garmin International

simultaneously acknowledge that not all code is new. The
sheer size of modern software, along with the reuse of
existing open source modules, complicates the questions
of where to look, and in what order to look, for security
vulnerabilities.

The problem addressed by this research is the residual
vulnerability problem — the presence of attack enabling
security vulnerabilities in released software. Residual vul-
nerabilities in modern software systems such as mobile
phones, personal computers, Web servers, and IoT devices
allow attackers to compromise both the host systems and
the networks to which they are connected. Secure software
engineering practices seek to identify and remove these vul-
nerabilities prior to release, but the application and manage-
ment of these practices may be nontrivial in practice. Project
size, maturity, and development team culture all play a part
in effectively applying secure engineering practices.

The level of effort to unearth vulnerabilities and remove
them under time-to-market pressure in modern software
is at odds with the level of effort required by attackers to
find and exploit vulnerabilities. The effort required by an
attacker to violate software security defenses is often linear,
requiring an attacker to find a single weakness to exploit.

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 2

As Bellovin [7] states, “whatever the defense, a single well-
placed blow can shatter it.” On the other hand, the effort
required to assure that software is secure is exponential,
requiring exhaustive and comprehensive knowledge of the
software and all its possible interactions with its environ-
ment; this simply isn’t tractable [7].

1.1 Significance

The significance of this research is in optimizing resource
utilization. One of the most expensive and limited resources
in modern software development is developer time. Addi-
tional review and testing of various software artifacts (e.g.
architectural designs, drivers, libraries, modules, and appli-
cation code) is only warranted if there is reason to believe
those artifacts may be attack prone. Moreover, the supply of
time and expertise from security-competent developers and
testers is arguably more restricted due to the specialized
knowledge required to unearth security vulnerabilities. Re-
viewing code from a security perspective requires a level of
expertise in vulnerability assessment and attacker-minded
thinking that few developers possess [40]. This research
aims to intelligently focus these energies on those artifacts
most likely to exhibit vulnerabilities.

This research complements existing tools and predictive
approaches which have already examined the use of code-
based metrics as predictors for implementation defects.
However, this work more closely examines evolutionary
and architectural aspects of the software by studying the
relationship between A) code change and vulnerability
severity, and B) module interconnections and vulnerability
severity.

Consider a legitimate vulnerability identified in the sys-
tem, such as in third party software component. Under-
standing its likelihood of its execution is critical to driving
remediation. Likelihood of execution is a practical aspect
more recently acknowledged by Younis, Malaiya, and Ray
[44][45].

We estimate likelihood of execution using metrics that
characterize a component’s connection to system entry
points [22], such as front line functions [11], exit points,
channels, and untrusted data. Attacker-formed data will
enter the system at these boundaries.

The addition of architectural considerations, and metrics
reflecting the same, better enable the results from vulner-
ability prediction models to be used as tool for security
improvement within secure software engineering life cycles.
We evaluate the feasibility of using metrics that capture
architectural relationships in prioritizing attack-prone code
units to better guide review and penetration testing efforts.
Section 2.2 provides additional background on using CVSS
as a measure of severity.

1.2 Contributions

The key contributions of this research are as follows:

e Introduce practical techniques based on CVSS and
git to automate training set construction for vulner-
ability prediction,

o Examine how change metrics correlate with residual
vulnerability severity,

o Examine how metrics characterizing module inter-
connections and their interfaces correlate with vul-
nerability severity,

e Publish empirical data on change burst metrics to
add to the growing body of literature on defect and
vulnerability prediction in open source projects.

Vulnerability identification and removal is made more
tractable and cost effective by prioritizing components sug-
gested for extended security review and penetration testing.
Establishing priority is important because it recognizes that
not all vulnerabilities are created equal. Paraphrasing a
common saying, “Nothing is top priority when everything
is top priority”.

1.3 Organization

Section 2 - Role of Metrics in Prediction Models covers
relevant terms and concepts, as well as related work in
vulnerability detection. Section 3 - Vulnerability Prediction
Modeling and Evaluation provides a more detailed view
of the prediction model building process. We also provide
additional detail on metrics extracted. Section 4 - Repository
Mining Approach outlines our research approach and data
mining methodology. Section 5 - Experimental Results, and
Analysis of Vulnerability Predictions describes experimental
results and analysis for each software case study. Section 6
- Contributions and Future Work concludes the work with
parting thoughts and ideas for future work that may build
upon this work.

2 RoOLE oF METRICS IN PREDICTION MODELS

This work bridges the fields of secure software engineer-
ing (SSE) and empirical software engineering (ESE). Secure
software engineering is primarily concerned with methods
and techniques to both prevent the introduction of, as well
as detect and remove, vulnerabilities prior to release [15].
Empirical software engineering seeks to understand soft-
ware quality through experimentation, data collection, and
analysis [41], [16].

Within ESE, mining software repositories (MSR) has
emerged as its own area of research [14]. MSR uses ar-
tifacts from a software project for knowledge discovery
(e.g. frequent item set and association rule mining) [43] as
well as to support or refute investigative questions (e.g. do
last minute changes introduce vulnerabilities?). Commonly
mined artifacts include the software version control system,
bug reports, and mailing lists of software projects [42].

2.1 Metric Based Prediction Models and Related work

Prediction models within empirical software engineering
(ESE) typically look at various attributes or properties of
a software file (or its history) as opposed to scanning files
line by line for a specific problematic pattern; in contrast,
commercial static analysis tools scan files line by line for
problematic functions, data flow sequences, and control
flow sequences. The various attributes examined by predic-
tion models are often colloquially referred to as predictors or
features, but these attributes, or their derivatives, either form
the explanatory variables in statistical regression models, or
form the inputs for (typically supervised) machine learners.

Page 2 of 18

Page 30of 18

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 3

The following sections provide additional detail on met-
rics studied by prior fault prediction literature. Related
work on the predictive capability of various metrics and
applicability for vulnerability prediction is discussed.

2.1.1 Code Metrics

Several studies [27], [39], [29], [9] have examined the re-
lationship between residual defects and static metrics ex-
tracted from source code. For example, sheer size of a file in
lines of code (LOC), or more commonly in thousands of lines
of code (KLOC), has been studied as having a bearing on
residual defects based on the premise that larger more com-
plex code is more difficult to understand and comprehend.
Another popular metric is McCabe’s Cyclomatic complexity
which measures the number of paths through a program.
The premise behind McCabe’s cyclomatic complexity relates
to the difficulty in achieving adequate branch and path
coverage during testing.

In the area of fault prediction, Gimothy et al. [12] set sev-
eral precedents for fault prediction studies: use of large, real-
world open source software, applying linear and logistic
analysis, independent evaluation of univariate predictors, as
well as applying machine learning techniques, and 10-fold
cross validation for training and testing.

A related work by Janzen and Saiedian [17], [18], [19]
considered a large number of software architecture metrics
to examine the impact of test-driven development (TDD)
on software architecture. Their objective was to provide a
comprehensive and empirically sound evidence and eval-
uation of the TDD impact on software architecture and
internal design quality. Their research result demonstrated
that software developers applying a TDD approach are
likely to improve some software quality aspects at minimal
cost over a comparable test-last approach.

2.1.2 Change Metrics: Churn and Change Bursts

We refer to metrics characterizing the change in code-based
attributes over time as change metrics or historical metrics to
distinguish them from more traditional static code metrics. In
contrast to static code metrics, change and historical metrics
require a version control system (VCS) for calculation be-
cause they are not directly obtainable from a single snapshot
of the source code. Two such change metrics are churn (i.e.,
code churn), introduced by Munson and Elbaum [26], and
change bursts. Below, we summarize related work in fault
prediction and defect estimation inspires our efforts in the
context of vulnerability prediction.

Churn refers to the number of code lines added, deleted,
or changed over a specified time interval; a convenient
time interval specification is often the time between product
releases [29]. Change bursts refer to consecutive changes
over a period of time [28].Khoshgoftaar et al. [20] use churn
relative to bug changes, as the number of lines added or
changed to fix the bug. Nagappan and Ball [29] demon-
strated how to use relative code churn as an estimator for
system defect density.

Change bursts are described by gap and burst size.
The gap is the maximum distance (e.g., in days) between
successive changes, such that those changes are considered
within the same burst. The burst size is the minimum
number of successive changes required to be considered

a burst. Nagappan et al. more recently studied change
bursts as predictors of residual defects in Windows Vista.
For their study on Windows Vista, they found that change
burst metrics outperformed all previous predictors, such as
code complexity, code churn, and organizational structure,
yielding precision and recall values over 90% [28].

2.1.3 Entropy and Historical Metrics

Entropy characterizes patterns and redundancy, and as
such, is frequently used to evaluate data compression tech-
niques. The more pattern and structure, the lower the en-
tropy. As the distribution of the expected values of X ap-
proach equiprobability, its entropy likewise increases, reach-
ing maximum entropy for a uniform random distribution.

Hassan [13] presents several complexity metrics based
on historical changes, calculating entropy for the file mod-
ifications within a change period (e.g., a week). Hassan’s
entropy based, historically derived measures were shown
to out perform both prior faults and prior modifications as
a predictor of future faults for the open source systems he
studied.

2.1.4 Architectural Modularity Metrics

Sarkar et al. [34] describe a number of information theoretic
metrics that represent module interactions in a system,
or modularity. We submit that the modularity principles
outlined by Sarkar et al. such as similarity of purpose
and encapsulation also echo some of the classic security
design principles of Saltzer and Schroeder [33]. For exam-
ple, Saltzer and Schroeder’s design principle of complete
mediation, where every object access must be checked for
proper authority, is enabled by a design that routes all inter-
module call traffic through a well defined API. Sarkar et al.’s
Module Interaction Index, (MII), is a modularity metric
characterizing the modularity principle of maximization of
API-based inter-module call traffic-an underlying principle of
encapsulation. M is the ratio of external calls made to
a module’s API functions relative to the total number of
external calls made to the module. Low M1 could indicate
direct usage of shared memory or direct global memory
references. We might expect MII to inversely correlate
with security vulnerabilities manifesting from unmediated
changes to global variables, ultimately characteristic of poor
encapsulation.

2.1.5 \Vulnerability Prediction Models

Our study is informed by similar empirical vulnerability
prediction studies by Shin [37], Ayanam [6], Gimothy et. al.
[12], and Bozorgi et. al. [8]. Our work is most closely related
to that of Shin and Ayanam, as both researchers investi-
gated coupling metrics as vulnerability predictors. Shin’s
and Ayanam’s respective works build on a long tradition
of complexity metrics used to predict faults. Vulnerability
ranking approaches are informed by the work of Bozorgi et.
al.

Ayanam studied coupling metrics derived descended
from the lineage of metrics inspired by Chidamber and
Kemerer [9]. The notion of coupling is embodied in the some
of the metrics from Sarkar et. al. [34] that we investigate.
As mentioned in Section 2.1.3, we investigate architectural

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 4

modularity metrics that characterize economy of mecha-
nism and Complete Mediation. We are also interested in
information flow metrics, based on the idea that attacks are
often executed by manipulating input data.

A closely related study for vulnerability prediction was
provided by Yonghee Shin. The results from Shin’s study
indicate that certain change and developer oriented met-
rics are able to discriminate between vulnerabilities and
the larger class of standard issue defects. Shin [38], [37]
examined churn in addition to several other change met-
rics mined from software projects” version control systems.
Shin’s study was likewise focused on security and vulnera-
bility prediction. Shin sought to answer whether or not these
metrics could also be used to identify vulnerable files. Shin
also examined developer oriented graph metrics. Shin’s re-
sults showed developer oriented metrics and change metrics
yielding the best performance on the projects she studied.

2.2 Vulnerability Scoring and Ranking

CVSS scores [23] are listed in the on-line National Vulnera-
bility Database (NVD) [31]. Such scores encapsulate expert
vulnerability knowledge and provide a basis for ranking
vulnerabilities. We evaluate our vulnerability ranking tech-
niques based on architectural metrics against the order im-
posed by CVSS base scores. We are aware of the criticisms of
CVSS base scores by Bozorgi et. al. [8] as a standard against
which to evaluate ranking, but we submit that our usage is
different in the context of ranking the predictions of resid-
ual vulnerabilities. The following paragraphs recapitulate
Bozorgi et al.’s critique and then compares the differences
in the context of our application and intent.

The following are important differences between our
work and that of Bozorgi et. al. [8], considering that their
work is concerned with prioritizing patch selection and
application to operational systems:

e DPrediction error: Our prediction models will have
some prediction error, such as a given false positive
rate. This factor doesn’t impact Bozorgi et. al. since
their false positive rate with respect to this dimension
is 0; that is, they already know the vulnerability
exists, as well as the fix.

e Time independence: Bozorgi et. al. notes a signifi-
cant difference on exploitation likelihood based on
time.

A key difference between our context and that of Bozorgi
et al. is that of time. In their work, the age of a vulnera-
bility was a significant factor in determining exploitation
likelihood-attackers may be less likely to exploit a vulnera-
bility the older it gets. In contrast, our context is one where
any vulnerability could potentially be a zero day exploit.

3 VULNERABILITY PREDICTION MODELING PRO-
CESS AND EVALUATION

This section describes the detailed steps involved in build-
ing and evaluating prediction models. The following sec-
tions provide detail on regression models, metric correlation
Analysis, and evaluation. Evaluation of metrics is relative to
the strength of the rank correlation with advisory CVSS [23].

3.1 Building ESE Prediction Models

Shroter, Zimmerman, and Zeller [36], along with Nagappan,
Ball, and Zeller [30], as well as Chowdhury and Zulkernine
[10], clearly describe the process of building predictive
classification and ranking models based on post-release
defects. Their model building process is relevant because
we are using security advisory reports to identify residual
vulnerabilities. Residual vulnerabilities are a subset of the
more general post-release defects (i.e., used in the predictive
model building process).

Following the steps outlined by Naggappan, Ball, and
Zeller, the end result over several versions of a product,
is a completed training and evaluation database (TEDB).
Each record in the TEDB contains several metrics computed
per release. This database is then used to build prediction
models by using statistical techniques (e.g. least squares
regression) and machine learning classifiers on a portion of
the collected data (e.g, the training data). After the predic-
tion models are built, a different portion of the collected
data (e.g. the evaluation or test data) is used to test the
predictions generated by the models. Since the test data
is already labeled as “vulnerable” (Vuln™) or “neutral”
(Vuln™), a confusion matrix relating the accuracy of the
predictions to the actual values can be generated. Table 1
shows such a confusion matrix, where IV represents the total
number of samples (e.g., files or modules).

Table 1
Detailed confusion matrix
Actual
VulnT Vauln~ Total
. Vuln™ TP FP TP+ FP
Predicted - 7= FN TN FN +TN
Total TP+ FN FP+TN N

3.2 Linear and Logistic Regression

In vulnerability prediction, linear regression is used to es-
timate the number of residual vulnerabilities in a file or
a module from either a single explanatory variable (i.e.,
simple linear regression) or multiple explanatory variables
(i.e., multiple linear regression). Logistic regression, on the
other hand, serves as a binary classifier, mapping the the
response of the dependent variable into one of two classes:

e Vuln™: a file or module contains one or more vul-
nerabilities

e Vuln™: a file or module is assumed to be neutral
with respect to vulnerabilities

Simple Linear Regression Simple linear regression (SLR),
also known as least squares regression, shown in Equation
1, is used extensively in fault prediction literature to per-
form univariate evaluation of individual metrics, calculat-
ing 3, so as to minimize the sum of squared residuals (
S (yi — x;)?), where residuals are the difference between
sampled observations of the dependent variable y and the
explanatory variable .

y = Bo+ Pz 1)

Page 4 of 18

Page 50f 18

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 5

Multiple Linear Regression Multiple linear regression is an
extension of SLR for more than one variable. Rather than
attempting to fit a single line to minimize error, multiple
coefficients inside 3 are used to fit X to Y:

Y = 6o+ 6X @)

3.3 Correlation Analysis

With our data sets sanitized and labeled, we compute
Spearman rank order correlation [25] , p (Equation 3), for
each of our architectural modularity and maintainability
metrics, for each version, with respect to the severity of
the advisories logged against affected files and modules.
Severity at the module level is calculated as both the sum
and average of CVSS scores (y;) for any advisories logged
against the module for each release.

_ >ilzi —2)(yi —9)
Vilzi —)23 (v — 9)?
Notice we use the form of Spearman correlation, p that

accounts for tied ranks. Given the limited range of CVSS

values, it is possible that several results “bin” to identical
ranks.

p ®)

3.4 Metrics Extracted and Calculated

This section details the various metrics collected, discussing
the implications of using the various metrics for residual
vulnerability prediction. Although we are primarily inter-
ested in evaluating architectural and change based metrics,
we also include some traditional code metrics such as Mc-
Cabe’s Cyclomatic Complexity and KLOC for baseline eval-
uation and comparison to past studies.

3.4.1 Notation

The following sections elaborate on the various metric cate-
gories, providing metric calculation formulas. The formulas
are dependent on a notation for a software system, S. Note
that we combine various notation schemes from Sarkar et.
al. [34] and Hassan [13]:

e S consists of a set of modules, M =
{my, ma,...mpr}, where |M| = M, the number of
modules.

e f®denotes a function that belongs to a module’s APL

e K(f) denotes calls made to function f. K.u:(f)
denotes the number of calls to a file from other
modules. K;,,;(f) denotes calls made from within the
same module, and where K (f) = Kepi(f)+ Kint (f).

e Keui(m) is the number of external function calls
made to module m. A module with f;... f, func-
tions will have K.(m) = Zfe{fl.i.fn} Keot(f)

3.4.2 Architectural Modularity Metrics

The architectural modularity metrics presented in this sec-
tion quantify modularity principles enumerated by Sarkar et
al. citeSarkarInfoTheoryMetricModularization07. The mod-
ularity metrics quantify modularity principles that may
likewise impact security properties. The module interaction
index, M1II, for example, quantifies the extent to which
external calls to a module, honor the API provided by the

module, as opposed to calling directly into private functions
and methods. The MII measures the portion of all calls
made to a module that are also routed through that mod-
ule’s API. We submit that such a property is also useful for
security. The following paragraphs frame this concept more
concretely using a hypothetical authorization module as an
example.

Consider a module that is responsible for handling
authorization. It is possible for the MII values to range
between 0 and 1: 0 < MII(authorization) < 1. An au-
thorization module with MII of 0 implies that the module
is either not being used, or that any users of the module
are bypassing the authorization module’s API In the ideal
case, M1I = 1, indicating that all calls to the authorization
module in fact utilize that module’s APL

In general, we theorize that M1 values closer to 0, and
perhaps below some project specific threshold, are inversely
correlated with security advisories and patches involving
a module or its called functions, even if the module is not
directly related to a security feature or function. Unintended
side effects resulting from system maintenance or modifica-
tion would be more likely since encapsulation is violated.
Such side effects have the potential to violate security.

The following equations utilize the notation from Section
3.4.1 to describe relevant metrics:

e Module interaction index (M 1)

2 pacisy. fay Kear(f?)
MII(m) =2 e{f}(ft(}m : ! @)

Rationale: The M 1] was discussed extensively in at
the introduction to Section 3.4.2.

o API function usage index (APIU)

Z?:l ng .

o ;0ifn=20 5)
Rationale: APIU gives an indication regarding the
maturity and degree to which the module has been
vetted. Modules providing a large collections of un-
used cryptography routines would likely have low
APIU. We expect this metric to inversely correlate
with vulnerabilities. For example, consider this re-
lated to a module providing cryptographic routines.
A change in a project that introduces a call into such
a module to use a previously unused cryptography
routine would be treading new territory; the newly
called routine is assumed to not have the operational
time represented by other public functions in the
module.

APIU(m) =

3.4.3 Change and Churn Metrics

Unless otherwise stated, when referring generically to
churn, we mean the sum total of additions, deletions, and
modifications. That is: Churn(E) = Numltemadditions +
Num[temdeletions + Num]temmodifications' As an
example: Churn(FILE) = NumLinesgggeq -+
NumlLinesgeieted + NumLinesirodificd-

NumberOfChanges and ChurnTotal are described as fol-
lows:

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 6

o NumberOfChanges: Number of releases, or commits

in which the entity F, (e.g., the file or module), has
changed.
Rationale: There is support from fault prediction
studies showing that the more a component changes,
the more likely it is to have defects; we evaluate this
notion in the context of vulnerability prediction. Ac-
cess to a VCS provides a fine granularity since each
check-in (i.e., “commit”) can be counted. When only
version archives are available, the count is limited to
detected changes across snapshots.

o ChurnTotal: Total churn over the lifetime of an entity
E, ie., churn(E).

Rationale: We assume that the more has changed, the
higher the likelihood defects will be introduced.

3.4.4 Change Burst Metrics

Change Bursts represent a family of metrics, characterized
by change bursts, CB(G,B), with gap, G, and burst B
parameters (See Section 2.1). We may refer to the change
burst as simply CB, without the parameters (G, B, in
cases where we are discussing concepts and the particular
parameter settings are unimportant. The notation bursts(E)
corresponds to the bursts for element E. That is, element
has a change history E = (e, e2,...) and its bursts are
bursts(E) = (Bj, Ba,...). The following are burst metrics
presented by Nagappan et al. [28], adapted slightly for our

context:

e NumberOfConsecutiveChanges — Number of consecu-
tive builds, versions, or releases for a given gap size,
G. This is |bursts(E)|, with B = 0.
Rationale: Accounts for all consecutive changes for
a given gap size.

o NumberOfChangeBursts — Number of change bursts
corresponding to a particular gap, G, and burst size,
B. The cardinality of CB, or |bursts(E)|.
Rationale: Burst patterns are indicative of risky
behavior.

o TotalBurstSize — Number of changed releases in all
change bursts, i.e. > pcpyrsis(m) |Bl-
Rationale: Assuming that change bursts indicate
risky activities, a high number of changes during
these bursts could be particularly risky.

In the following definitions, let churn(e;) be the number
of lines that were added, deleted, or modified during the
changes to the entity ¢;. By extension, let us also apply churn
to sets, as in churn(E) = 3" e; € Echurn(e;) [28].

o TotalChurninBurst — Total churn in all change bursts,
i.e., churn(bursts(C)).
Rationale: The amount of change involved may be
particularly predictive.

o MaxChurnlnBurst — Across all bursts, this is the max-
imum churn, maz{|churn(B)||B € bursts(E)}.
Rationale: Looking for extremes across change
bursts.

3.4.5 Entropy Based, Historical complexity metrics

A Family of metrics, presented by Hassan [13], denoted
as HCM, that utilize the entropy of files changed over a
change period. Note that the change period can be estab-
lished as a burst with a gap and burst size. Higher values
in these metrics reflect more scattered and widespread
changes. Lower values of HCM correspond to smaller,
more isolated changes to a few files. We expect that more
widespread and scattered changes, characterized by larger
HCM values, will be more likely to introduce vulnerabili-
ties.

We evaluate Hassan’s entropy based historical complex-
ity metrics, HC M, for vulnerability prediction. We feel that
entropy based metrics may be especially well suited for
vulnerability prediction since:

e Entropy based historical change metrics outper-
formed prior faults as a predictor of future faults—in
experiments to date,

o The level of entropy will increase as changes become
more scattered across files and modules,

e The change period can be determined automatically
using change bursts, and

o the presence of said change bursts may themselves
be indicative of a large development push or refac-
toring effort where vulnerabilities may likely be in-
troduced.

3.4.6 Code Metrics

The code metrics included here are less extensive than other
studies. We include some of the better performing coupling
and complexity metrics for comparison with other studies.
Metrics are also selected based on our conjectures regarding
how these metrics might be compared with our architectural
modularity and maintainability metrics. For example, we
include the Henry Kafura (H K) metric because it mirrors
the information flow concept also embodied in Anan et al.’s
[4] module maintainability index, M M I.

In general, we are interested in metrics that have the
potential to characterize information flow through entities
such as functions, files, and modules, as well as complexity
metrics that might provide barriers to human comprehen-
sion. We reason that security vulnerabilities may manifest
as the combination of information flow and difficulties in
comprehension, such as defects introduced unknowingly by
developers because parameter passing or variable accesses
from one function (or module) to another is dubious or
suspect. The code metrics that we are interested in are
presented in Section 5 along with our experimental results.

4 REPOSITORY MINING APPROACH

In this section, we examine the problem more deeply,
providing details relevant to our approach. After a brief
overview is provided, we provide details of our investi-
gation and identify key constructs, equations, tools, and
resources.

4.1 Investigation Overview

Our study subjects are selected due to their significance and
relevance, source code accessibility, and popularity among

Page 6 of 18

Page 7 of 18

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 7

ESE researchers. Our study subjects are large, widely used,
real world software projects. They are Mozilla FireFox,
Apache HTTP Server and MySQL.

Using data from a project’s issue tracking system ITS
(e.g., Bugzilla) and software version control system VCS
(e.g., git), we trace bug reports back to particular file re-
visions and software releases. The bug reports, along with
affected files, enable us to build a training and evaluation
database (TEDB) where each record consists of a file (or
other entity of interest), various metrics, and a classification
label of vulnerable(Vuln™) is applied to a file if its code
underwent modification as the result of patching a vulnera-
bility noted in a published advisory.

Several extraction tools exist for examining software
repositories as well as analyzing the code to automati-
cally compute traditional metrics. Architectural recovery of
dependency graphs and calculation of various metrics is
known as fact extraction. Related studies, as well as our own
research have guided our selection of SciTools Understand
and Anaconda Python.

SciTools Understand is a commercial tool that provides
architectural recovery of call graph information and several
complexity metrics [1]. In addition to being used widely
in the ESE literature, Understand provides Python APIs to
access the fact database it generates for a project [3], [2].

4.2 Data Mining Activities

This section provides a more detailed examination of our
data mining activities. Aside from representing an impor-
tant (and non-trivial) part of this work, we provide this
discussion for two reasons. First, we wish to inform other
ESE and MSR researchers seeking additional information
and insight into our methods. Secondly, these activities
are important because our analysis and results depend on
the data available for each software project studied. The
following steps highlight the mining activities carried out
for this research:

1) Mine NIST NVD [31] for security advisories appli-
cable to the project

2) Analyze mined advisory data to determine versions
of study (i.e., the version range)

3) Mine the project VCS to extract facts related to each
version

4) Determine affected files (i.e., our vulnerable files)

Advisory data in this work consists primarily of CVE
[24] entries extracted from the NVD for each project. CVSS
[23] scores related to specific advisories are extracted from
NVD records. For each project, we limit our study to a viable
version range.

We use different methods to determine the set of files
modified to fix a vulnerability. This set of files modified
is used for marking our training data with the vulnerable
classification (Vuln™). For convenience, we refer to this set
as the vulnerable file set. A common pre-requisite for each
method is Web scraping (and/or crawling) of the project’s
release notes and security advisories. We developed spiders
using the ScraPy Web crawling package. The method used
to arrive at the vulnerable file set depends on the infor-
mation available in the release notes (or security advisory

Web-page) of each project and information available in the
project’s ITS and VCS:

e Download from ITS. This method is used when a
bug ID is provided in the release notes and patches
are available from the project’s ITS. The ITS is in-
dexed with the bug id (and further scraped) to deter-
mine the vulnerable file set.

o Extract from VCS. This method is used when patches
are not accessible from the project’s ITS and /or when
a specific bug id is not provided in the release notes.

For projects where the vulnerable file set can be down-
loaded from the ITS, our spiders obtain resolution and
status terms, as well as perform automated text classification
to determine which of the attached patches contain the
vulnerable file set.

For projects where the vulnerable file set cannot be deter-
mined from the ITS, we use one of the following techniques
to determine the vulnerable file set by searching the VCS:

e When a bug ID can be obtained, automatically search
the VCS change logs (commit history) for references
to the bug (i.e., in the commit message), or

e When a bug id cannot be obtained, query associated
CVE summary for keyword stems that are subse-
quently used to search the VCS change logs in a semi-
automated fashion.

4.3 Discussion Regarding Training Set Construction

Note that the construction of a suitable training set from
the mined information sources is non-trivial. Real world
data sources contain information of varying maturity, com-
pleteness, and accuracy. The variance and inconsistency in
vulnerability data presents multiple challenges to building
a viable data set for training supervised machine learning
algorithms. Figure 1 shows a Venn diagram to visualize the
required vulnerability information. For each software ap-
plication, we require information about individual, publicly
disclosed, security vulnerabilities. Such information includes
the vulnerable file set, affected versions, and a severity score
(from CVE entry).

Because we train our models to differentiate vulnerable
from non-vulnerable files and modules within each version
of a software, it is necessary to accurately associate a pub-
licly disclosed vulnerability with the vulnerable file set in
each version. CVE entries from NVD contain a list versions
of the software that are affected by the specific vulnerability
disclosed in each CVE. However, in the case of the Apache
HTTP Server, we found that in more than one instance,
the release notes (aka security report) for version 2.2 [5]
described a set of affected versions that were not otherwise
found in the corresponding CVE entry. In the case of Apache
HTTP Server, we chose to use the affected version informa-
tion from the Apache-specific security advisory pages for
version 2.2. In the cases of Mozilla Firefox and MySQL,
the security advisories and release notes only listed the
fix version, as opposed to a detailed list enumerating each
individual version. We performed a study of the affected
versions listed in CVE entries corresponding to Firefox and
MySQL and found that in our version ranges of interest (i.e.,
the inspection interval Z) for each application, all versions

oNOYTULT D WN =

Transactions on Dependable and Secure Computing
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 8
Table 2
Marking technique for vulnerable files
Complete Information:
« Affected versions .

+ CVE Score Version —

* Vulnerable files Release Notes 1 2 3 4 5
(Software Specific Advisory) Time

1 | foo.cnotin Vuln FixedIn,0 0 0
2 0 0 0
No CVE Uresolved 3 1 1 0 0 0
Score Files 4 1 1 0 0 0
5 2 2 1 1 FixedIn,0
6 2 2 1 1 0
7 2 2 1 1 0

Limited
Context

Accessible in ITS

(and/or) VCS LG E

Figure 1. Required vulnerability information

prior to the listed fix version were affected. When building
our training data for MySQL and Firefox, we therefore as-
sumed that a vulnerable file was also vulnerable in previous
versions, of course requiring that the file actually existed
in the earlier version. We will refer to this key assumption
as the Previously Vulnerable Assumption. Below, we describe
additional detail around our investigation of the affected
versions listed in CVE data to validate this assumption.

In the course of undertaking the aforementioned in-
vestigation related to affected versions listed in the CVE
data from the NIST NVD, we also noticed a change in
the completeness of the affected version list in said CVE
entries. For example, Firefox CVE entries corresponding
to version 36 and earlier (from years 2011 to 2015) often
enumerate all affected versions, listing each one with its
own <vuln:product> tag. However, CVE entries after and
including CVE-2015-2706 (for years 2015 and 2016) only
list one affected version, (not counting so called ESR, or
extended service release versions).

As mentioned previously, our additional validation ef-
fort led us to the Previously Vulnerable Assumption, and a
new view of training set construction which is discussed at
length in later sections.

Previously Vulnerable Assumption. In the absence of trust-
worthy data related to specific versions of a software that are
impacted by a vulnerability fixed in version N, we assume
that all prior versions, over the inspection interval Z, up to and
including version N — 1 are also impacted. Impacted versions
are thus expressed as V;, where:

e V,; denotes a vulnerable version number for i =

{i1,i2,...,N =1}
e I denotes the inspection interval, 7 =
{R]W’L'nv oo 7RMa:L’}/

e Ryrin and Rpsq, correspond to the minimum and
maximum release versions studied respectively.
o Note that i € Z, therefore Vi,i > Rpp and i < N <

RMaa:

Note that the Previously Vulnerable Assumption is con-

tingent on validation over interval Z. Using Firefox as
an example, interval Z corresponds to the inclusive range
6..49.

Our additional goal of relating the severity of vulnera-
bilities to various features of our training data requires the
use of a standardized measure of severity. At the outset
of this work, we decided to use the CVSS score for each
vulnerability (i.e., a CVE entry in the NIST NVD) as an
indicator of the severity. Two different cross-reference con-
sistency complications related to the use of the CVSS score
from the CVE presented itself in practice: unknown CVE
identifiers and missing CVE identifiers. We describe each in
additional detail below.

Unknown CVE Identifiers. Unknown identifiers result
from inconsistent mapping among security advisories, re-
lease notes, and ITS entries. This mapping inconsistency
presents an issue when attempting to cross-reference a CVE
identifier from a mined ITS entry.

Missing CVE Identifiers: Missing identifiers occur when a
security vulnerability is noted on a security advisory page
(or in release notes), but does not list an associated CVE.
That is, the advisory page may list only the ITS entry, but
fail to list any associated CVE identifier.

The above complications limit our ability to reliably use
CVSS scores in all cases. Because we are able to resolve the
ITS entry to the individual affected files, we can classify
them as vulnerable, but we are unable to perform correlation
analysis related to severity.

4.4 \Vulnerable File Marking Approach

The combination of the Previously Vulnerable Assumption
and the notion of CVE identifiers attributing a scored sever-
ity, leads to a vulnerable entity marking technique. We
present a view of this marking pattern in Table 2.

Table 2 depicts a marking for a single vulnerable file in
the TEDB. The marking shown above is for an associated
CVE. File-to-CVE relationships are stored in the TEDB out-
side this table. The table is interpreted as follows, for some
single file foo.c, in iterating through mined vulnerability
fix data for over the inspection interval Z.

1) Atversion 1, foo.c is not in the vulnerability table;
no record or marking; same at version 2

2) Atversion 3, the table building logic observes mined
data indicating a security fix for version 3, and

Page 8 of 18

Page 9 of 18

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 9

determines the most recent change to foo.c, prior
to version 3, occurred in version 1

o The table building logic adds entries for
foo.c in versions 1 and 2

o The table building logic increments CveCount
to 1 in records corresponding to versions 1
and 2, and adds any corresponding CVE rela-
tionship the File-to-CVE table

3) At version 4, no mined security fix information is
available for foo.c

4) At version 5, the steps at version 3 are repeated for
the new fix information by applying the Previous
Vulnerability Assumption; most recent prior change
is still version 1 because the fix at version 3 was for
a different vulnerability.

o Table building logic back-propagates the rela-
tionship for any newly associated CVE fixed
in5

e The CveCount for prior entries of foo.c are
incremented, resulting in the pattern depicted
in Table 2

Our approach seeks to better understand factors occur-
ring in development of a software product that leads to
severe vulnerabilities, as opposed to measuring the devel-
opment effort applied to the development of the security
fixes themselves.

4.4.1 Vulnerability Distributions and Related Signals

One must ensure that the vulnerability table reflects an
accurate vulnerability distribution at any point in time and
not the fix distribution (e.g., over time when characterized as
successive version slices). This is a phenomenon we experi-
enced in our model building process where a sanity check
of correlation values revealed an echo of the fix distribution,
rather than accurately characterizing desired relationships
with the vulnerability distribution, i.e., within a vulnerability
slice. As we discovered, this issue is especially acute for
repository mined change metrics counting number of files
changed or LOC, as they will directly measure the develop-
ment activity coinciding with the creation of security fixes
for known vulnerabilities, thereby artificially inflating cor-
relation results when evaluating change based metrics for
vulnerability prediction. Thinking of change based metrics
across version slices leads to interpretation of the overall
patterns as vulnerability and fix signals respectively. We
can think of this phenomenon as failure to remove the
“security fix signal”, which forms a vulnerability oracle and
has the effect akin to including a label as a feature during
training. In other words, including labeled observations (or
oracle entries) as features when feeding data to a learning
model. A model trained on oracle data for its test set would
show 100% precision, but would be completely useless in
accurately predicting vulnerabilities in practical real world
scenarios.

Assuming a typical scenario where a security fix for ver-
sion IV + 1 is developed in the prior version NV, correlation
evaluation of size based repository mined change metrics
will show inflated results. Because change metrics measure
the interval N — 1 to N, an observer at version /N, making

predictions for version N + 1 from mined data, will have a
vulnerability oracle for the fix included with the associated
change based metric (measured over the interval N — 1 to
N).

4.5 Module and API Identification

Recall the module metrics MII and APIU are relative to a
module and characterize interaction with other modules.
In both metrics, there is a concept of identifying a public
API for the module. We note that for a large projects,
containing millions of lines of code, it is necessary to devise
an approximation for what constitutes the public API, since
it is unfeasible to search through the entire codebase. Our
method relies in part on information from the Understand
tool, as well as heuristics of our own design.

As we process functions (or methods) in the codebase
using the understand tool, we identify front line functions
[11] from the standard C library, according to the list given
by Manadhata [22]. We consider such front line functions
part of a STDLIB meta-module. All front line functions thus
identified are considered part of the STDLIB public APL
Automated identification of the functions in the public API
of other modules (that is, modules that are not the STDLIB
meta-module) are based on the filename, its extension, or
information reported by the Understand tool.

4.6 Change Burst Detection

Recall that a change burst, CB(G, B) is parameterized with
with gap size G and burst size B. The gap size, G, is the
maximum distance between successive changes, such that
those changes are considered within the same burst. The
burst size is the minimum number of successive changes
required to be considered a burst.

Adjusting the the gap size and burst size enables addi-
tional filtering on the related metrics. Increases in burst size
decreases across the maximum absolute values for related
metrics as the shorter burst sequences are eliminated from
consideration. Increases in gap size result in longer burst
sequences that in turn yield increasingly larger maximum
absolute values.

Our mining software uses the git “commit date” asso-
ciated with each changeset in order to perform compar-
isons against a gap size, G, which is specified in days. A
phenomenon complicating the construction of the training
database is the fact that dates associated with changesets
in a VCS do not necessarily follow the sequence in which
those changesets are merged into the VCS. This often occurs
when as different branches are merged together, or may
also result when a changeset is under review for a long
period. Additionally, at least under git, it is also possi-
ble to manipulate the commit date. We encountered this
phenomenon, which we refer to as “a reversal”, for both
Firefox and MySQL repositories. A reversal occurs when
the date associated with a subsequent change C'hange;1,
precedes the current change Change;. That is, we ex-
pect the mapping between change sequence and its cor-
responding date sequence to maintain relative ordering,
Date(Change;) < Date(Change;iy1),i € I. However, a
reversal is the violation of this expected ordering.

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 10

In the case of Firefox, we attempted to use supplemen-
tary information available to correct the date. Because it is
not possible to determine a correction in all cases, we log this
phenomenon as two new burst measurements we call Coun-
tReversals and MaxSeqByDate. In cases where the mining
software encounters no date reversals in the VCS between
versions N — 1 and N, then MaxSeqByDate is equivalent to
the number of commits (i.e., CountTouches) over the interval
defined by NV — 1 to N. In cases where a reversal occurs,
MaxSeqByDate represents the largest contiguous sequence
before encountering a date reversal.

5 EXPERIMENTAL RESULTS, AND ANALYSIS OF
METRICS AND VULNERABILITY PREDICTIONS

In this section, we enumerate the experimental results for
our software case studies. Results within each section are
prefaced by an overview of the the project and important
characteristics, such as versions studied, project size, and
the approximation of the project’s true vulnerability density
given by our historical training tables (i.e., that define the
vulnerable training set).

5.1 Test Harness and Evaluation Approach

For each case study, we use the same experimental frame-
work for evaluation. Our framework for evaluation con-
sists of a training and test harness built with Scikitlearn
[32] that provides a ten-fold stratified random split of the
data, withholding 33% of the data for test evaluation. The
framework is applied on select metrics, iterating the ten-
fold stratified split for 10 iterations (e.g. 10 x 10-fold cross-
validation), as is a widely accepted practice in vulnerability
model evaluation.

Because we are searching for residual vulnerabilities,
their true population distribution is unknown by definition.
Therefore we are always assuming that any statement about
the vulnerability population is an approximation. Moreover,
from the samples we have (i.e., the files we’ve already
labeled as vulnerable and neutral) it is evident that the
distributions are heavily skewed, with neutral files outnum-
bering vulnerable files by a factor of roughly ten to one.
Shin[37], as well as Chowdhury and Zulkernine [10] note
the danger of imbalances in the training data and the danger
of overfitting the model to the non-vulnerable classification.
Hence, following the approach of of the aforementioned re-
searchers, we use the random stratified sampling technique
to preserve the skewed distribution in our datasets, while
training across the ten folds prevents our model from over-
fitting on neutral files (i.e., the majority class).

5.2 Training Labels and Metrics Definitions

This section provides a roadmap for the case studies. We
describe the training scores and labels associated with
vulnerable files and review the definitions for the metrics
analyzed.

Vulnerable and neutral entities (i.e., files and modules)
are distinguished based on a binomial column label Vuln.
We set Vuln 1 for vulnerable entities. Neutral entities, or
entities where no vulnerability has yet been found are
labeled with Vuln = 0.

Table 3
Definitions for classification labels and expected scores

Page 10 of 18

[Metric [| Definition

The binomial label indicating whether or not the
entity is vulnerable or neutral. For modules, this
is set to 1 if the module contains at least one
vulnerable file.

Vuln

The ordinal count of security issues (most com-
monly counted as ITS entries) associated with a file
in version N + 1. For modules, this is the sum of
the RawCount across all files within the module.

RawCount

The ordinal count of CVE entries associated with
a file in version N. For modules, this is the sum of
the CveCount for all files in the module.

CveCount

TotalScore + CveCount. Simply, the average score;
refer to TotalScore and CveCount defined in other
rows. AvgScore is equal to the CVSS Base score
metric in cases where CveCount is 1, and is 0 when
CveCount is 0.

AvgScore

The maximum CVSS score, from among associated
CVEs (floating point). For modules, this is the
maximum across all files contained in the module.

MaxScore

The sum of CVSS scores from associated CVEs
(floating point). For modules, this is the sum of the
TotalScore across all files contained in the module.

TotalScore

5.2.1 Counting Vulnerabilities and Quantifying Severity

In addition to the binomial Vuln label, we can also count
how many security related issues that the file was associated
with from the ITS, VCS, or determined vulnerable using
some other reference source. Other reference sources in
our context are primarily release notes or CVE entries. The
number of security related issues thus determined is stored
as RawCount. The RawCount for an entity in version N,
is the number of security related issues fixed in the next
version, N + 1, and represents the likelihood that the entity
is vulnerability prone.

The CveCount is an ordinal value indicating the number
of unique CVE entries with which an entity is associated,
irrespective of version. For example, if a file (foo.c) is
associated with three different CVE entries in version N,
then CveCount = 3.

Note that RawCount indicates the number of security
issues with which the entity was associated, without requir-
ing the entity to be resolved (cross-referenced) to a CVE.
For those entities which we were able to cross-reference to
a CVE entry, we define additional CVE-based counts and
scores. These additional CVE-based scores are defined in
Table 3, along with Vuln and RawCount.

RawCount and CveCount may differ for a vulnerable
entity, especially when that entity is involved in more than
one vulnerability. For our purposes, RawCount helps to
identify vulnerable entities we learned about through our
mining activities, but were not resolved to a particular CVE
entry. Entities with a RawCount > CveCount, and where
CveCount = 0, represent entities that we have learned are
vulnerable, but for which severity cannot also be ascribed.

Throughout this work, we use CveCount interchange-
ably with “vulnerability count”. By standardizing on Cve-
Count, we build on the already well-formed definition for
CVE entries (and their use in industry) as synonymous with
identified security vulnerabilities in software. Finally, our
decision to standardize on CveCount additionally facilitates

Page 11 0of 18

oNOYTULT D WN =

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018

Table 4
Definitions for file complexity metrics at version NV

[Metric [| Definition

CountDeclFunction Number of functions.

CountLineCode Number of lines containing source code.
[LOC]

CountLineCodeDecl Number of lines containing declarative
source code.

CountLinePreprocessor Number of preprocessor lines.

CountStmt Number of statements.

CountStmtDecl Number of declarative statements.

CountStmtExe Number of executable statements.

MaxCyclomaticModi- Maximum modified cyclomatic com-

fied plexity of nested functions or methods.

G Maximum strict cyclomatic complexity

MaxCyclomaticStrict of nested functions or methods.

MaxNesting Maximum nesting level of control con-
structs.

RatioCommentToCode Ratio of comment lines to code lines.
Sum of cyclomatic complexity of all

SumCyclomatic nested functions or methods. [aka
WMC]

SumEssential Sum Qf essential complexity of all nested
functions or methods.

our use of CVSS scores that are exclusively associated with
CVE entries as severity quantification metrics. Note that when
CveCount = 1, the average, max, and total are all equal.
Table 3 summarizes the quantification metrics.

5.2.2 Metrics Extraction and Calculation

Complexity Metrics . All file level complexity metrics are
extracted relative to the git commit revision corresponding
to our collected version IN. As such, all metrics thus mined
form a set of observations at NV for predicting N + 1.

We used SciTools Understand tool to extract file level
complexity metrics. The understand tool exports several
metrics, detailed descriptions of which can be found at [1].
We list the top few metrics that were repeatedly selected
by the ANOVA [25] filter in our classification experiments
(i.e., primarily using the logit classifier), in addition to a
few metrics that are widely recognized across defect and
vulnerability literature.

File Level Churn Metrics. A review of file level churn

metric definitions is provided in Table 5 to facilitate quick
reference in the following sections. Note that all churn met-
rics begin collection by walking the reverse topographically
sorted revision history provided by the git log command
from the revision corresponding to the interval N — 1 to V.
The observation point for prediction is still at version V. As
such, all metrics thus mined form a set of observations at NV
for predicting NV 4 1.
Module Level Burst and Architectural Metrics. Module
level burst metrics are defined in Table 6 to facilitate quick
reference in the following sections. Note that all churn met-
rics begin collection by walking the reverse topographically
sorted revision history provided by the git log command
from the revision corresponding to the interval N — 1 to N.
The observation point for prediction is still at version V. As
such, all metrics thus mined form a set of observations at NV
for predicting N + 1.

Table 7 provides an overview of our module metric
definitions.

Transactions on Dependable and Secure Computing

11

Table 5
Definitions for file churn metrics at version N
[Metric [[Definition |
The number of changsets (e.g., VCS com-
CountTouches mits) touching the file since N — 1 [aka.
NumChanges]
CountTouchesP1 CountTouches for this file from N — 2
CountTouchesP2 CountTouches for this file from N — 3
The historical complexity period factor,
HCPF an entropy based metric indicating the
file’s degree of contribution to entropy
over the interval N — 1 to N
LinesAdded The number of lines added since N — 1
LinesModified The number of lines modified since N —1
LinesDeleted The number of lines deleted since N — 1
T The cumulative sum of CountTouches at
otalTouches

N, from all prior intervals

Table 6

Definitions for module change burst metrics observed at version N

Metric

I

Definition |

CountTouches

The number of changsets (e.g., VCS
commits) touching the module path
since N — 1 [aka. NumberOfConsecu-
tiveChanges] 3.4.4].

CountReversals

The number of commit date reversals
encountered when scanning the (e.g.,
VCS commits) changes within the mod-
ule since N — 1.

MaxSeqByDate

Largest sequence of consecutive changes
by date when CountReversals ; 0, other-
wise this metric is equivalent to Count-
Touches.

CountBursts

The total count of bursts in the mod-
ule since N — 1 [aka. NumberOfChange-
Bursts].

CountFilesChanged

The total count of files changed in the
module since N — 1.

NetAddedInBurst

A churn metric characterizing the net
positive number of lines added since
N — 1. This is LinesAdded - Lines-
Deleted, when LinesDeleted < Line-
sAdded, otherwise 0. This quantity is
LinesAdded when LinesDeleted = 0.

TotalChurnInBurst

The number of lines modified, as the
sum of lines added and lines deleted
since N — 1 (as reported by git diff).

Table 7

Definitions for module metrics observed at version N

Metric

Definition

APIU

The API function usage index defined
in Section 3.4.2; appears in graphs in
lowercase as apiu.

k_ext_fa

Number of calls from external modules
to the public API exposed by a given
module; Refer to Section 3.4.2

k_ext_m

Number of external calls from external
modules; Refer to Section 3.4.2.

MII

Module Interaction Index defined in Sec-
tion 3.4.2; appears in generated graphs in
lowercase mii.

N_API

The number of public API functions or
methods exported by a module, dis-
cussed in Section 4.5

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 12

Table 8
Firefox project statistics

Count Count Count
Version LOC Functions Methods Files
6 2,584,376 145,384 82,529 11,329
28 4,473,921 263,480 105,902 20,050
49 5,818,230 355,352 116,753 25,592

5.3 Case Study 1: Mozilla Firefox Web Browser

We studied Mozilla Firefox versions 6 to 49, representing a
time span of approximately five years from August, 2011
to August, 2016. Table 8 provides an overview of size
measurements across the first, middle, and last versions
studied. The measurements shown here were collected from
the SciTools Understand tool [1]. The files processed include
only source and header files (e.g, .c, .cpp, .h, etc.), and
additionally exclude documentation and test folders in the
project’s working tree.

As depicted in Table 8, there are significant differences
in size across the versions studied. Version 28, representing
the middle version, is nearly double (1.7 times) the size of
version 6 when measured in lines of code (LOC). The last
version, 49, has more than double (2.25 times) the LOC than
in version 6, and is 1.3 times larger than version 28. Given
such large differences, we would expect that Firefox version
49 is a much different piece of software than it was at version
6.

Figure 2 is a visualization the number of vulnerabilities,
binned to the nearest whole-numbered (i.e., major) version
of Firefox, over our inspection interval Z = {6,...,49}.
In this figure, VulnCount represents the number of unique
CVE entries plotted against the versions to which they
apply. As shown, the figure represents view of the historical
vulnerability density in Firefox over Z. The figure visually
depicts the pattern we noticed in CVE data for Firefox that
supports the Previously Vulnerable Assumption.

300

250 B

200 | g

100 | g

50 g

1 1 L 1 1 1 1 |
10 15 20 25 30 35 40 45
Version

Figure 2. Historical vulnerability density for Firefox versions 6..49

The list of applicable affected versions is derived directly
from the CVE entries themselves. Firefox related CVE en-
tries in the NIST NVD, for versions 6 to 36, specifically
enumerate all prior versions. The pattern, as depicted by
Figure 2 shows the effect of a retroactive, linearly increasing

offset that “swells” the VulnCount of earlier versions; col-
loquially speaking, we feel the catch phrase a “rising tide
lifts all boats” fits well here. Early visualization of this data
for Firefox informed our vulnerability table construction
technique discussed in Section 4.4.

Our overall model building approach and corresponding
view of fix and vulnerability signals is reinforced when we
plot the number of fixed issues from the ITS for each release
version (RLS) against counts of Firefox CVE entries per RLS
version. This plot is shown in Figure 3, and shows the
impact of known security fixes (the blue line) against the
the count of unique CVE entries (the green line) affecting
each version of Firefox.

Note that Figure 3 simply plots two measured values
present in our mined data. We can see that the tip of feature
A, between versions 16 to 18, leads its appearance in the
CVE data around slice 18.

Because the overall density curve is standardized by the
total sum of all CVE counts for all slices, the density signal
flattens out and shows the effects of the spike near version
45 from the fix signal much less prominently. This view
supports the Previously Vulnerable Assumption because the
high counts from the spike at 45 feed backward into prior
slices, which works to reduce its impact on the density curve
at version 45.

— NumFixedVulns
— VuInCount

10 15 20 25 30 35 40 45
FixVersion

Figure 3. Similar trend observations A and B

5.3.1 File Level Complexity Metrics

Table 9 shows the average Spearman correlations of file
complexity metrics with severity quantification metrics for
Firefox versions 7 to 26. All correlations have p < 0.05.

5.3.2 File Level Churn Metrics

Table 10 shows the average Spearman correlations of file
churn metrics with severity quantification metrics for Fire-
fox versions 7 to 26.

5.3.3 Module Level Burst and Architectural Metrics

Table 11 shows the average Spearman correlations of change
burst churn metrics CB(2,2) with severity quantification
metrics for Firefox versions 7 to 26. Table 12 shows the aver-
age Spearman correlations of module metrics with severity
quantification metrics for Firefox versions 7 to 26.

Page 12 0of 18

Page 13 of 18

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 13
1 Table 9
2 Average Spearman p for file complexity metrics; Firefox 7..26
2 Metric CveCount AvgScore MaxScore TotalScore
AltAvgLineCode 0.127 0.034 0.018 0.064
5 AltCountLineCode 0.287 0.059 0.063 0.154
6 AvgCyclomatic 0.111 0.007 0.041 0.073
7 AvgCyclomaticModified 0.116 0.009 0.042 0.075
8 AvgCyclomaticStrict 0.114 0.012 0.037 0.072
AvgEssential 0.125 0.007 0.049 0.083
9 CountDeclFunction 0.260 0.076 0.041 0.118
10 CountLineCode 0.278 0.069 0.051 0.141
11 CountLineCodeDecl 0.286 0.049 0.076 0.162
CountLineCodeExe 0.254 0.064 0.048 0.127
12 CountLineComment 0.293 0.075 0.048 0.148
13 CountLinePreprocessor 0.260 0.111 0.004 0.093
14 CountStmt 0.278 0.064 0.054 0.144
CountStmtDecl 0.279 0.050 0.071 0.155
15 CountStmtExe 0.254 0.071 0.040 0.121
16 MaxCyclomatic 0.191 0.053 0.029 0.091
17 MaxCyclomaticModified ~ 0.197 0.057 0.029 0.093
18 MaxCyclomaticStrict 0.193 0.058 0.027 0.090
MaxEssential 0.195 0.058 0.031 0.091
19 MaxNesting 0.190 0.054 0.029 0.089
20 RatioCommentToCode 0.001 0.017 0.020 0.004
21 SumCyclomatic 0.256 0.063 0.051 0.128
SumCyclomaticModified ~ 0.260 0.067 0.049 0.128
22 SumCyclomaticStrict 0.255 0.065 0.049 0.126
23 SumEssential 0.268 0.066 0.055 0.134
24
25
26 Table 10 o 5.3.4 Firefox Prediction Experiments
57 Average Spearman p for file churn metrics; Firefox 7..26 In the limited number of experiments we were able to
28 Cve Avg Max Total pert‘f(zlrm w1t111 c;ucllrg and tre}d1tlor§1 tc.01rnplex1l‘f[y I:lletrls[s, :}vle
29 Metric Count Score Score Score noted a marked difference in prediction results, despite the
30 c Y 0317 0006 013 0019 churn metrics p value from the Welch test exceeding 0.05.
ountlouches
31
CountTouchesP1 0.301 0.010 0.136 0.210 : ; ; ;
32 CountTouchesP? 0284 0016 0134 0.202 5.3.5 Firefox exper/rrre.nt comparing complexity and c.hu.rn
33 HCPF 0302 0011 0117 0197 Table 13 shows prediction performance of our prediction
34 LinesAdded 0.305 0.007 0.118 0.202 test harness selecting the best three complexity features
35 L@nesModiﬁed 0299 0.022 0.106 0.186 and performing vulnerability predictions for Firefox ver-
36 LmelsDele}tled 0.3070.001 0125 0.208 sions 7 to 26. The three best selected features were, in
37 TotalTouches 0273 0055 0070 0.138 order: SumCyclomaticModified, SumEssential, and Count-
38 DeclFunction.
39 Table 11 . Table 14 shows prediction performance of our prediction
40 Average Spearman p for change burst metrics CB(2,2); Firefox 7..26 test harness selecting the best three file churn features and
forming vulnerability predictions for Firefox versions 7
41 per g y P .
4 Metric CEY;“ slz‘.fe sl\é[:;; S:l; (:)t:el to 26. The features selected were, in order: CountTouches,
43 CountTouchesP1, and TotalTouches.
44 Count%ouchesl 0~38Z 0.071 0-%93 0-322 Comparing predictions from Table 13 and Table 14, we
CountReversals 0.36 0.059 019 0.3 note generally higher precision values and tighter variance
45 MaxSeqByDate 0335 0.082 0.175 0.324 . dicti ithin 2 he 95% fid
46 CountBursts 0373 007 0194 0356 in pre iction accuracy within 20, or the o confidence
47 CountFilesChanged 0.403 0.11 0.231 0.395 interval.
NetAddedInBurst 0.396 0.1 0.236 0.39
48
29 Total ChurnInBurst 0.397 0.099 0.233 0.389 5.4 Case Study 2: Apache Web Server
50 Table 12 We studied Apache HTTP Server versions 2.2.0 to 2.2.29,
51 Average Spearman p for module metrics; Firefox 7..26 representing a time span of over eight and a half years
52 from December, 2005 to August, 2014. We studied the micro
53 Cve Avg Max Total (patch) versions of Apache HTTP Server 2.2.x. Table 15
54 Module Count Score Score Score shows the adoption of the 2.2 version as of this writing,
55 APIU 0272 0298 0.036 016 thus reinforcing our decision to study 2.2.x.
56 k_ext_fa 096 0.32 0.172 0.173 Table 16 provides an overview of size measurements
57 k ext m 0167 0206 0.163 0.22 across the first, middle, and last versions studied. The mea-
=8 MII 0105 018 0.025 0.061 surements shown here were collected from the SciTools Un-
59 N_API 0.38 025 0331 0427 derstand tool and exclude documentation and test folders

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 14

Table 13
Mean precision (Mprcc) performance using complexity metrics; K = 3;
Firefox versions 7..26

Version Mprec +/-95%
7 0.60 0.17
8 0.48 0.51
9 047 0.41
10 0.57 041
11 0.62 0.10
12 0.61 0.15
13 0.62 0.11
14 0.68 0.11
15 0.58 0.25
16 0.62 0.16
17 0.51 0.24
18 0.55 0.28
19 0.54 0.13
20 0.61 0.16
21 0.59 0.12
22 0.58 0.23
23 0.44 0.39
24 0.53 0.21
25 0.50 0.25
26 0.48 0.19
Table 14

Mean precision (Mprec) performance using file churn metrics; K = 3;
Firefox versions 7..26

Version Mprec +/-95%
7 0.69 0.13
8 0.69 0.10
9 0.67 0.11
10 0.71 0.12
11 0.71 0.08
12 0.68 0.09
13 0.73 0.10
14 0.73 0.11
15 0.69 0.09
16 0.70 0.12
17 0.70 0.11
18 0.70 0.09
19 0.66 0.10
20 0.67 0.08
21 0.67 0.12
22 0.65 0.08
23 0.66 0.10
24 0.63 0.12
25 0.59 0.09
26 0.65 0.11
Table 15

Apache adoption by version [21]

[Number of Websites | Apache Version |

22,970,250 22
8,098,197 2.4
328,257 2.0
307,879 1.3

Table 16
Apache HTTP Server project statistics

Version LOC CouptFunc— CountFiles
tions
2.2.0 113,138 2,799 305
2.2.15 118,183 2,898 309
2.2.29 120,950 2,977 323

YulnCount
i3
—_—
—_—

sl \sj
12

. . L . . .
0 4 8 12 16 20 24
Projectversion

Figure 4. Historical vulnerability density in Apache HTTP versions 2.2.x,
0..29

in the project’s source code tree. Note that we’ve excluded
the count of methods from this table because Apache HTTP
is implemented exclusively in the C programming language
(i.e., contains functions only).

As shown by Table 16, the various sizes are relatively
stable across the versions studied. There were 18 files added
between version 2.0.0 and 2.2.29, or a 6% increase overall.
Likewise, there is an approximate 7% increase in the number
of lines between versions 2.2.0 and 2.2.9.

5.4.1 File Level Complexity Metrics

Table 17 shows the average Spearman correlations of file
complexity metrics with severity quantification metrics for
Apache HTTP versions 2.2.0..29. All correlations have p <
0.05.

5.4.2 File Level Churn Metrics

Table 18 shows the average Spearman correlations of
file churn metrics with severity quantification metrics for
Apache HTTP versions 2.2.x..29

5.4.3 Module Level Burst and Architectural Metrics

Table 19 shows the average Spearman correlations of
change burst churn metrics CB(2,2) with severity quan-
tification metrics for Apache HTTP versions 2.2.x..29. We
note that CountBursts shows relatively high correlation with
AvgScore, which is one of the more conservative estimates
of overall severity, since it is averaged over the individuals
within the module.

Module metrics for Apache are withheld. Apache HTTP
uses many C preprocessor macros and additional add on
packages in order to build the software. Due to suspect
correlations of 0.5, we posit that conditionally compiled
code regions were double-counted. We describe additional
detail related to the pitfalls when calculating module metrics
that result from the lack of precision in our automated
methods in Section 4.5.

Page 14 of 18

Page 15 of 18

oNOYTULT D WN =

26

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 15

Table 17
Average Spearman p for file complexity metrics; Apache HTTP 2.2.0..29

Metric CveCount AvgScore MaxScore TotalScore
AltAvgLineCode 0.036 0.041 0.135 0.079
AltCountLineCode 0.037 0.116 0.144 0.086
AvgCyclomatic 0.011 0.025 0.06 0.008
AvgCyclomaticModified 0.028 0.034 0.06 0.015
AvgCyclomaticStrict 0.01 0.005 0.075 0.003
AvgEssential 0.075 0.092 0.018 0.097
CountDeclFunction 0.043 0.13 0.173 0.097
CountLineCode 0.04 0.152 0.167 0.108
CountLineCodeDecl 0.007 0.05 0.099 0.026
CountLineCodeExe 0.034 0.157 0.158 0.107
CountLineComment 0.133 0.053 0.052 0.082
CountLinePreprocessor 0.017 0.143 0.072 0.082
CountStmt 0.016 0.14 0.156 0.082
CountStmtDecl 0.007 0.036 0.087 0
CountStmtExe 0.041 0.151 0.153 0.105
MaxCyclomatic 0.144 0.129 0.065 0.051
MaxCyclomaticModified 0.118 0.115 0.059 0.042
MaxCyclomaticStrict 0.085 0.141 0.113 0.012
MaxEssential 0.032 0.182 0.11 0.106
MaxNesting 0.028 0.197 0.173 0.147
RatioCommentToCode 0.113 0.067 0.084 0.119
SumCyclomatic 0.056 0.172 0.188 0.133
SumCyclomaticModified 0.05 0.162 0.18 0.127
SumCyclomaticStrict 0.05 0.158 0.173 0.118
SumEssential 0.039 0.171 0.159 0.11
Table 18 In particular, CountFilesChanged and TotalChurnInBurst
Average Spearman p for file churn metrics; Apache HTTP versions show rank order correlation values as high as 0.90 with our
2.2x.29 aforementioned severity quantification metrics.
Cve Avg Max Total Initial prediction experiments with using complexity fea-
Metric Count Score Score Score tures for vulnerability prediction in Apache HTTP showed
CountTouches 0185 0.134 0.065 0.044 mean precision consistently below 0.40, with large accuracy

CountTouchesP1 0.168 0.109 0.061 0.050
CountTouchesP2 0.168 0.108 0.064 0.052

HCPF 0.175 0.083 0.007 0.069

LinesAdded 0.180 0.091 0.020 0.073

LinesModified 0.166 0.061 0.010 0.076

LinesDeleted 0.138 0.087 0.014 0.061

TotalTouches 0.040 0.156 0.134 0.083
Table 19

Average Spearman p correlations for burst metrics; Apache HTTP
versions 2.2.x..29.

Cve Avg Max Total

Metric Count Score Score Score
CountTouches 0.378 0.352 0.189 0.315
MaxSeqByDate 0.364 0.332 0.189 0.315
CountBursts 0.277 0.252 0.143 0.249

CountFilesChanged 0275 0251 0.158 0.247
NetAddedInBurst 0.252 0218 0.149 0.244
TotalChurnInBurst 0.259 0224 0.152 0.25

5.4.4 Discussion

An outstanding result of our experiments with Apache
HTTP is the high correlation between the burst metrics and
our severity quantification metrics (i.e., AvgScore, MaxS-
core, and TotalScore). This result is especially interesting
because the correlation is assessed on a subset of mod-
ules already known to be vulnerable (i.e., Vuln = 1). The
correlation values we are presenting in this particular dis-
cussion do not reflect the respective metrics’ classification
ability, but are presented as a relative quantification of severity.

values (> 0.30) required to achieve the 95% confidence
interval. This suggests a prediction model built with com-
plexity features alone would perform poorly for predicting
vulnerabilities in Apache HTTP.

Noting the high correlation between the number of files
changed within a burst, and a known vulnerable module,
we added an additional score feature used to train our pre-
diction model. When training the model, we cross-reference
the file to the module of which it is a member. We then query
the TEDB for the burst features associated with that module,
extract CountFilesChanged, extending our feature set. Over
100 iterations of a ten-by-ten cross validation, our data show
that this change results in improved mean precision, while
also narrowing the standard deviation across samples of
predicted results in versions 3 through 7. Narrowing the
standard deviation improves our 95% confidence interval
around the mean precision. Table 20 shows the comparison
between mean precision evaluated with 10x10 cross fold
evaluation with an ANOVA selection filter set for the top
five features. Group B (MP_B and Accuracy B) reflects the
module metric enhancement.

The result is compelling because the single addition
of CountFilesChanged is a simple change, yet results in
noticeable prediction performance improvement. One can
envision much more elaborate and well designed scoring
functions that make better use of our severity quantification
measures during training. Moreover, due to the high correla-
tion between CountFilesChanged and severity, as quantified
by the sum of CVSS scores from the respective module, it

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 16

Table 20
Comparison of mean precision and its accuracy over early Apache
versions; 2.2.3..2.2.10.

. Accuracy Accuracy
Version || \ip o A MP_B B
3 0.57 0.35 0.59 0.25
4 0.55 0.46 0.60 0.37
5 0.58 0.26 0.61 0.21
6 0.54 0.46 0.59 0.37
7 0.46 0.31 0.53 0.26
8 0.55 0.25 0.49 0.28
9 0.55 0.23 0.49 0.35
10 0.38 0.18 0.58 0.25
Table 21
MySQL Database project statistics
Count Count Count
Version LOC Functions Methods Files
5.5.0 741,042 27,292 17,510 2,015
5.5.28 670,181 28,196 17,480 2,058
5.5.54 673,662 28,293 17,509 2,061

logically follows that correctly predicted results will be of
greater significance, as argued throughout this work.

5.5 Case Study 3: MySQL Database Server

We studied Oracle MySQL Database Server versions 5.5.0
to 5.5.54, representing a time span of approximately seven
years from December, 2009 to November, 2016. Table 21
provides an overview of size measurements across the first,
middle, and last versions studied. The measurements shown
here were collected from the SciTools Understand tool and
exclude documentation and test folders in the project’s
source code tree.

Due to differences in the way in which the vulnerability
table was built from the VCS mined entries for MySQL,
we discovered the results produced to be inaccurate upon
analysis. Final results are withheld for a future addendum.

5.6 Discussion

We provide evidence here that metrics better reflecting a
software project’s inherent architectural properties, and that
also correspond with earlier lifecycle development activity,

140 |)_G_S\Q\Hﬁs J \\

100 - A\\

VulnCount

0 8 16 24 32 40 48
Projectversion

Figure 5. Historical vulnerability density in MySQL DB versions 5.5.x,
0..50

are better at approximating that project’s Vulnerability Signal.
We define the Vulnerability Signal as a current pre-image of
future security fixes likely to be needed for a project, fol-
lowing from that project’s true vulnerability density. Every
time a security fix is made to a software project, we learn
new information that leads us closer to approximating the
true vulnerability density. We reason that metrics “locking
on” to a projects vulnerability signal at earlier stages will
aid earlier detection.

Metrics selected based on linear correlation (i.e., Pear-
son) or rank order correlation (i.e. Spearman) RawCount,
suffer to capture the true residual vulnerability density and
corresponding severity of vulnerabilities latent in the re-
leased software product. This shortcoming in conventional
approaches may be heightened when using automated tech-
niques for model building as we have described in this
work. Recall that the vulnerability signal, as we define it,
is a property of the overall true vulnerability density of a
software.

While we can never really know the true vulnerabil-
ity density, assuming we have the appropriate reposito-
ries available, we can better approximate a software’s true
vulnerability density as security fixes are made over time.
That is, every time a released software product is fixed for
a security vulnerability, we learn new information about
the source code entities involved. Therefore, we view mea-
surement and evaluation of vulnerability prediction metrics
better estimated with their relationship to overall severity,
and have provided an example of one approach using CVE
scoring data to better quantify severity.

5.7 Threats to Validity

The primary threat to the validity of our results for greater
generalization to other projects rests with the fact that we
used large, mature, and well-known open source projects. It
could be argued that vulnerabilities reported such projects
are more frequently audited by expert reviewers and that
said reviewers naturally focus on modules of greater sig-
nificance. The result of such expert review and focused
attention has the potential to enrich the dataset with addi-
tional information that would not translate to small, newly
developed projects that have not had similar exposure.

Another caveat with respect to generalization is the
validity and applicability of the Previous Vulnerability As-
sumption. We remind the reader that we arrived at this
assumption through careful analysis of the available data
only for the subjects we studied. The technique used in this
study worked well because of the maturity and stability
of the projects used. As used in this study, the Previous
Vulnerability Assumption enabled us to simplify the con-
struction of file level vulnerability data. That is, the number
of vulnerabilities present in a file at a particular version of
the project. For better generalization, rather than assuming
a particular vulnerability was present in previous versions
of the file, the table building logic would stop application
when the affected function was introduced into the file, or
affected lines were last modified, rather than the last file
modification that wasn’t party to a vulnerability fix.

Page 16 of 18

Page 17 of 18

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 17

6 CONTRIBUTIONS AND FUTURE WORK

This Section summarizes our research problem: the residual
vulnerability problem, or the latent persistence of security
related defects, termed vulnerabilities, remaining in software
after its release. We review the problem’s significance as
well as the significance of our work in this context. We
also highlight the creative, original, and novel aspects of our
research contribution and findings. We conclude this Section
with caveats and suggestions for future research.

6.1 Contributions to Residual Vulnerability Prediction
in Software

Our emphasis on more accurately characterizing the resid-
ual vulnerability problem and focus on practical automated
methods for better quantifying the severity of vulnerability
impact, leads directly to several of our significant contribu-
tions. A brief description of each follows, with references as
appropriate for additional detail.

A new approach for metric selection based on cor-
relation with quantified measures of severity, for use in
software vulnerability prediction models implemented with
supervised machine learners. Through careful explanation
and reasoning about the residual vulnerability problem, we
provide a completely new ontology that better characterizes
the relative value of predictions by evaluating their correlation
with quantified measures of severity based on CVE data.

A practical and automated approach to training set
construction is presented according to the new approach for
metric selection, demonstrating the feasibility of of automat-
ing the construction of a training set that is more representa-
tive of the characteristic relationships between measurable
features and our ontology for learner evaluation. Specific
techniques are discussed in Sections 4.3, 4.4, and 4.5.

New insights revealed by our mined data lead to new
ways of thinking about vulnerability density over time in
a software product. Hence, entirely new concepts and ad-
ditional explanations for previously observed phenomena
emerge on review of mined data (i.e., mined according
to our approach for automated training set construction).
Specifically, this work discusses the following new concepts:

o Previous Vulnerability Assumption introduced as a
new concept to aid training set construction, through
careful study of CVE vulnerability data available
from the NIST National Vulnerability Database for
the software projects studied in this work.

o Vulnerability Signal introduced as a new concept
in 4.4, and empirically demonstrated in Section 5,
as the top edge defining a software project’s his-
torical vulnerability distribution that appears when
visualizing the count of unique CVE entries against
affected versions of a software product over time.

o Fix Signal and Vulnerability Oracle introduced as a
new observed phenomena in sections 4.4.1 and 5 that
unify observations from past vulnerability prediction
research; specifically the phenomena observed in our
study better explain the need for LOC correction
and cross-correlation compensation when perform-
ing prediction studies.

Empirical data supporting the value of historical eval-
uation is provided by way of explanation and experiments

in Section 5. Primarily, there are more samples on which to
train a machine learner because older code has more expo-
sure to use and inspection than newer code. We argue that
under certain conditions, this approach better approximates
the true population of vulnerabilities in the software, and
by extension, provides a better test environment in which to
select features in order to build and evaluate vulnerability
prediction models.

6.2 Future Work

There are several future directions for this work, however
the most fundamental deal with evaluation of ranked re-
sults, further validation of the approach, and more clearly
establishing the contexts and caveats characterizing it’s suit-
ability an applicability.

As presented, our approach is entirely new. The more
modern and novel repository-mined change-based fre-
quency metrics, along with architectural module metrics,
showed mixed results for class discrimination largely de-
pendent upon the particular version slice of the respective
software project in which they were evaluated. Our original
premise for the application of repository mined change and
architectural metrics was for use in a ranking stage within
model pipelines where established classification metrics
would discriminate predictions to be ranked. This speaks
to the need for additional validation beyond our initial
evaluation of Spearman correlation measurements against
our own CVE based quantification of severity.

We are excited to further explore the intended applica-
tion for scoring. To this end, we also note that CVE-based
CVSS scores offered a convenient method for quantifying
severity, but the ideas presented are just as applicable to
better severity quantification techniques.

REFERENCES

[1] UnderstandC++. Scientific Toolworks, Inc. https://scitools.com/
features/, accessed Nov 21, 2016.

[2] UnderstandC++ getting started with the APL Part 2.
Scientific Toolworks, Inc. http:/ /scitools.com/blog/api/
api-2-entities-references-and-filters, accessed June 1, 2013.

[3] UnderstandC++ Python API manual. Scientific Toolworks, Inc.
https:/ /scitools.com/documents/manuals/python/understand.
html, accessed June 1, 2016.

[4] Muhammad Anan, Hossein Saiedian, and Jungwoo Ryoo. An
architecture-centric software maintainability assessment using in-
formation theory. Journal of Software Maintenance and Evolution:
Research and Practice, 21(1):1-18, January 2009.

[5] Apache. Apache httpd security report for 2.2. Apache Founda-
tion, online. http:/ /httpd.apache.org/security / vulnerabilities_22.
html, accessed November 22, 2016.

[6] Varadachari S. Ayanam. Software security vulnerability vs. soft-
ware coupling: A study with empirical evidence. Master’s thesis,
Southern Polytechnic State University, December 2009.

[7] Steven M. Bellovin. On the brittleness of software and the infeasi-
bility of security metrics. IEEE Security and Privacy, 04(4):96, 2006.

[8] Mehran Bozorgi, Lawrence Saul, Stefan Savage, and Geoffrey M.
Voelker. Beyond heuristics: Learning to classify vulnerabilities and
predict exploits. In Proceedings of the Sixteenth ACM Conference on
Knowledge Discovery and Data Mining (KDD-2010), pages 105-113,
2010.

[9] S.R.Chidamber and C. F. Kemerer. A metrics suite for object ori-
ented design. IEEE Transactions on Software Engineering, 20(6):476—
493, June 1994.

[10] Istehad Chowdhury and Mohammad Zulkernine. Using complex-
ity, coupling, and cohesion metrics as early indicators of vulnera-
bilities. Journal of Systems Architecture, 57(3):294-313, March 2011.

https://scitools.com/features/
https://scitools.com/features/
 http:// scitools.com/ blog/ api/ api-2 -entities-references -and-filters
 http:// scitools.com/ blog/ api/ api-2 -entities-references -and-filters
https:// scitools.com/ documents/ manuals/ python/ understand.html
https:// scitools.com/ documents/ manuals/ python/ understand.html
http://httpd.apache.org/security/vulnerabilities_22.html
http://httpd.apache.org/security/vulnerabilities_22.html

oNOYTULT D WN =

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, SUBMITTED DECEMBER 2018 18

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

Dan DaCosta, Christopher Dahn, Spiros Mancoridis, and Vassilis
Prevelakis. Characterizing the ’security vulnerability likelihood’
of software functions. In Proceedings of the International Conference
on Software Maintenance, ICSM ‘03, Washington, DC, USA, 2003.
IEEE Computer Society.

T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE
Transactions on Software Engineering, 31(10):897-910, October 2005.
Ahmed E. Hassan. Predicting faults using the complexity of
code changes. In Proceedings of the 31st International Conference
on Software Engineering, ICSE '09, pages 78-88, Washington, DC,
USA, May 2009. IEEE Computer Society.

Ahmed E. Hassan and Tao Xie. Software intelligence: the future of
mining software engineering data. In Proceedings of the FSE/SDP
Workshop on Future of Software Engineering research, FoSER 10,
pages 161-166, New York, NY, USA, 2010. ACM.

Daniel Hein and Hossein Saiedian. Secure software engineering:
Learning from the past to address future challenges. Information
Security Journal: A Global Perspective, 18(1):8-25, 2009.

WA Jansen. NIST IR 7564: Directions in security metrics research,
National Institute of Standards and Technology, US Dept. of
Commerce, Gaithersburg (2009).

D. Janzen and H. Saiedian. Test-driven development: Concepts,
taxonomy, and future direction. IEEE Computer, 38(9):43-50, Au-
gust 2005.

D. Janzen and H. Saiedian. A leveled examination of test-driven
development acceptance. In Proceedings of the 29th ACM Inter-
national Conference on Software Engineering, pages 719-722. ACM,
May 2007.

D. Janzen and H. Saiedian. Does test-driven development really
improve software design quality? IEEE Software, 25(2):77-84,
March/ April 2008.

T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and J. McMul-
lan. Detection of software modules with high debug code churn
in a very large legacy system. In Proceedings of the The Seventh
International Symposium on Software Reliability Engineering, ISSRE
’96, Washington, DC, USA, 1996. IEEE Computer Society.
BuiltWith Pty Ltd. Apache usage statistics. BuiltWith Pty Ltd., on-
line. https:/ /trends.builtwith.com /Web-Server/Apache, accessed
January 9, 2017.

P. K. Manadhata and J. M. Wing. An attack surface metric. IEEE
Transactions on Software Engineering, 37(3):371-386, May 2011.
Peter Mell, Karen Scarfone, and Sasha Romanosky. CVSS: A
Complete Guide to the Common Vulnerability Scoring System Version
2.0. FIRST: Forum of Incident Response and Security Teams, June
2007.

MITRE. Common vulnerabilities and exposures: About CVE.
MITRE Corporation, online. https://cve.mitre.org/about/, ac-
cessed November 22, 2016.

David Moore. Introduction to the Practice of Statistics. Freeman,
New York, 2 edition, 1993.

J. C. Munson and S. G. Elbaum. Code churn: a measure for
estimating the impact of code change. In Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272), pages 24—
31. IEEE Comput. Soc, 1998.

J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone
programs. IEEE Transactions on Software Engineering, 18(5):423-433,
May 1992.

N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Mur-
phy. Change bursts as defect predictors. In Software Reliability
Engineering (ISSRE), 2010 IEEE 21st International Symposium on,
pages 309-318. IEEE, November 2010.

Nachiappan Nagappan and Thomas Ball. Use of relative code
churn measures to predict system defect density. In Proceedings of
the 27th International Conference on Software Engineering, ICSE "05,
pages 284-292, New York, NY, USA, 2005. ACM.

Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining
metrics to predict component failures. In Proceedings of the 28th
International Conference on Software Engineering, ICSE '06, pages
452-461, New York, NY, USA, 2006. ACM.

NIST. NVD: National Vulnerability Database. National Institute
of Science and Technology, online. http:/ /nvd.nist.gov/, accessed
November 22, 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

Jerome H. Saltzer and Michael D. Schroeder. The Protec-
tion of Information in Computer Systems. Proceedings of the
IEEE, 9(63):1278-1308, 1975. http://web.mit.edu/Saltzer/www/
publications/protection/.

S. Sarkar, G. M. Rama, and A. C. Kak. API-based and information-
theoretic metrics for measuring the quality of software modu-
larization. IEEE Transactions on Software Engineering, 33(1):14-32,
January 2007.

Bruce Schneier. Information security and externalities. In Social
and Economic Factors Shaping the Future of the Internet, pages 19-20.
NSF/OECD, January 2007. http://www.oecd.org/sti/ieconomy/
37985707 .pdf.

Adrian Schroter, Thomas Zimmermann, and Andreas Zeller. Pre-
dicting component failures at design time. In Proceedings of
the 2006 ACM/IEEE International Symposium on Empirical Software
Engineering, ISESE '06, pages 18-27, New York, NY, USA, 2006.
ACM.

Yonghee Shin. Investigating Complexity Metrics as Indicators of
Software Vulnerability. PhD thesis, North Carolina State University,
Raleigh, North Carolina, 2011.

Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Os-
borne. Evaluating complexity, code churn, and developer activity
metrics as indicators of software vulnerabilities. IEEE Transactions
on Software Engineering, 37(6):772-787, November 2011.

E. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa, M. Lindvall,
D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz. What we have
learned about fighting defects. In Software Metrics, 2002. Proceed-
ings. Eighth IEEE Symposium on, pages 249-258. IEEE, 2002.
Kenneth R. van Wyk and John Steven. Essential factors for
successful software security awareness training. IEEE Security and
Privacy, 4(5):80-83, 2006.

Greg Wilson and Jorge Aranda. Empirical software engineering.
American Scientist, 99(6):466+, November 2011.

Tao Xie, Jian Pei, and Ahmed E. Hassan. Mining software en-
gineering data. In Software Engineering - Companion, 2007. ICSE
2007 Companion. 29th International Conference on, pages 172-173,
Washington, DC, USA, May 2007. IEEE.

Tao Xie, Suresh Thummalapenta, David Lo, and Chao L. Liu. Data
mining for software engineering. Computer, 42(8):55-62, August
2009.

A.A. Younis, YK. Malaiya, and I. Ray. Using attack surface entry
points and reachability analysis to assess the risk of software
vulnerability exploitability. In High-Assurance Systems Engineering
(HASE), 2014 IEEE 15th International Symposium on, pages 1-8, Jan
2014.

Awad Younis, Yashwant K. Malaiya, and Indrajit Ray. Assessing
vulnerability exploitability risk using software properties. Software
Quality Journal, 24(1):159-202, March 2016.

Page 18 of 18

https://trends.builtwith.com/Web-Server/Apache
https://cve.mitre.org/about/
http:// nvd.nist.gov/
http:// web.mit.edu/ Saltzer/ www/ publications/ protection/
http:// web.mit.edu/ Saltzer/ www/ publications/ protection/
http:// www.oecd.org/ sti/ ieconomy/ 37985707.pdf
http:// www.oecd.org/ sti/ ieconomy/ 37985707.pdf

