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Abstract: Sign bit compression in fixed-point numbering systems can improve the dynamic range 
and round-off noise for signal processing algorithms. This paper analyses non-standard 
compression factors (CF) for compressed fixed-point data formats, where sign bit compression is 
performed on each individual fixed-point number. Although these compression techniques are 
applicable to other fixed-point formats, the compressed two’s complement data format is selected 
for illustration. A brief background on compressed two’s complement is provided. Obvious 
compression factors are powers of two due to binary formatting, but compression factors other than 
standard powers of two are presented. Compression factors of 3 and 5 are analysed in greater detail. 
Motivation for and advantages of non-power-of-two compression factors are identified. 
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1 Background on the compressed two’s 
complement data format 

Techniques for compressing the fixed-point data format are 
broadly applicable to most fixed-point formats, but we will 
illustrate compression for the two’s complement format due 
to the traditional advantages it has over the other fixed-point 
data formats (Parhami, 1999; Goldberg, 1991). The 
compressed two’s complement data format has been 
described in some detail by the authors in previous 
publications (Richey and Saiedian, 2009; Richey and 
Saiedian, 2011). Here, we will provide a brief description of 
the format to introduce the new material provided in this 
paper. The compressed two’s complement data format  
 

 
 
compresses the sign bits of a standard two’s complement data  
format by a compression factor (CF) that is assumed in the 
implementation, but not encoded into the data.  

A shift field is added to the format to allow coverage of 
the entire numeric range without holes. As an example, a 
compressed two’s complement number with a compression 
factor of 4 would expand each leading sign bit from one 
binary digit into four binary digits. The extra space is used to 
allow additional bits of precision for each number. This 
format is illustrated in Figure 1. The shift field at the end of 
the number indicates how many bits to shift the number to the 
left after decompression of the sign bit. So, every sign bit in 
the numeric field is expanded to four sign bits and then the 
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resulting number is shifted to the left by the number of bits 
indicated in the shift field (0, 1, 2 or 3 bits). 

Figure 1 Decompression of a compressed two’s complement 
number (compression factor = 4) (see online version 
for colours) 

 

Compressed two’s complement numbers not only provide 
large dynamic range, like floating-point formats, but also 
provide uneven numeric precision, like fixed-point formats. 
This is an advantage for some problem domains such as 
digital signal processing (Richey and Saiedian, 2009). This is 
the case because in digital signal processing systems that 
utilise fixed-point numbering, automatic gain control is 
typically used to move the signal to the top of the numeric 
range for the given data format.  

2 Non-standard compression factors 

As can be seen from Figure 1, a typical compression factor 
would require a fixed number of bits for the shift field. For 
example, a compression factor of 4 would require a shift field 
of two bits (log2(compression factor) = log2(4) = 2). These 
standard compression factors would all be powers of two (i.e. 
1, 2, 4, 8 …). Compression factors that are not a power of two 
may at first appear to be at a disadvantage because the shift 
bits would not be optimally organised. Thus, a compression 
factor of 9 would still require 4 bits for the shift field just like 
a compression factor of 16, but would have a significant 
disadvantage in dynamic range when compared to a 
compression factor of 16.  

However, if organised properly, the unused bits from a 
non-power-of-two compression factor can still be used for 
additional precision. This is accomplished by allowing the 
shift field to vary in width. Compression factors that employ 
non-uniform mechanisms such as varying shift field widths 
are referred to in this paper as non-standard compression 
factors.  

3 Compression factor of 3 

The simplest example of a non-standard compression factor 
is illustrated by a compressed two’s complement number 
with a compression factor of 3 (Figure 2). This figure shows 
that a compression factor of 3 provides an additional bit of 
precision for a third of the numbers when compared to a 
compression factor of 4. Furthermore, by placing the greater 
precision with the largest number of left shifts, the additional 
precision is placed in the most important numeric position. 
With a compression factor of 3, the dynamic range is 
extended close to three times the uncompressed range, and 

noise is approximately on par with compression factor of 2. 
This technique is called variable shift field length. 

Figure 2 A compressed two’s complement format with a 
compression factor of 3 (see online version for colours) 

 

Figure 3 plots the precision for compression factors of 1 
(regular 2’s complement), 2, 3 and 4 for 16-bit numbers. The 
chart shows that for a compression factor of 3, only one 
binary range is reduced in precision compared to a 
compression factor of 2, while the majority of lower level 
binary ranges are improved. Compared to a compression 
factor of 4, a compression factor of 3 achieves greater 
precision for the largest numbers. For digital signal 
processing algorithms, this can result in improved noise 
performance. These differences may provide some incentive 
for using a compression factor of 3 as opposed to one of either 
two or four.  

Figure 3 Peak signal vs. peak round-off noise for several small 
compression factors in fractional compressed two’s 
complement format (see online version for colours) 

 
Note: CF of 1 is standard 2s complement 

4 Compression factor of 5 

The same technique that was used to create a compression 
factor of 3 can be used for a compression factor of 5  
(Figure 4). However, since we have more than one bit of 
difference between the shift field sizes, the concentration of 
precision will not be even (Figure 6a). Concentration  
of precision represents the main advantage compressed two’s 
complement has over floating point. So, we can preserve this 
with the use of another technique for compression factor  
of 5. 
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Figure 4 A compressed two’s complement format with a 
compression factor of 5 (see online version for colours) 

 

The technique we will use to focus the precision for a 
compression factor of 5 is to make the upper format shift field 
indicate a variable amount of left shift. For the largest 
precision numbers (i.e. those with only one sign bit and a shift 
field of 0), the upper format from Figure 4 will shift 5 bits to 
the left. However, for all other numbers with a shift field of 
0, it will shift 9 bits to the left as shown in Figure 5. All 
numbers with a shift field greater than 0 shift normally  
(i.e. 0, 1, 2 or 3 bits). This technique will focus the precision 
for compression factor of 5 in a regular manner as shown in 
Figure 6b. This technique is called multiple shift size 
mapping. 

Figure 5 An adjusted compressed two’s complement format 
with a compression factor of 5 (see online version for 
colours) 

 

Figure 6 A comparison of compression factors 1, 4 and 5 in 
fractional compressed two’s complement format (6a is 
pre-adjustment, whereas 6b is post-adjustment) (see 
online version for colours) 

 

5 Motivation: benefits of non-standard 
compression factors 

Signal processing systems are under constant pressure to 
improve performance and reduce cost. Compression 
techniques are often applied to signals (Kanhe and Hamde, 

2016; Kumari and Rajalakshmi, 2016) rather than data 
formats to accomplish this goal. Nevertheless, significant 
effort is typically applied to select the most advantageous 
data format to implement a system or algorithm (Darulova 
and Kuncak, 2017). Numerous non-traditional data 
formatting mechanisms have been considered for use with 
signal processing applications to overcome the simultaneous 
problems of small dynamic range and round-off noise (Ray, 
2010). Several have actually demonstrated that non-standard 
mechanisms for data formatting can improve noise 
performance over traditional fixed and floating-point formats 
(Azmi and Lombardi, 1989; Mishra and Jena, 2011). A few 
even focus on sign bit compression (Koyama et al., 2012) 
similar to the formats shown in this paper. It has also been 
shown that compressed two’s complement data formats 
outperform both traditional fixed-point and floating-point 
data formats in terms of noise performance for signal 
processing applications (Richey and Saiedian, 2011).  

In this paper, we have demonstrated that non-standard 
compression factors (i.e. those that are not powers of two) are 
also viable options. We now need to show that these non-
standard compression factors can provide a computational 
advantage. 

Using our two techniques (variable shift field length and 
multiple shift size mapping), data formats with a compression 
factor of 5 can outperform the standard log2 compression 
factor of 4. A compression factor of 5 can simultaneously 
provide greater precision for the largest numbers, and greater 
precision for smaller numbers than a compression factor of 4 
provides. This is observed in Figure 6b which presents a 
comparison between these two compression factors. 

An impressive way to look at the advantages of non-
standard compression factors is by comparison with 
traditional two’s complement formats. A standard 16-bit 
two’s complement integer can range from 32768 to +32767 
with no fractional component. If one adds a single bit of word 
width to the format and then compresses the sign bits with a 
compression factor of either 3 or 5, they will still cover every 
single integer value from 32768 to +32767. However, one 
also obtains 42 additional bits of dynamic range (with 
compression factor of 5) on the fractional side of the decimal 
point. This will noticeably improve round-off noise 
performance and allow about five times as much dynamic 
range in decibels without giving up anything more than a 
single bit of word width. Of course, IEEE 754 floating point 
achieves over twice this improvement in dynamic range in 
dB, but at the cost of doubling the word width to 32 bits 
(Richey and Saiedian, 2011). 

Obviously, one does not have to grant that extra bit of 
word width to obtain a massive benefit. Without expanding 
the size of the word, one can still obtain vastly greater 
dynamic range and improved noise performance with 
compressed two’s complement than one would obtain with 
the same sized word in regular two’s complement. In the case 
of a 16-bit compressed two’s complement number format 
with a compression factor of 5 and appropriate placement of 
the decimal point, every integer between 16383 and 16384 
is represented in the data format, which results in a 6 dB loss 
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of dynamic range above the decimal point. However, 43 bits 
of dynamic range is provided below the decimal point for this 
format. Thus, the total dynamic range of the format is 
significantly increased. If this increase in dynamic range is 
accompanied with the use of automatic gain control 
techniques that are typically used in traditional fixed-point 
signal processing systems, then most algorithms will 
experience an improvement in both dynamic range and 
round-off noise. 

6 Experimental confirmation 

To verify the asserted performance improvements of 
irregular compression factors, a data format with a 
compression factor of 3 was implemented and tested against 
previously coded formats with compression factors of 1 and 
2 (Richey and Saiedian, 2011). Note that a compression 
factor of 1 results in standard two’s complement. In the 
testbed, a two-toned signal is passed through a Hanning 
window and a 1024 point Fast Fourier transform. This is done 
for all three formats with the tone frequencies varying for 
each format to increase waveform visibility, and each second 
tone being attenuated by 40 dB in relation to the first. The 
compressed data formats were uncompressed for 
computation, but then recompresses for storage into memory. 
The uncompressed format (CF=1) was merely rounded prior 
to storage into memory. Since no additional noise was added 
to the system, recompression and rounding are the principal 
sources of noise for this simulation. 

The advantage of format compression is illustrated in 
Figures 7 and 8. In Figure 7, the primary tone is near peak 
amplitude for these formats. As can be seen, the noise floor 
drops significantly between the uncompressed format and the 
two compressed formats. Figure 7 shows that although a 
compression factor of 3 provides a significant improvement 
in dynamic range (about 84 dB.) over a compression factor 
of 2, no degradation in noise performance is observed for 
maximum amplitude signals. 

Figure 7 Compression factor comparison in the frequency 
domain on maximum amplitude 16-bit two-toned 
signals (processing includes a Hanning Window and 
1024 Point FFT for compression factors of 1, 2 and 3) 
(see online version for colours) 

 

Figure 8 Compression factor comparison in the frequency 
domain on minimal amplitude 16-bit two-toned signals 
(processing includes a Hanning Window and 1024 
Point FFT for compression factors of 1, 2 and 3) (see 
online version for colours) 

 

Of course, a maximum amplitude signal represents the worst 
case comparison for a compression factor of 3. As the 
primary carrier power drops, the data format with a 
compression factor of 3 improves substantially when 
compared to both a compression factor of 2 and also to 
standard fixed point (CF = 1). In Figure 8, we see the 
performance of these same formats with the input signal 
attenuated by 40 dB. In this chart, the second tone does not 
really show up with the fixed-point format due to dynamic 
range limitation. The CF = 3 format in Figure 8 has an 
average improvement in the noise floor of greater than 5dB 
over the CF = 2 format. Of course, this improvement 
increases as the signals become even smaller. Although we 
did not simulate the compression factor of 5, these same 
trends would be evident with that format when compared 
with compression factors of 1, 2 and 3. As Figures 7 and 8 
illustrate, compressed two’s complement data formats 
provide the important advantage of data scaling as found in 
floating-point formats, but overcome the severe disadvantage 
standard floating point incurs by allocating a fixed number of 
bits to an exponent field. Irregular compression factors such 
as 3 and 5 enhance the advantages of compressed two’s 
complement. 

Of course, rounding is very important in small data 
formats, and traditional rounding techniques are well 
understood for fixed-point systems (Kuck et al., 1977; 
Goldberg, 1991; Menard et al., 2006; Kim et al., 1998). 
However, an analysis of rounding techniques for sign bit 
compressed formats has not been explored in depth and 
sophisticated rounding may actually improve the 
performance of these formats over that shown in Figures 7 
and 8. 

7 Summary 

Non-standard compression factors provide interesting and 
possibly optimal formatting mechanisms for digital signal 
processing applications. However, non-standard 
compression factors require additional techniques over 
normal power-of-two compression factors to achieve  
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appropriate mapping of precision. The two techniques 
discussed in this paper address formatting for compression 
factors of 3 and 5. The two techniques presented here are as 
follows:  

1 Variable shift field length. 

2 Multiple shift size mapping. 

Similar techniques are required to adjust other non-power-of-
two compression factors for concentration of precision.  

We have pointed out advantages of using non-standard 
compression factors, and shown that a compression factor of 
3 has some advantages over its neighbouring compression 
factors of 2 and 4. We have also shown that a compression 
factor of 5 has precision advantages for both larger and 
smaller numbers over a compression factor of 4. These 
advantages may allow non-power-of-two compression 
factors to become optimal solutions for many applications. 
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