INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE
https://doi.org/10.1080/19393555.2017.1329461

Taylor & Francis
Taylor &Francis Group

W) Check for updates

USBWall: A novel security mechanism to protect against maliciously

reprogrammed USB devices

Myung Kang and Hossein Saiedian

Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas, USA

ABSTRACT

Universal Serial Bus (USB) is a popular choice of interfacing computer systems with peripherals.
With the increasing support of modern operating systems, it is now truly plug-and-play for most
USB devices. However, this great convenience comes with a risk that can allow a device to
perform arbitrary actions at any time while it is connected. Researchers have confirmed that a
simple USB device such as a mass storage device can be disguised to have an additional
functionality such as a keyboard. An unauthorized keyboard attachment can compromise the
security of the host by allowing arbitrary keystrokes to enter the host. This undetectable threat
differs from traditional virus that spreads via USB devices due to the location where it is stored
and the way it behaves. We propose a novel way to protect the host via a software/hardware
solution we named a USBWall. USBWall uses BeagleBone Black (BBB), a low-cost open-source
computer, to act as a middleware to enumerate the devices on behalf of the host. We developed a
program to assist the user to identify the risk of a device. We present a simulated USB device with
malicious firmware to the USBWall. Based on the results, we confirm that using the USBWall to

KEYWORDS
SB security; physical security;
transient device; Beaglebone
black; human input devices
(HID) attack

enumerate USB devices on behalf of the host eliminates risks to the hosts.

1. Trust in USB standards

As the Universal Serial Bus (USB) interface gained
popularity thanks to its plug-and-play capability
and small form factor, operating systems have
started to support more types of devices. Most
USB devices have hot-swapping and plug-and-
play capability, which allows for rapid device initi-
alization as soon as it is plugged in. Combined
with the size of the NAND flash and native sup-
port that allows it to be activated without addi-
tional software, the flash drive became the most
popular USB device (Appavoo et al., 2003; Intel
Corporation and Microsoft Corporation, 1999).
To provide plug-and-play, the underlying pro-
tocol is designed to minimize user interaction in
dynamically allocating system resources (Compag,
Hewlett-Packard, Intel, Lucent, Microsoft, NEC,
Philips, 2000). Meanwhile, during this time, the
host must trust the device’s initial information to
which it initializes. However, leveraging on the
large driver base of modern operating systems
and along with users’ inaccurate models of threat

possibilities that make users believe they are safer
than they actually are (Tetmeyer & Saiedian,
2010), a new threat appeared. The threat, coined
BadUSB by Security Research Lab, exploits the
trusting nature of the current USB specification
to allow a device to present itself as a different,
potentially malicious, type of device (Harman,
2014; Security Research Labs, 2014).

For example, a flash drive may establish the
USB handshake as a keyboard. Exploiting users’
inaccurately perceived sense of safety, a seemingly
small USB drive may appear to be a safer device
than a physical keyboard. Being granted key-
stroke access to a system effectively adds an
attack surface by allowing the attacker to run
arbitrary commands with the privilege of the
currently logged-in user (Security Research Labs,
2014). This is a particularly alarming finding
because of the widespread support of USB in
everyday devices. Not only computers, but also
all USB-enabled devices that support USB con-
nectivity, are susceptible to this attack. The added

CONTACT Myung Kang @ mkang@gus.pittstate.edu

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uiss.

© 2017 Taylor & Francis

http://www.tandfonline.com/uiss
https://crossmark.crossref.org/dialog/?doi=10.1080/19393555.2017.1329461&domain=pdf&date_stamp=2017-07-12

2 (&) M.KANG AND H. SAIEDIAN

attack surface is significant because it is platform-
independent. Because the attack takes advantage
of the USB standards itself, it can potentially
affect all USB-capable devices such as automobile,
home appliances, and any other devices with USB
ports. When exploited, it can cause unintended
behaviors ranging from annoying to compro-
mised security measures.

This discovery differs from traditional security
vulnerabilities such as Stuxnet, which used USB
drives as one of its primary means to propagate
(Falliere, Murchu, & Chien, 2011). In the case of
Stuxnet, the virus hides within the storage area of
the device. BadUSB, on the other hand, is affected
and executed within the firmware area of the
device. Therefore, no commercially available anti-
virus can detect the existence of malicious firm-
ware. Because the firmware exploits the low-level
USB transaction, this new vulnerability can affect
all USB-capable devices. Primary methods of pro-
tection against virus on removable devices have
been to scan the files before read and write opera-
tions. Therefore, there is currently no available
protection for USB devices with malicious
firmware.

Potential vulnerabilities of the USB specifica-
tions have been well discussed, such as lack of
USB attestation (Zhaohui, Johnson, & Stavrou,
2012) and leaking confidential confirmation
using unintended channels (Clark, 2009; Clark,
Leblanc, & Knight, 2011). Because of the risks,
many organizations resort to well-written legal
policies and try to shape employees’ behavior.
Although such policies prohibit the usage of non-
trusted devices, and they do not totally stop non-
trusted devices, they usually give the organization
legal rights after an incident happens (Tetmeyer &
Saiedian, 2010).

This article focuses on developing countermea-
sures against BadUSB devices, and evaluating their
effectiveness. As the attack takes place at the
lower-level operations of the USB controller, no
measure exists for the host operating system to
distinguish the infected re-enumerating from phy-
sical plug-in events. Therefore, we developed
USBWall as a novel way to add a protection layer
with an additional middleware between the host
and devices.

1.1. Significance of sandboxed USB transactions

In the world of the cybersecurity arms race that is
growing rapidly (Rueter, 2011), our research
explores a practical method to counter the newly
found threat of USB devices with malicious firm-
ware. Because of the nature of the vulnerability,
which operates at the low level of USB standard,
the threat can potentially affect all USB-capable
devices. We believe that the current standard
implies too much trust when initializing the
device, and the trust must be displaced to achieve
a secure USB environment.

Although there are not many existing studies
regarding this new risk of USB devices with mal-
icious firmware, other risks of user devices includ-
ing USB storage devices (transient storage devices,
TSDs) are well discussed. In this section, we dis-
cuss the existing studies about user devices’ risk as
well as proposed standards that attempt to make
the USB interfacing safer by authorizing and
authenticating USB devices. Several proposals
have been submitted and approved. However,
they were not implemented in mainstream operat-
ing systems to offer effective protection for users.

As more manufacturing is outsourced to other
countries (Mitra, 2013), the risk exists for an
unauthorized change to be made to the product
design at the manufacturing phase. Even if the
product meets all specification requirements, it
has a possibility to operate unexpectedly under
certain predefined circumstances. For instance,
encryption modules which are mass-produced in
distant factories can carry risks such as allowing
unauthorized parties to access the private key on
the chip’s memory (Jin, 2012).

The term “hardware trojan” refers to an unauthor-
ized change in hardware components to allow bypass-
ing or weakening of designed behavior manufactured
offshore (Karabarbounis & Neiman, 2013). A device
with one or more such components could cause
unexpected behavior. Increasing outsourcing of
device fabrication foundries contributes to the heigh-
tened possibilities of malicious circuits being inserted
(Oshri, Kotlarsky, & Willcocks, 2015; Jin, 2012). Such
attacks would insert unauthorized circuits to be acti-
vated at a later time. Such modifications can cause
unexpected behaviors such as a disclosure of secret

keys in the encryption module, returning a false result,
or complete destruction of the module itself.

In addition to hot-plug capability and smaller
form factors, USB flash drives have quickly
become the popular choice for removable storage
device. While they provide users portability and
convenience, incorrect user-perceived notions of
security have allowed a worm such as Stuxnet to
propagate and even reach stations not connected
to the network (Tetmeyer & Saiedian, 2010;
Falliere et al., 2011). Reacting to viruses such as
Stuxnet and its variants, endpoint security pro-
grams scan files before reading and writing. This
had been proven effective in providing protection
to operating systems from malicious codes that
attempt to execute without the user’s consent.

The users are the most important entity because
they are the ones who have the physical access to
the protected systems. The inaccurate idea of a
device by a user, misjudged by its physical appear-
ance, often leads to security threats (Tetmeyer &
Saiedian, 2010). For example, an iPod may be seen
as a music player that needs charging using a
corporate computer. However, when it connects,
it attempts to establish connections to the compu-
ter, which could lead to violation of company
policy. A small honest mistake like this could
turn into an organization-wide security threat by
adding just enough attack surface. The innocuous-
ness of a TSD and its portability, along with the
inaccurately perceived sense of security by the
user, creates a disparity between the actual and
perceived security. This is important context for
our research. Our research assumes that the user is
aware and suspicious of unknown USB devices.

In addition to the inaccurate model of security
and the general notion of a hardware trojan, unin-
tended channels serve to extract data using unu-
sual devices such as keyboards and USB speakers.
Unintended channels utilize data paths that are
designed to carry control data for the devices

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE ‘ 3

(Clark et al., 2011; Clark, 2009). Such features
would be inserted in the manufacturing phase.
Then, they would interact with the software coun-
terpart on the target system to extract data. In
Clark’s research, an unsuspicious device such as a
keyboard with modified firmware can collect and
store sensitive data by tracking the LED state of
Num Lock, Caps Lock, and Scroll Lock turn on
and off. Although the LED activity is visible, this
data path is generally not monitored by security
software products. In the same research, Clark also
explores the possibility to exfiltrate data via a
device such as a USB speaker. By utilizing a non-
audible data channel such as
WAVEFORMATEXTENSIBLE, Clark succeeds in
showing that it is very possible to steal data via a
set of speakers.

It is not only the owner’s device that poses risk.
An innocuous request from others to plug in their
USB device to charge it could be just as risky as
plugging in a flash drive with Stuxnet. Similar to
the incorrect model of security in the previous
section, users often consent to plugging in
unchecked USB devices based on the relationship
with the requestor. For example, a proof-of-con-
cept named Pod Slurping was released to the pub-
lic in 2005 (Usher, 2005). The concept of Pod
Slurping effectively proves that an innocuous
device such as a music player can have a malicious
intent programed so that the attacker can access
the data on a protected system. Leveraging on the
inaccurate model of security (Tetmeyer &
Saiedian, 2010), consented use of user devices
poses great threat to computing safety.

We propose a novel way to sandbox USB enu-
meration, which is the root cause of the vulner-
ability on which the malicious firmware attack
depends. The attack exploits the nature of USB
devices as shown in Figure 1. Only the mass sto-
rage area is visible to the user and the operating
system. The attack executes at the firmware level,

USE Controller Flath

Host

8051 CPU
«+—» . | Controller

Firmware | | Mass Storage

Bootloader

Figure 1. Diagram of USB flash drive components.

4 (& M. KANG AND H. SAIEDIAN

making it impossible to detect before the malicious
code is executed. BeagleBone Black (BBB)
embedded computer is used as a hardware plat-
form, and an open-source project USBProxy is
used as a software platform to enable a complete
USB sandbox environment.

1.2. Research methodology

The threats arising from maliciously repro-
grammed USB devices are possible because of
unnecessary and excessive trust placed on devices
by hosts, as well as the automatic installation of
common device drivers. We believe that reducing
the implied trust is the key to protecting the host.
To test effective ways to break the trust between
the host operating system and USB devices, the
current USB specification is discussed in detail to
precisely locate the best layer to displace the trust.
To decrease the level of trust, we develop a set of
programs called USBWall, which automates sev-
eral operating systems native commands and
open-source projects such as USBProxy. These
programs are designed to eliminate the implied
trust between the host operating system and the
device. Figure 2 shows how USBProxy (Spill &
Stasiak, 2014) operates on BBB, which is one of
the key components of the USBWall. A crucial
part of the USBWall that handles the actual data
is USBProxy by Dominic Spill. USBProxy relays
USB data traffic from a device to a host using
gadgetFS. Because USBProxy is launched with
parameters of the device’s specific VID and PID,
if the device attempts to re-enumerate, USBProxy
needs to relaunch. The terminated
automatically.

flow is

To test a BadUSB-like device, the current pro-
ject developed a sample BadUSB device by using
Harman’s program (Harman, 2014). The device
will have a different firmware from the manufac-
turer’s, then be presented to a host in several
configurations. Test results will be gathered by
comparing the product, USBWall, with other com-
mercially available antivirus products.

2. Related work in authenticated USB uses

Attack scenarios originating from user devices are
well known. From floppy disks to iPods to USB
devices, the full potentials of computer peripherals
are also well recognized by security professionals,
while most ordinary computer users are unaware
(Arce, 2005). Historically, user devices have always
carried risks of executing unexpected behavior on
the host device. As modern technology develops at
a stunning rate to reduce the physical size of user
devices, the capacity and capabilities of the devices
become more sophisticated. What were merely
media on which to hold bits are now small repro-
grammable computers with interfacing capability
to teir embedded storage flash chips.

2.1. The inherent trust of the USB standard

The USB specification is written with the intention
of minimizing user intervention during device initi-
alization (Compaq, Hewlett-Packard, Intel, Lucent,
Microsoft, NEC, Philips, 2000). Consequently, the
complexity of hardware required to be USB-compli-
ant devices became more sophisticated than older
interfaces such as DB-9 and DB-25. Contrary to the
handshake transactions of older interfaces, which are

: USBProxy on
BeagleBone Black

—_—

Injector

usBe : Device T
Device Proxy v

Filter

Figure 2. USBProxy architecture.

handled at the application level, USB specifications
mandate that the host controller and slave controller
establish the initial contact using a predefined series
of electronic signals handled at the hardware level.
More details about USB enumeration are discussed
in Section 3. In addition to allowing for easier device
initialization, to support a wider range of periph-
erals, the slave controller must be versatile enough
to accommodate different types of transactions. This
means that there must be a controller on the host
side to determine the type of connected devices. The
host controller initializes the device to the type of
device based solely on the information sent by the
device.

Unfortunately, the current USB specification
implies trust between host and device by not spe-
cifying a way to attest or authenticate the device.
We argue that properly placed trust is imperative
to achieve safer computing. Several existing stan-
dards can affect the plausibility of the malicious
tirmware attack. We categorize them as nontech-
nical, software, and hardware measures.

2.2. Nontechnical measures

2.2.1. Policy enforcement

A very limited number of countermeasures that miti-
gate this newly found threat exist. However, there are
nontechnical controls such as the payment card
industry data security standard (PCI DSS) that could
help reduce the exposure from devices with malicious
firmware by mandating certain physical controls. PCI
DSS disallows allmost all external computer interfaces

Maintain an Information Security Policy

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE 5

except when it is absolutely necessary and no other
alternative interfacing is available. In such a case,
compensating control must be declared and approved
(PCI Security Standards Council, 2015). Figure 3
shows the example of PCI DSS’s self-assessment ques-
tionnaire mandating policy review.

Furthermore, employee handbooks and accepta-
ble-use policies are also used to limit physical access
to the protected system to only authorized indivi-
duals. Such policies attempt to minimize the like-
lihood of unknowingly plugging in an unauthorized
USB device. However, those policies fail to provide
technical measures that prevent such attack from
executing, although they provide sound legal ground
to assist with legal proceedings.

2.2.2. Public awareness
The possibility of exploitation from USB devices
with malicious firmware was announced at Black
Hat USA 2014. A Security Research Labs (SRL)
presentation urged the USB controller manufac-
turers to mitigate the problem. They demonstrated
the possible use cases of the vulnerability if a USB
device is infected with malicious firmware. A
device with malicious firmware, named a
BadUSB, was shown to appear as a completely
different type of device than its physical character-
istics indicate. At the time, SRL did not disclose
the details of how their demonstration BadUSBs
were created. Notwithstanding such a gesture, the
problem remained unattended.

Later that year, Harman made the code to
reprogram the firmwares of certain types of USB

Requirement 12: Maintain a policy that addresses information security for all personnel

Note: 12 specifies that must have i jon securily policies for their personnel, but these policies can be as simple or

complex as needed for the size and of the s i The policy must be provided fo all 50 they are

aware of their ibilities for pi ing the, p any paper with data, efc. If a merchant has no

, then it is exp that the iges their responsibility for security within their store(s).
PCI DSS Question Response: Yes No MNIA | Guidance for SAQ P2PE-HW

121 Isa security policy blished, published, maintained, and] O “Yes" answers for requirements al 12.1 mean
disseminated to all relevant personnel? that the merchant has a security policy that is
For the of F i 12, refers to full- reasonable for the size and complexity of the
time p rhiddy ploy - ¥ = and merchant’s oparations, and that the policy is
and contractors and consultants who are “resident” on the | reviewed annually and updated if needed. For
entity’s site or otherwise have access fo the company's site example, such a policy could be a simpie
cardholder data environment. document that covers how to protect the store

T | and POS devices in accordance with the
1213 Is the information security policy reviewed at least once a 0 0O | P2PE Instruction Manual (PIM), and who to
year and updaled as needed lo reflect changes to business call in an emergency.
bjectives or the risk i ? |
124 Do the security policy and procedures clearly define information O [m] A "Yes" answer for requirement 12.4 means

security responsibilities for all personnel?

Figure 3. PCl DSS self-assessment questionnaires v2.0 sample.

| that the merchant's security policy defines
| basic security responsibilities for all

6 M. KANG AND H. SAIEDIAN

G G DATA USB KEYBOARD GUARD X

The operating system reports a new keyboard:

& HID-Tastatur

This tool protects your PC against malicous devices that
pose as a keyboard. Hackers manipulate USB sticks in this
way in order to spy on your personal data or to distribute

malware,

If you did NOT just connect a keyboard to your system,
please choose "Block keyboard". In that case, do not use
this device on any PC that is not being protected by

G DATA USB KEYBOARD GUARD!

How would you ke to continue?

| Alowkeyboard | [Blockkeyboard |

Learn more about this topic...

Figure 4. G Data USB Keyboard Guard notification.

flash drives available to the public at SchmooCon
2014 (Harman, 2014). He confidently announced
that his action hoped to bring manufacturers to fix
the vulnerability quickly. He believed that public
awareness is the key to resolving the issue.
Although this approach did not provide a techni-
cal means to protect against a BadUSB, Harman’s
presentation made many users aware of the possi-
bilities. These announcements were covered by
several news outlets, alerting a more general audi-
ence to be aware of the risk (Brandom, 2014;
Mamiit, 2014; Spector, 2014).

2.3. Proposed standard: IEEE 1667

To mitigate the risks from TSDs as well as unin-
tended channels, a number of standards and mod-
ifications of USB have been proposed to attempt to
authenticate and authorize a device (IEEE 1667
Working Group, 2010; Rich, 2007; Verma &
Singh, 2012; Zhaohui et al., 2012). Authentication
in a USB means the host and device can validate
each other, and authorization means the host
accepts only a predefined functionality from
devices. Current practice of using vendor ID
(VID) and product ID (PID) provide only limited
means of protection, as they are easy to spoof and

provide only the device and manufacturer infor-
mation. IEEE 1667 describes a complete way to
provide both features. For example, using a con-
cept of silos, an IEEE 1667-compliant host accepts
only preauthenticated devices. As such, IEEE 1667
was proposed and approved in 2007 (IEEE 1667
Working Group, 2010). However, it is hardly used
in modern operating systems and devices.
Although it was proposed and announced to be
implemented to Windows 7 in 2008, there do not
seem to be any IEEE 1667-compliant devices in
the general market.

2.4. Software measures

Shortly after the discovery of the risk of devices
with malicious firmware at Black Hat USA 2014
(Security Research Labs, 2014), G Data published
a program that traps USB keyboard insert events
(G Data, n.d.). The program monitors all USB
insert events, then the program is activated if
the new device inserted is a HID keyboard. A
pop-up notification as shown in Figure 4 appears
for the user to decide.

Depending on the choice, the insert event is
either allowed or blocked by the console user. If
allowed, the new hardware is uninterrupted and

results in a successful device initialization. If not
allowed, the new hardware is not initialized and is
blocked from future insert. While the Keyboard
Guard offers excellent protection without any
modification to Windows operating systems, its
protection is limited to HID keyboards only.
Considering that reprogrammed USBs can pose
as any device to any operating system, it does not
offer full protection for users against malicious
devices posing as something other than a
keyboard.

The implementation of the IEEE 1667 standard
manifested in certain Windows products under the
name of Enhanced Storage Access (Microsoft, n.d.).
However, the standard is rarely known to general
users. Other than the lack of IEEE 1667-compliant
devices in the market, we are unable to conclude
why it was not fully accepted and implemented by
operating system manufacturers.

2.5. Time to untrust USB

We believe that distrusting all devices is the only
way to protect the host fully from malicious USB
devices. Although similar standards have been
proposed, they were hardly implemented, thanks
to the USB specification that requires a device to
advertise its capabilities in order to initialize, we
believe that monitoring the result of enumeration
process will provide users a chance to block it
from launching its attack.

There still exists a need for a technical solution
that protects from all types of devices with mali-
cious firmware. Focusing on the layer and stage of
the USB handshake at which the BadUSB exploit
occurs, we believe that the only effective way to
inspect a device for the presence of malicious firm-
ware is to prevent the host USB controller from
handling any enumeration until it is deemed safe.

We propose a novel way to protect the host
operating system by disallowing the enumeration
yet allowing the enumeration details to be gath-
ered. USBWall uses BBB (Coley, 2013), a low-
cost open-source computer, to act as middleware
to enumerate the devices on behalf of the host.
Like G Data Keyboard Guard (G Data, n.d.),
a newly inserted device is confirmed by the
user before it is initialized. Unlike G Data
Keyboard Guard, USBWall will read all types of

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE ‘ 7

USB devices. All USB devices remain uninitia-
lized until the user verifies and confirms a spe-
cific device. At the small expense of delayed
initialization, we achieve great security and pro-
tection against BadUSB devices. By not trusting
all newly plugged in devices, a firmware must
present its intentions before the user accepts it.
While similar protocols have been proposed
(IEEE 1667 Working Group, 2010; Zhaohui
et al., 2012), they require significant changes
within the operating system and the devices.
The solution discussed in this article requires
no changes to the operating system or the
device.

3. USBWall: An effective middleware
protection

USB devices infected with malicious firmware
can be detected only by their discrepant intention
at the enumeration stage. Due to the inherent
risk that user devices carry, several nontechnical
measures already exist to hinder the BadUSB-
type attack. While some attempt to mitigate the
risk from user devices by disallowing the external
devices entirely, some try to educate the users
about the risks. With a precise understanding of
the key stage of which BadUSB takes advantage,
offering the user a chance to verify a suspicious
device can effectively prevent the BadUSB attack.
As the device initialization never takes place on
the protected host computer, the malicious firm-
ware is not executed.

3.1. Identification and characteristics of BadUSB
devices

As more research on USB devices’ potential
capability progressed, researchers found the
new threat of an innocuous USB device.
Unlike Stuxnet, which resides in the storage
area of a device, the new threat lives in the
firmware area. For example, by reprogramming
the firmware, a USB flash drive can act as a
different type of device such as keyboard or
network adapter. As only firmware is modified,
BadUSB is not at all distinguishable by its phy-
sical appearance. In a world with higher risk of
hardware trojans as more manufacturing is

8 M. KANG AND H. SAIEDIAN

outsourced (Jin, 2012), this poses a great threat
to wusers and renders current antivirus
approaches entirely useless because the infected
firmware storage is inaccessible. The transac-
tions that occur, albeit reprogrammed, remain
legitimate in USB specifications. Therefore, the
operating system is unable to tell the difference
between a physical plug-in and re-enumerating,
and will attempt to accommodate the device
with a matching driver. The threat discussed
in this article was first publicized by Security
Research Labs (Security Research Labs, 2014).
At Black Hat USA 2014, Nohl demonstrated
that masquerading as a different device was
possible (Security Research Labs, 2014). Nohl
suggests firmware signing to prevent unauthor-
ized change, but this approach will render the
device unusable upon unauthorized change of
the code. In this article, we discuss a method to
determine whether a device is BadUSB. Using
the method, we hope to further develop a way
to protect a host operating system before it is
exposed to the device.

3.1.1. USB enumeration and plug-n-play

When a USB device is plugged in, a series of
transactions happen between the host controller
and the device [Future Technology Devices
International Limited (FTDI), 2009]. Figure 5
shows the order of events during the enumeration.

For our research, we focus on what happens after
the host controller assigns the address.

Once the device has an address, it advertises
itself to the host controller of its capabilities.
Assuming a proper driver exists, the device is
ready to be initialized. In such a case, the device
is initialized at that point with no more user inter-
action. The fact that a device can have more than
one feature (interface), and can be initialized with
none to very limited amount of user intervention,
enables BadUSB to be effective on most systems
today. For example, an innocuous USB storage
device can turn into a keyboard when predefined
criteria are met. Thus, we seek for a way to obtain
the device information to allow users to view, and
decide whether or not to initialize.

3.1.2. Identification of BadUSB devices
To assess reliably the risk of a suspected
BadUSB device, an actual enumeration process
must occur. However, most operating systems,
if a matching driver is available, load the driver
automatically. This is precisely what BadUSB
attempts to achieve. For example, by emulating
a keyboard, a suspected device can start sending
keystrokes as soon as the operating system
tinishes loading the keyboard driver.
Identification of a BadUSB device may be pos-
sible if an unexpected device behavior is observed
after inserting. Any behaviors inconsistent with

USB Enumeration Flow

Plug in Device to Host

. 4

Detect Device

. 4

Identify Speed of Device

\ 4

Get Device Descriptors

" Reset Device and As“sign

Address
| i

Figure 5. USB enumeration process.

’ Get Config Descriptors

Get Interface Descriptors

@

Load Drivers

@

Device Ready to Use

the physical appearance of the device must be
considered for possible BadUSB device. For exam-
ple, if a flash drive is shown as a keyboard, the user
must suspect that the device might be maliciously
reprogrammed. Currently, the identification of
BadUSB devices can be achieved only after the
device is enumerated by the host.

3.1.3. Behavioral characteristics of BadUSB
devices

At the time of enumeration, all of the intended
features of the device must be declared for the host
controller’s approval. Therefore, a BadUSB cannot
be effective until the intended feature is recognized
and initialized by the host controller. If a device
wants to add a feature that was not declared at the
previous enumeration, it must re-enumerate.
Therefore, we identify the enumeration stage to
be protected for BadUSB attack.

Among many common device types such as net-
work adapters, video devices, and human input
devices (HIDs), a keyboard is easy to simulate because
of its relatively low hardware requirements.
Launching arbitrary commands with a currently
logged-on user is a significant threat. Therefore, it is
a suspicious event for the operating system when a
keyboard is trying to enumerate when the plugged-in
device is physically not.

Also, a potential BadUSB device might attempt
to avoid detection by appearing as its original fea-
tures initially, then re-enumerating at a later point
of time. Although valid legitimate use cases exist,
such as a cellular modem that itself contains drivers,
we believe that it is still considered suspicious.

3.2. Design and operation of USBWall

In this section, we discuss the high-level design of
the USBWall. USBWall operates on two hardware
components. In addition to the host’s USB con-
troller, the BBB is connected to the host with two
types of cables. We use CAT5e cable for the con-
trol channel, and a mini-USB cable for actual USB

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE ‘ 9

traffic. Second, we discuss the operation of
USBWall in detail. The BBB handles the enumera-
tion of a newly connected USB device. The host
then issues a lsusb command to inquire of all
connected devices’ enumeration details. The BBB
relays the information to the host to be parsed and
be shown via USBWall’s user interface. We also
show the benefits of enumerating a USB device on
a separate device. Finally, in the expected protec-
tion section, we speculate about the realized ben-
efit of USBWall, which enumerates USB devices in
a sandboxed environment.

3.2.1. Design of USBWall

With the realization that the current USB specifi-
cation places excessive trust when initializing a
device, we propose a middleware solution to
decrease the trust between the host and devices.
USBWall utilizes two major components, the BBB
(Coley, 2013) and the user interface (UI), which
runs on host machine. The BBB is an open-source
embedded computer that runs Debian 3.12.0-
bone8 operating system. Powered by a 5-V, 2-A
DC power supply, the BBB is connected to both
the host computer and the suspected device. The
BBB provides the hardware platform for USB con-
nectivity between the host’s USB controller and
the BBB’s. Figure 6 shows the components of
USBWall.

USBWall requires a network connectivity
between the host and the BBB. Via SSH, the
USBWall UI issues and obtains the information
to display to the user. The USBWall UI uses the
SSH.NET library to handle the Isusb -v command
to the BBB (Renci, 2014). The BBB, in turn, relays
the enumeration details to the host. Once the host
receives the details, USBWall parses the result of
the Isusb into more readable format. It is impor-
tant to note that the entire enumeration processes
take place entirely on the BBB. The host’s USB
controller is unaware of the process until the user
confirms via the UI, which sends a command over
SSH. Although the implemented USBWall runs on

MINI USB CABLE

HOST

CATSe CABLE

d

BBB s ™

SUSPECTED
DEVICE

USB PLUGIN

Figure 6. Diagram of USBWall's components.

10 (&) M.KANG AND H. SAIEDIAN

Windows 7, because of the universal nature of the
control channel (SSH), it is a platform-indepen-
dent solution that can run on multiple systems.

3.3. Operation of USBWall

For proper operation of USBWall, it must be
placed and operated between the host and the
suspected USB devices. When a device in question
is plugged into the BBB, the device goes through
the enumeration process automatically. The BBB
retains the information until requested by the
USBWall Ul from the host. When the user
launches the U, it inquires about the device’s
enumeration details to the BBB using lIsusb -v via
SSH. Once the USBWall’s UI receives the device
details from the BBB, the UI parses the result and
displays it in a tree format. Figure 7 illustrates a
sequence of message exchanges in the USBWall;
Figure 8 shows a screenshot of USBWall’s user

interface.

User ' ul

Start USBWall

Since the BBB’s USB enumeration is isolated and
independent of the host’s USB controller, the device
detail is obtained without the involvement of the host.
If the suspected device is designed to send preset
keystrokes, any attempt at keystrokes from the
bogus device is not transmitted to the host. In other
words, when the enumeration at the BBB is com-
pleted, the device will try sending keystrokes to the
host into which the device is plugged. In this case, the
BBB is the host. The BBB’s local console, to which the
device’s input is directed, remains at the Linux stan-
dard log-in screen. Therefore, any keystroke attempts
sent to the host are directed to the BBB instead, which
ignores them unless the keystroke precisely matches
the log-in information of a user who has shell access.
This provides an additional protection layer for the
middleware itself.

After receiving the enumeration details, the user
checks whether the device matches the physical
characteristics. To assist with the decision, the Ul
will color-code certain entries of a device’s details.

| GetIsusb()

Device Details Displayed
Emmm e ————

Connecta Device

Retum Isusbi)

Launch USBproxy

Connected to Host |

Query Device Details

Return Device Details
Emm————————-

Initialize Device

|
|
|
|
Disconnect ‘
|

Figure 7. Sequence diagram of USBWall.

Terminate USBproxy
—_—)

Disconnect Device

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE . 1"

& Myung Kang - USEWall

Available Devices

idVender: (x13e Kingston Technology Company Inc
kiProduct: 35201
bNuminterfaces: 2

—- Interdface 0

bire Tass: § Mass Storage
birterface SubClass: 6 SCSI
blrdedfacaProtocel: 80 Bulk-Only

= Interdace 1

BlrisdaceCline: 3 Humen isfscs Devics
birtefaceSubClass: 1 Boct nterface Subclass
birtedfacaProtocol: 1 Kayboard

= (0K) 17 :6019 Lenova

bNuminterfaces: 1
= Interface 0
birfedaceClass: 3 Human Irtedface Device
birtefaceSubClass: 1 Boct interface Subclass
birtefaceProtocol: 2 Mouse
= (0K) 0 0:cdal7 Hewlett-Packard
idVendor: D00 Hewlett-Packand
idProduct: Bedal7
buminterfaces: 1
= Interface 0
blrtedaceClass: 8 Mass Storage
birdedface SubClass: & SCSI
binterfaceProtocol: 80 Bul-Only

idVendor: (1301 Linksys

bNumintefaces: 1

USBWall

I = (OK) 131:003a Linksys AE2500 802.11abgn Wirnsless Adapter [Broadcom BCMA3236] ‘

idProduct: Bc003a AE2500 802.11sbgn Wireless Adapter [Brosdcom BCMA43236)

vli.3

Figure 8. Middleware front end (Ul) on Windows host.

The user is prompted by an option to choose
which device to connect to the host and start
relaying.

When a device is chosen and the user clicks the
connect button, the UT issues the sudo -S usb-mitm
-v 'VID’ -p 'PID’ & command to the BBB. VID and
PID are the vendor ID and product ID of the device,
respectively. Usb-mitm is the filename of the binary
of USBProxy. USBProxy (Spill & Stasiak, 2014), an
open-source project by Dominic Spill, is used to
emulate the function of the device on the BBB’s
host-facing interface using the gadgetfs Linux sub-
system. USBProxy is launched with the PID and VID
of the device to ensure that only the selected device is
relayed. To emulate the device functionalities,
USBProxy utilizes gadgetFS, which is part of the
BBB’s Debian 3.12.0-bone8 operating system.

3.4. Expected protection

Using the BBB’s USB controller along with
USBProxy, USBWall provides the user sufficient
information to decide whether the device is safe to
use. By issuing the Isusb command to the BBB via the
SSH terminal, the UI obtains the information of the
device plugged in before it has a chance to present to
the host. USBWall parses and highlights parameters
such as bNumlInterface and blnterfaceClass to help

users assess the risk quickly. Those parameters are key
items when assessing the likelihood of the device
being malicious. Figure 9 shows the source code that
issues the Isusb -v command to the BBB to obtain the
USB device’s information from the BBB to the host.
The result is parsed and stored into a structure for
later display.

By effectively separating the host and a suspected
device while maintaining the user’s ability to interact
with the device, we expect that the separation will
provide sufficient displacement of trust to block any
devices with malicious firmware from launching an
attack by posing as a different device than its physical
form factor. The ability to assess the device’s intention
without exposing the host’s USB controllers effec-
tively protects the host from reprogrammed firmware
attacks. The risks originating from unknown user
devices is greatly reduced. Furthermore, the concept
of USBWall that allows the protection without any
substantial changes to the kernel makes USBWall an
easy candidate to be ported to different operating
systems.

4, Validation for sandboxed USB
enumeration

This section discusses the results and evaluates of the
effectiveness of USBWall against USB devices with

12 (&) M. KANG AND H. SAIEDIAN

Private Function lsusb() ‘returns lsu in struct i
sshruncnd(1 usb =")

Dim templsusb As Striﬂg
Dim arr_lsusb As str_1 b{) " struct
ReDim arr_lsush(50) 'assume max Gc UsE de

Dim templsusbarr As String() = templsusb. Split(vbCrLF} it result by return carria

Dim 1 As Integer = -1
Dim bIntNumforFor As Integer = @
For Each line As String 1ﬂ tewplsusbarr
If line. Contaxns()
i =441 "incresent i at header of

arr_lsusb(i).EasyDesc = line. Substr:ng(lB) Trim

End If

we are interes

If line.Contains("idve

If line.Contains{"idPr

If line.Contains("b

If line.Contains{"bInt
bIntNumforFor

ted in th

ollowing fields

) Then arr_lsusb{i).idVendor = line.Substring(22)
") Then arr_lsusb(i).idProduct =
faces") Then arr_lsusb(i).bNumInterfaces =
aceNumber™) Then

line.Substring(22)
CInt{line.Substring(20))

= CInt(line.Substring(24))

ReDim Preserve arr_lsusb(i).bInterface{bInthNumforFor)

End If

If line.Contains{"bInterfaceClass") Then

arr_lsusb(i).bInterface(bIntNumforfor).bInterfaceClass = line.Substring(31)

End If

If line.Contains("bInterfaceSubClass"”

} Then

arr_lsusb(i).bInterface(bIntNumforFor).bInterfaceSubClass = line.Substring(31)

End If
If line.Contains(“bI

nterfaceProtocol”) Then

arr_lsusb(i).bInterface(bIntNumforFor).bInterfaceProtocol = line.Substring(3@).Trim()

End If
Next
ReDim Preserve arr_lsusb(i) ‘w
Return arr_lsusb
End Function

Figure 9. USBWall's snippet of issuing and parsing Isusb.

malicious firmware. To simulate an attack scenario,
BadUSB and BadAndroid devices are connected to a
Windows 7 host computer with USBWall installed.
First, we compare the protection efficiency of com-
mercially available antivirus products with USBWall.
The suspected devices are presented to a protected
host by each commercially available antivirus pro-
gram. We use a USB storage device with Psychson’s
HID payload applied to simulate a BadUSB to test
whether the arbitrary code runs successfully. The HID
payload is designed to launch a series of keystrokes
that will cause a Windows machine to run the note-
pad application, then type predefined characters
(SurfKahuna at hak5darren, n.d.). If a notepad
opens without any user interaction upon plug-in, we
consider it a successful attack. If the notepad does not
open, and the user is notified of the risk, we consider it
an unsuccessful attack as well as a successful protec-
tion. In each case, we verify whether the host is
protected from BadUSB attack. Second, we will com-
pare BBB’s effect on the data throughput. Using a
publicly available tool, CrystalDiskMark
(Kashiwano, n.d.), we test 100 MB data transfer
throughput for sequential, 512 KB, and 4 KB.

4.1. Experiment environment

USBWall is developed in Linux, and the Windows
user interface portion is written in Visual Studio
2012 Professional. Linux is used on the BBB,

hen done, resize

array before returning

which runs a Debian distribution to facilitate the
middleware functionality. An open-source project,
USBProxy, is also used to relay the USB data. On
the host computer, the Ul is developed using
Visual Basic 2012 Professional. A Toshiba
TransMemory, 16GB PFU016U-1BCK, is chosen
as a test BadUSB device. The drive is applied with
HID-emulating firmware using Harman’s tool
(Harman, 2014). The specification of the compo-
nents used in testing is shown in Table 1.

We compare USBWall’s protection with AVG,
avast!, Windows Defender, and with no antivirus
installed for control. (Avast, n.d; AVG
Technologies, n.d.; Microsoft, n.d.) The test firm-
ware is written to launch a notepad using Rubber
Ducky script (Hall, n.d.). If a notepad launches and
keystrokes are entered without any user interven-
tion, we consider the protection to be ineffective, as
it allows the device to run arbitrary keystrokes.
Figure 10 shows the notepad launched on the host
with no antivirus when a test device is plugged in.
Upon plugging in, the notepad is opened. Without
any further user actions, keys are typed into the
notepad. We use this scenario to determine whether
each protection is effective against BadUSB attack.

File transfer throughput is also measured by per-
forming benchmark tests with CrystalDiskMark
(CDM) (Kashiwano, n.d.). CDM performs read and
write operations in a predefined size of data at dif-
ferent sizes of blocks. We run tests five times and

Table 1. Specifications of components used in testing.

Type Sub type Specifications
Host CPU Intel Core2 Q9650 3.00
computer GHz
RAM 8 GB
Storage 1TB
Operating system Windows 7 Professional
64-bit
USB controller Intel X48 Chipset with
ICH9R
UsBWall CPU Sitara XAM3359AZCZ 1
(BBB) GHz
RAM 512 MB
Storage 2GB eMMC

Debian 3.12.0-bone8

5V 2A (5.5 mm x

2.1 mm)

Development User interface Visual Studio 2012
tool Professional

Sample USB Psychson-Applied Toshiba TransMemory
devices Simulated BadUSB drive 16GB PFU016U1BCK

BadAndroid-v0.1 device Samsung SPH-D700

Operating system
Power supply

average the result. To test the throughput when
USBWall is in use, we first connect a USB device to
the BBB. The BBB is connected to the host USB port
via mini-USB cable. USBWall UI is launched on the
host computer to initiate the transfer. CDM is
launched with various data block size choices.
While CDM is performing the test, we monitor the
CPU usage on the BBB via ps -ef command on the
BBB on Putty v0.60. CPU data is collected on the
Windows 7 64-bit host computer without any anti-
virus program to ensure the integrity of results.

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE . 13

4.2. Experiment results

We test the efficacy of USBWall by comparing
whether the sample BadUSB device successfully
launches an attack on different host configurations
with currently available antivirus solutions. If the
test script runs, we conclude that the protection is
ineffective. Later, we test the same sample device
with USBWall.

To test and compare the effectiveness of dif-
ferent protections, we use a Psychson HID pay-
load example (Harman, 2014) A BadUSB device
is presented to hosts with different antivirus
protections that are available commercially at
the time of writing. Selected antivirus software
include AVG Free, avast! Free, and Windows
Defender. The test device is inserted into the
host while running each antivirus program with
full protection options. If the notepad opens and
text is typed, we consider the protection ineffec-
tive against BadUSB attack, as it allows the
BadUSB’s firmware to launch its preset key-
strokes. The results show that no commercially
available protections detect or block the test
BadUSB devices.

Config 1: Control—No antivirus
As a control, the sample HID payload is
plugged into a host without any type of virus

|| Untitled - Notepad

File Edit Format View Help
. . TR NGEN, AN
IN/

11 learn to lock my computer.
11 learn to lock my computer.
11 learn to lock my computer.
11 learn to lock my computer.
11 learn to lock my computer.
11 learn to lock my computer,
11 learn to lock my computer.
11 learn to lock my computer.
1 learn to lock my computer.
I will learn to lock my computer.

There, just 1ike Bart Simpson.

Please remember to lock your computer when you step away from your desk.

Thank you,

Figure 10. Screenshot of successful launch of HID payload launch.

14 M. KANG AND H. SAIEDIAN

protection installed. As expected, the sample
malicious firmware runs on the host, opening
a notepad and typing preset keystrokes. This
result is compared to other test cases with anti-
virus software.

Config 2: AVG by AVG Technologies

The host is equipped with AVG Free antivirus
with the most recent database pattern at the
time of writing (AVG Technologies, n.d.) (data-
base version 4306/9296, AVG Antivirus FREE
2015.0.5751). Even with all real-time protection
offered by the antivirus enabled, BadUSB is able
to run without any user interaction. Figure 11
shows the successful launch of the firmware’s
preset texts with AVG running.

AVG AntiVirus FREE

earn to lock my computer.
earn o Tock =y computer.
to loc r.

1
1
e
1
e .
} w lock =y computer.
e
e
Te:
Ju

LEEEEEEEEE]
8 e

There, just like art Simpson.
Plgase remesber to Tock your computer

Thark you.

Figure 11. BadUSB HID payload launched with AVG antivirus.

Maximize your protection v

Config 3: Avast! by Avast

Next, the host is equipped with avast! antivirus
software by Avast. The antivirus is allowed to
update to the most recent database pattern at the
time of writing (Avast, n.d.) (database version
150313-2, Avast Free Antivirus 2015.10.2.2214).
The test BadUSB device is plugged in, and is able
to run without any user interaction. Figure 12
shows the successful launch of the firmware’s pre-
set texts with avast! running.

Config 4: Windows Defender by Microsoft

Last, the host is prepared with Windows Defender by
Microsoft. The sample BadUSB device is plugged in
after Windows Defender is updated to the most recent
database pattern at the time of writing (database

with PRO. |7 FREE 30-day Trial

Bugy Now

otk my computer.
There, just Tike sart sispson.
Please remesber to lock your computer
Thank you.

YOU ARE PROTECTED

Figure 12. BadUSB HID payload launched with avast! antivirus.

Version of 1.193.2482.0, Windows Defender
6.1.7600.16385). Even with all real-time protection
enabled, BadUSB is able to run without any user
interaction. Figure 13 shows the successful launch of
the firmware’s preset texts with Windows Defender
running.

4.3. BadUSB devices with USBWall

The previous tests show that the current antivirus
approach is ineffective in preventing a BadUSB attack.
This is due not only to the nature of the attack, which
exploits the process during enumeration, but also to
the access to the malicious firmware storage area,
which is proprietary. Lacking a standard way to access
the firmware storage area, it remains largely impossi-
ble for antivirus software to scan the firmware of
devices. Instead, USBWall focuses on the key fact
that the BadUSB’s actions, whether legitimate or mal-
icious, remain valid within USB specifications. In this
section, we test USBWall’s efficacy against two types
of BadUSB devices. Psychson is the name of
Harman’s public project (Harman, 2014). Second, a
proof-of-concept BadAndroid-v0.1 script published
by SRL is presented to USBWall. In both cases,
USBWall is effective in showing the user the detailed
intention of each device while maintaining the host’s
USB controller isolated.

4.3.1. Psychson devices with USBWall
Toshiba TransMemory 16 GB is a small flash drive
that appears harmless. However, when the

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE . 15

Psychson-applied device with HID payload is con-
nected to USBWall, the user can easily tell that the
device presents itself as an HID keyboard. The user
launches USBWall by double-clicking the icon on
the desktop after plug-in of the suspected device. At
start-up of USBWall, it shows the tree list of con-
nected devices as shown in Figure 14, obtained by
the BBB using an Isusb -v command.

As shown in Figure 14, it is not only possible, but
also easy, to pinpoint the device’s intent. USBWall
highlights the entries of the suspected device’s proper-
ties in different colors. USBWall highlights the detail
of Kingston Technology Company’s (VID 13FE and
PID 5201) two interfaces. The device’s intentions
include a keyboard. Upon reading the result, the
user immediately realizes that the device may not be
presenting itself and suspects a BadUSB attack. As the
USB handshake happens only at the protected level of
the BBB, the user can disconnect the device safely.

Although we assume all devices as unsafe, we
believe that the user must have a way to override
the warning and initiate the device. Therefore, the
user still has permission to proceed connecting the
device if the user believes that it is a valid intent.
The device is connected when the user gives an
explicit permission using the UI by selecting the
entry, then clicking the Connect button.

4.3.2. Bad Android devices with USBWall

BadAndroid script made available by SRLabs turns
an Android phone into a network adapter for
man-in-the-middle (MITM) attack (Security

Ewr M Windows Defender
I

D ® 5
CF ty tome P o |+ @ oy L oo (T 1+
Frotection agant spymare sl potentially urwanted softean

Mo umwanted o harmiud atrware detected.

our computer is running nermally,

)

There, just 1ike sart Sispson.
Please remesber to lock your computer
Tharik you.,

Fask-tima protection:
Antitpywane defingiser

Seantipe Quick scan
Start time: S1PM
Towe elapies 00:18:33
Rasources 15 anned: 18330

Vertion LI93.320 created en 3/12/2015 ot 208 P

Figure 13. BadUSB HID payload launched with Windows Defender.

16 M. KANG AND H. SAIEDIAN

& Myung Kang - USEWall

= | B jemt]|

Available Devices

=1 (0K) 17e:6019 Lenovo

fViender: (x17ef Lenove

idProduct: G0N

bhNumintarfaces: 1

= Intedface O

birdefaceClass: 3 Human inteface Device
bintefaceSubClass: 1 Boct Interface Subclass
birtesfacaFrotocol: 2 Mouse

idProduct: Bc5201
bNuminiardaces: 2
= Intedface 0

bintsfaceSubClass: 6 5051

bintadfaceProtocel: B0 Buk-nly
= Interface 1

birtefaceSubClass: 1 Boct Interface Subclsss
birtesfaceProtocol 1 Keyboard ~afemmn

USBWall v1.3

idVendor: (13 Kingston Technology Company Inc.

Figure 14. USBWall detection of Psychson-applied sample BadUSB device.

Research Labs, 2014). The script is launched on a
Samsung SPH-D700 Android phone before con-
necting the micro-USB cable to the BBB. When
the BadAndroid-enabled mobile device is pre-
sented to a Windows 7 host with no protection,
Remote Network Driver Interface Specification
(RNDIS) devices are automatically installed and
initialized with no user interaction.

We test the same scenario with USBWall. When
the suspected device is connected via USBWall, the
UI shows the user the intention of the device. As
with the previous test, the user launches USBWall
by double-clicking the icon on the desktop. At
start-up of USBWall, it shows the tree list of con-
nected devices as shown in Figure 15 obtained by
the BBB using Isusb -v. Now that the user is
notified of the details of the device. The user has
an option to connect the device to the host if it is a

valid device insertion. Figure 15 shows the detec-
tion of the device with VID of 04E8 and PID of
6863 is presenting itself as a RNDIS device.

As with the previous test, the user still has the
right to proceed connecting the device despite the
warning provided by USBWall. The user simply
needs to select the device and click the Connect
button. If the user decides not to use the device,
the user can simply disconnect it without worrying
about the safety of the host.

4.4. Performance test

While USBWall protects the host and relays the
USB data, it must introduce an overhead to the
traffic path as it is an additional node. Therefore,
we believe that it is worthwhile to measure the
difference in the data throughput. If the overhead

& Myung Kang - USEWall

FSET=)

hvailable Devices

= (0K} 17ef:6019 Lenovo

idVender: Dx17ef Lenove

idProduct: BE01S

buminterfaces: 1

= Intedface 0

birterfaceClass: 3 Humen inteface Device
birtefaceSubClass: 1 Boct interface Subclass
bintefaceProtocol: 2 Mouse

dVendor: (x04e8 Samsung Blectronics Co.. Lid
idProduct: (6853

bNumintedaces: 2

Interface 0

binteface Subliass: 1 Radio Frequency
birtefaceFrotocol: 3 RNDIS
Interface 1

b“ﬁm 33 ”u Data
bintedfaceProtocol: 0

USBWall

vli.3

Figure 15. USBWall detection of BadAndroid-activated mobile phone.

Table 2. CrystalDiskMark result (read, 100 MB, MB/s).

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE @ 17

Type Test size 1 2 3 4 5 Average

Via USBWall Sequential 1.975 1.977 1.977 1.950 1.952 1.966
512 K 1.956 1.981 1.981 1.936 1.955 1.962
4 K 1.421 1.449 1.419 1.428 1.433 1.430

Direct Sequential 21.19 21.27 21.15 21.23 21.18 21.20
512 K 21.28 21.35 21.23 21.24 21.13 21.25
4 K 5.560 5.564 5.586 5.532 5.510 5.550

causes significant negative effect on the usability of
the device, it would make USBWall less appealing
to the user.

In this test, we use JD Secure II+ 2 GB by Lexar
with CrystalDiskMark (CDM) to test the read and
write performance. We test the read-and-write
throughput using CDM with 100 MB data transfer.
100 MB data is transferred to the device in 512 KB,
4 KB, and sequentially with and without USBWall.

As shown in Tables 2 and 3, there are clear
differences in transfer speed between a direct con-
nection and via USBWall. We believe that the
decreased performance is due to the overhead
introduced to the data path, due mainly to the
limited processor capability of the BBB, which is
responsible for relaying the data. The copying of
USB data traffic involves interacting with the
device as well as relaying to the host at the same
time. One process must wait for the other while
the transaction is finished. To support the analysis,
Figure 16 shows the CPU utilization on the BBB
while data transfer test is in progress. It shows that
the USBProxy process, usb-mitm, takes nearly 90%
of the processor. We believe this is purely a tech-
nical limitation of the BBB and USBProxy. Hence,
we believe that this will be resolved with a faster
middleware platform. While it affects the speed of

Figure 16. ps -ef of BBB while transferring.

the data, it does not affect the integrity of the data
transmitted.

4.5. Validation conclusions

In this article, the implementation of USBWall has
been explained, and tested against Psychson and
BadAndroid devices. AVG Free, avast! Free, and
Windows Defender have been tested against the
sample BadUSB devices. We showed that no exist-
ing antivirus protections are capable of blocking or
detecting the presence of the device with malicious
firmware. We assess that the difficulty of existing
approach comes from the fact that the malicious
firmware resides in the firmware storage, which is
generally inaccessible to antivirus solutions. Also,
the accesses to firmware storage of a USB devices
are mostly proprietary. Lacking a universal way to

Table 3. CrystalDiskMark result (write, 100 MB, MB/s).

Type Test size 1 2 3 4 5 Average
Via Sequential 1.890 1.886 1.889 1.907 1.906 1.896
USBWall 512 K 1.159 1.145 1.173 1.147 1.088 1.142
4K 0.023 0.022 0.023 0.023 0.022 0.023
Sequential 6.797 6.775 6.823 6.771 6.970 6.827
Direct 512K 2140 2122 1.947 2034 2.093 2.067
4K 0.024 0.023 0.023 0.024 0.023 0.023

18 (&) M.KANG AND H. SAIEDIAN

access the firmware storage area, the antivirus
programs have no way to distinguish whether the
firmware’s behavior is legitimate or malicious.

We have showed the effectiveness of USBWall
with Psychson-applied HID sample BadUSB and
BadAndroid-v0.1 devices by SRL. For both sample
devices, USBWall successfully shows the user the
intentions of the sample devices. As the USB
handshake happens only at the protected level of
the BBB, the user can disconnect the device safely
without affecting the host’s security.

While the conventional antivirus protections have
been shown to be completely ineffective, USBWall
successfully isolates the devices from the host and
notifies the user of the intentions of connected
devices. The test results are summarized in Table 4.

4.6. Hardware and software considerations

USBWall utilizes BBB Rev. A5A to act as a gateway
and a proxy to enumerate and relay the details of
the connected devices. While it provides the host
protection from any USB devices with malicious
firmware, we find that the data transfer speed is
slower than direct connection. Although the BBB
has a 1-GHz Siatara XAM3359AZCZ processor
(Coley, 2013), a performance degradation is inevi-
table when it comes to data throughput. This is
because USBProxy (Spill & Stasiak, 2014) operates
at a software layer utilizing gadgetFS as well as the
inherent delays in the added nodes. We believe
that the enhanced throughput is attainable with
an upgraded BBB with faster hardware.
Nevertheless, the integrity of transmitted data is
not affected. Therefore, we believe USBWall’s
effectiveness against BadUSB devices remains
valid. Although USBWall UI is currently devel-
oped only for Windows host with .NET frame-
work 4.5, it can be easily ported to other
operating systems thanks to the universal under-
lying protocol, SSH. To port USBWall to other

Table 4. Comparison of protections against sample BadUSB
devices.

avast! Free Windows
AVG Free antivirus Defender USBWall
2015.0.5751 2015.10.2.2214 6.1.7600.16385 v1.3
Psychson- No No No Yes
HID
BadAndroid No No No Yes

platforms, only the UI needs to be rewritten,
because the back-end communication and USB
enumeration is done on the BBB independently.

4.7. Summary

In this section, we discussed the result of USBWall
against USB devices with malicious firmware. The
HID payload test sample and BadAndroid script
were used to test the efficacy of each protection.
Under various commercially available protections
including AVG Free, avast!, and Windows Defender,
the malicious firmwares executed successfully. We
conclude that currently existing antivirus protects
are inadequate to provide sufficient protection due
to the nature of the USB standard. The lower-level
transaction is manipulated by the firmware, which is
not visible to the antivirus product. USBWall, how-
ever, successfully prohibits malicious firmware from
launching by enumerating the device in a sandboxed
environment. Through the protection environment,
the host can safely retrieve the detailed information
about the device to decide whether or not to accept
the device. USBProxy is then used to bridge the con-
nection and introduce the device to the host.

We also tested the file transfer throughput to mea-
sure the impact of having an additional node on the
USB data path. After analyzing the CPU utilization on
the BBB, we find that the BBB’s processing power
affects the performance negatively. However, the effi-
cacy of the protection remains effective, as the data
integrity is not affected. For USBWall protection on
operating systems other than Windows, we believe
the porting effort is minimal because only the user
interface needs to be ported.

5. Contributions and future work

The system discussed in this article protects compu-
ters from BadUSB devices by introducing a middle-
ware, BBB, to relay the device enumeration
information before the host is exposed to the device.
Although many creative methods are used in the
current design, there exist possibilities to enhance
the system further. For example, due to the lack of
serial-number enforcement by the current USB spe-
cification, it is impossible for the operating system
kernel to distinguish one device from another.
However, with the BBB’s access to the hardware-

level information, it may be possible to fingerprint a
device based on its electrical characteristics such as
communication delays and power consumption pat-
terns during the enumeration.

Second, USBProxy uses gadgetFS. After lsusb is
displayed and the user decides to connect, USBProxy
relays the data using the gadgetFS subsystem.
Although it is capable of viewing the properties of all
devices, if a type is not supported by the gadgetFS
subsystem, it will fail to relay. As more device types
are added to gadgetFS in the future, such as wireless
dongles and other physically small devices, we antici-
pate wider device support in USBWall.

Third, consider the BBB’s overhead affecting per-
formance in Section 4.4. Not only is the performance
restricted to USB 2.0, but also to the capability of the
CPU, which decreases the performance further. As
newer versions of BBB are released with faster hard-
ware, we anticipate better performance.

Last, we strongly believe that the concept of
introducing a middleware for physical computer
peripherals is a powerful candidate for offering
protection against user devices. Especially with
the emerging risks from hardware trojans (Clark
et al., 2011; Clark, 2009), the approach of USBWall
can be extended to more interfaces than USB.

All the scenarios above are excellent candidates for
work to be explored. By filling in the gaps of current
restrictions, such as IEEE 1667 (IEEE 1667 Working
Group, 2010), we firmly believe that it will contribute
to safer computing from malicious user devices. We
believe that where IEEE 1667 has failed to reach,
USBWall will reach a larger user base thanks to the
minimal changes required on operating systems.

References

Appavoo, J., Hui, K., Soules, C. A. N., Wisniewski, R. W., Da
Silva, D. M., Krieger, O., ... Xenidis, J. (2003). Enabling
autonomic behavior in systems software with hot swap-
ping. IBM Systems Journal, 42(1), 60-76. doi:10.1147/
5j.421.0060

Arce, 1. (2005). Bad peripherals. Security ¢ Privacy, IEEE,
3(1), 70-73. doi:10.1109/MSP.2005.6

Avast. (n.d.). Avast |The World’s #1 Antivirus Software. Retrieved
September 25, 2014, from https://www.avast.com/index

AVG Technologies. (n.d.). AVG free antivirus & malware
protection. Retrieved September 25, 2014, from http://
free.avg.com/us-en/free-antivirus-download

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE . 19

Brandom, R. (2014). USB has a huge security problem that
could take years to fix. Retrieved November 18, 2014, from
http://www.theverge.com/2014/10/2/6896095/this-pub
lished-hack-could-be-the-beginning-of-the-end-for-usb

Clark, J. (2009). On unintended USB communication channels
(Master’s thesis). Royal Military College of Canada,
Kingston, Canada.

Clark, J., Leblanc, S., & Knight, S. (2011). Risks associated with
USB hardware trojan devices used by insiders. In Systems
Conference (SysCon), 2011 IEEE International (pp. 201-208).
Montreal, Canada: IEEE.

Coley, G. (2013). BeagleBone black system reference manual
Rev A5.6. Dallas, TX: Texas Instruments.

Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC,
Philips. (2000, April). Universal Serial Bus specification
v2.0. USB Implementers Forum, Inc. Retrieved from
www.usb.org

Falliere, N., Murchu, L., & Chien, E. (2011). W32. Stuxnet
Dossier. White paper, Symantec Corp., Security Response.
Cupertino, CA: Symantec Corporation.

Future Technology Devices International Limited (FTDI).
(2009). Simplified description of USB device enumeration
(Technical note) (Vol. 1.0, pp. 14). Glasgow, UK: Author.

G Data. (n.d.). How to Be Sicher from USB Attacks. Retrieved
September, 24 2014, from https://www.gdatasoftware.com/
en-usb-keyboard-guard

Hall, J. (n.d.). Duck Toolkit v.2. Retrieved September 25,
2014, from http://www.ducktoolkit.com/Home.jsp

Harman, R. (2014, January). Controlling USB flash drive con-
trollers: Expose of hidden features. Presented at ShmooCon
2014, Washington, DC.

IEEE 1667 Working Group. (2010, March). IEEE standard for
authentication in host attachments of transient storage
devices. IEEE Std 1667-2009 (Revision of IEEE Std
1667-2006), pp. 1-125.

Intel Corporation and Microsoft Corporation. (1999, May).
Legacy plug and play guidelines. A Technical Reference for
Legacy PCs and Peripherals for the Microsoft Windows
Family of Operating Systems, 1.0.

Jin, Y. (2012). Trusted integrated circuits (Ph.D. dissertation).
Yale University, New Haven, CT.

Karabarbounis, L., & Neiman, B. (2013). The global decline of the
labor share. Technical report. Cambridge, MA: National
Bureau of Economic Research.

Kashiwano, M. (n.d.). Crystal dew world. Retrieved
September 25, 2014, from http://crystalmark.info/?lang=en

Mamiit, A. (2014). How Bad Is BadUSB? Security experts say
there is no quick fix. Retrieved Novemberl8, 2014, from
http://www.techtimes.com/articles/17078/20141004/how-
bad-is-badusb-security-experts-say-there-is-no-quick-fix.
htm

Microsoft. (2008). Introducing enhanced storage access.
Retrieved November 18, 2014, from https://technet.micro
soft.com/en-us/library/Dd560657(v=WS.10).aspx

Microsoft. (n.d.). Microsoft security essentials - Microsoft
Windows. Retrieved September 25, 2014, from http://win

https://doi.org/10.1147/sj.421.0060
https://doi.org/10.1147/sj.421.0060
https://doi.org/10.1109/MSP.2005.6
https://www.avast.com/index
http://free.avg.com/us-en/free-antivirus-download
http://free.avg.com/us-en/free-antivirus-download
http://www.theverge.com/2014/10/2/6896095/this-published-hack-could-be-the-beginning-of-the-end-for-usb
http://www.theverge.com/2014/10/2/6896095/this-published-hack-could-be-the-beginning-of-the-end-for-usb
http://www.usb.org
https://www.gdatasoftware.com/en-usb-keyboard-guard
https://www.gdatasoftware.com/en-usb-keyboard-guard
http://www.ducktoolkit.com/Home.jsp
http://crystalmark.info/?lang=en
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm
http://www.techtimes.com/articles/17078/20141004/how-bad-is-badusb-security-experts-say-there-is-no-quick-fix.htm
https://technet.microsoft.com/en-us/library/Dd560657(v=WS.10).aspx
https://technet.microsoft.com/en-us/library/Dd560657(v=WS.10).aspx
http://windows.microsoft.com/en-us/windows/security-essentials-download

20 (&) M. KANG AND H. SAIEDIAN

dows.microsoft.com/en-us/windows/security-essentials-
download

Mitra, R. (2013). The information technology and business pro-
cess outsourcing industry: Diversity and challenges in Asia.
Asian Development Bank Economics Working Paper Series,
365(365), 4.

Oshri, I., Kotlarsky, J., & Willcocks, L. (2015). The handbook
of global outsourcing and offshoring (3rd ed.). London, UK:
Palgrave Macmillan.

PCI Security Standards Council. (2015, May). Payment Card
Industry (PCI) data security standard: Requirements and
security assessment procedures, Version 3.1. Wakefield, MA:
PCI Security Standards Council, LLC.

Renci. (n.d.). SSH.NET library. Retrieved September 25, 2014,
from https://sshnet.codeplex.com/

Rich, D. (2007). Authentication in transient storage device attach-
ments. Computer, 40(4), 102-104. doi:10.1109/MC.2007.116
Rueter, C. (2011). The cybersecurity dilemma (Ph.D. thesis).

Duke University, Chapel Hill, NC, USA.

Security Research Labs. (2014). Turning USB peripherals into
BadUSB. Retrieved March 28, 2017, from https://srlabs.de/
bites/usb-peripherals-turn/

Spector, L. (2014). BadUSB: What you can do about undetectable
malware on a flash drive. Retrieved November 18, 2014, from
http://www.pcworld.com/article/2840905/badusb-what-you-
can-do-about-undetectable-malware-on-a-flash-drive.html

Spill, D., & Stasiak, A. (2014, January). An open and afford-
able USB man in the middle device. Presented at
ShmooCon 2014, Washington, DC.

SurfKahuna at hak5darren. (n.d.). Payload lock your computer
message. Retrieved September 25, 2014, from https://
github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload
—lock-your-computer-message

Tetmeyer, A., & Saiedian, H. (2010). Security threats and miti-
gating risk for USB devices. Technology and Society
Magazine, IEEE, 29(4), 44-49. d0i:10.1109/MTS.2010.939228

Usher, A. (2005). Pod slurping. Retrieved September 25, 2014,
from http://www.sharp-ideas.net/pod_slurping.php

Verma, S., & Singh, A. (2012). Data theft prevention & endpoint
protection from unauthorized USB devices. In Advanced
Computing (ICoAC), 2012 Fourth International Conference
on (pp. 1-4). Chennai, India: IEEE.

Zhaohui, W., Johnson, R., & Stavrou, A. (2012). Attestation &
authentication for USB communications. In Software Security
and Reliability Companion (SERE-C), 2012 IEEE Sixth
International Conference on (pp. 43-44). Gaithersburg, MD:
IEEE.

Biographies

Myung Kang completed his Master's of Science in
Information Technology in 2015 and is currently an IT
professional at City of Independence Power & Light, in

Missouri.

Hossein Saiedian received his Ph.D. from Kansas State
University in 1989. He is currently the director of IT degree
programs, an associate chair, and a professor of computer science
at the Department of Electrical Engineering and Computer
Science at the University of Kansas (KU) and a member of the
KU Information and Telecommunication Technology Center
(ITTC). His research includes over 170 publications in a variety
of topics in computer science, software engineering, and infor-
mation security and his work in the past has been supported by
the NSF as well as other national and regional foundations.

http://windows.microsoft.com/en-us/windows/security-essentials-download
http://windows.microsoft.com/en-us/windows/security-essentials-download
https://sshnet.codeplex.com/
https://doi.org/10.1109/MC.2007.116
https://srlabs.de/bites/usb-peripherals-turn/
https://srlabs.de/bites/usb-peripherals-turn/
http://www.pcworld.com/article/2840905/badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.html
http://www.pcworld.com/article/2840905/badusb-what-you-can-do-about-undetectable-malware-on-a-flash-drive.html
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload%2014lock-your-computer-message
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload%2014lock-your-computer-message
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payload%2014lock-your-computer-message
https://doi.org/10.1109/MTS.2010.939228
http://www.sharp-ideas.net/pod_slurping.php

	Abstract
	1. Trust in USB standards
	1.1. Significance of sandboxed USB transactions
	1.2. Research methodology

	2. Related work in authenticated USB uses
	2.1. The inherent trust of the USB standard
	2.2. Nontechnical measures
	2.2.1. Policy enforcement
	2.2.2. Public awareness

	2.3. Proposed standard: IEEE 1667
	2.4. Software measures
	2.5. Time to untrust USB

	3. USBWall: An effective middleware protection
	3.1. Identification and characteristics of BadUSB devices
	3.1.1. USB enumeration and plug-n-play
	3.1.2. Identification of BadUSB devices
	3.1.3. Behavioral characteristics of BadUSB devices

	3.2. Design and operation of USBWall
	3.2.1. Design of USBWall

	3.3. Operation of USBWall
	3.4. Expected protection

	4. Validation for sandboxed USB enumeration
	4.1. Experiment environment
	4.2. Experiment results
	Config 1: Control—No antivirus
	Config 2: AVG by AVG Technologies
	Config 3: Avast! by Avast
	Config 4: Windows Defender by Microsoft

	4.3. BadUSB devices with USBWall
	4.3.1. Psychson devices with USBWall
	4.3.2. Bad Android devices with USBWall

	4.4. Performance test
	4.5. Validation conclusions
	4.6. Hardware and software considerations
	4.7. Summary

	5. Contributions and future work
	References
	Notes on contributors

