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A B S T R A C T

Network security investigations pose many challenges to security analysts attempting to

identify the root cause of security alarms or incidents. Analysts are often presented with

cases where either incomplete information is present, or an overwhelming amount of in-

formation is presented in a disorganized manner. Either scenario greatly impacts the ability

for incident responders to properly identify and react to security incidents when they occur.

The framework presented in this paper draws upon previous research pertaining to cyber

threat modeling with kill-chains, as well as the practical application of threat modeling to

forensic. Modifications were made to conventional kill-chain models to facilitate logical data

aggregation within a relational database collecting data across disparate remote sensors re-

sulting in more detailed alarms to security analysts. The framework developed in this paper

proved effective in identifying the relationship of security alarms along a continuum of ex-

pected behaviors conducive to executing security investigations in a methodical manner.

This framework effectively addressed incomplete or inadequate alarm information through

aggregation, and provided a methodology for organizing related data and conducting stan-

dard investigations. Both improvements proved instrumental in the effective identification

of security threats in a more expeditious manner.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Information security is one of the primary concerns for ex-
ecutives leading organizations across the globe, with increasing
visibility among key decision makers each passing year (PWC,
2015). Media coverage of high profile security breaches has ex-
acerbated concerns that current strategies to detect and prevent
intrusions are inadequate. Some researchers argue that this
inadequacy is derived from reliance on statistical models or
attack signatures that attackers have learned to avoid (Beaver
et al., 2013; Chen and Malin, 2011; Ioannou et al., 2013; Shiva
et al., 2010). Other researchers argue that point solutions may
be capable of detecting certain aspects of attacks actions, but

cannot provide all data required to verify malicious activity due
to their inability to observe all events that occur across the
network affecting multiple computing systems (Claycomb and
Shin, 2010). Due to these limitations, it has become increas-
ingly important to analyze data from multiple auditing systems
deployed in separate locations within a network topology in
order to detect sophisticated attacks (Best et al., 2014; Claycomb
and Shin, 2010; Flagg et al., 2007; Ioannou et al., 2013; Ross et al.,
2011; Rush et al., 2015; Shalyapin and Zhukov, 2015). Unfortu-
nately, aggregation of data from multiple sources presents
several challenges such as managing large volumes of data from
disparate sensors and making sense of disorganized, incom-
patible, or seemingly chaotic data (Beaver et al., 2013; Best et al.,
2014; Chen and Malin, 2011; Claycomb and Shin, 2010; Shiva
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et al., 2010). These challenges greatly impact information se-
curity and incident response teams’ ability to identify security
breaches or implement corrective action to detect, prevent or
mitigate the damage incurred during attacks.

This paper focuses on overcoming these challenges by imple-
menting a mechanism for fusing multi-sensor data into
machine generated alerts that accurately depict attack actions
across multiple disparate sensors, ultimately resulting in im-
proved detection rates and streamlined analyst workflows.
Analysis of historical security breach data and successful se-
curity analyst investigative techniques has yielded insights
toward effective threat identification via behavioral model-
ing (Hutchins et al., 2010; Ioannou et al., 2013; Kul and
Upadhyaya, 2015; McWorther, 2013; Rush et al., 2015; Shalyapin
and Zhukov, 2015). Research in threat behavioral modeling re-
sulted in the adoption of the term “kill-chain,” borrowed from
United States military doctrine for targeting individuals of in-
terest through behavioral analysis, as a means to describe the
sequence of events an attacker must perform in order to achieve
success during an attack (Hutchins et al., 2010).

This paper was inspired by the Lockheed Martin Kill-
Chain, which is currently used by the National Institute of
Standards and Technology (NIST) as a component of the Cyber
Security Framework, and is often cited as the original cyber
kill-chain model (Hutchins et al., 2010). However, attempts to
implement the Lockheed Martin Kill-Chain within produc-
tion environments as a mechanism to aggregate or correlate
data from disparate sensor systems proved to be a difficult, if
not impossible, task. This led to the hypothesis that addi-
tional phases would be required to properly address the
challenges imposed by variations in metadata generated within
the generic phases of the kill-chain.This paper presents a novel
kill-chain model with specific phases designed to facilitate
meta-data aggregation in order to overcome the challenges of
incomplete or disconnected sensor data presented by other se-
curity researchers.

Application of this framework within a security informa-
tion and event management (SIEM) system proved that the
additional kill-chain phases were easily adaptable to the ex-
isting correlation engine resulting in improved alerts that
outperformed individual sensor false positive and false nega-
tive rates. Additionally, alarms generated via this correlation
framework resulted in a drastic reduction in alarm noise and
volume while simultaneously providing fused data condu-
cive to more efficient investigation workflows and rapid threat
identification by security analysts.

2. Kill-chain models

The Lockheed Martin Kill-Chain consists of seven phases de-
signed to represent attacker objectives that should be
accomplished in order to successfully compromise a tar-
geted network and perform malicious actions, such as data
theft, denial of service, or system destruction. Security re-
searchers have been able to identify empirical evidence for most
of the phases within the Lockheed Martin Kill-Chain and at-
tribute said evidence to indicators of attempts to achieve the
attacker objectives defined by their respective phases.

However, these phases often extend beyond the scope of
a single organization’s network and may require data unavail-
able to internal security teams to identify threats. The first two
phases of the kill-chain, as defined by Hutchins et. al., pertain
to reconnaissance of potential victims’ security vulnerabili-
ties and the development of tools to exploit said vulnerabilities
before attempting to attack the victim’s network (Hutchins et al.,
2010). These vulnerabilities may exist in the form of techni-
cal or non-technical components of a victim’s network, such
as public information pertaining to the identities of execu-
tive leadership, identifying non-technical vulnerabilities
associated with target identification; or job postings for indi-
viduals trained on specific information systems, identifying
systems that may be targeted with existing exploits or will
require weaponization.

Weaponization may entail the development of custom ap-
plications, or may consist of combining existing technologies
with privileged information, such as the combination of a pub-
licly available exploit for Microsoft Office products delivered
to a member of the victim’s executive staff via a phishing email.
Additionally, the “reconnaissance” phase of the Lockheed Martin
model is often incorrectly attributed to reconnaissance actions
performed within the victim’s network. Undoubtedly, recon-
naissance actions will be observed when performing analysis
of network security incidents; however, these activities are not
easily delineated from the “delivery” phase described in the
Lockheed Martin model.

Likewise, exploitation is similarly defined in ambiguous
terms as exploits may occur in the form of network delivered
payloads or client side vulnerabilities.These ambiguities require
data scientists and security analysts to make judgment calls
when deciding how to categorize data associated with these
activities, which often results in inconsistent data classifica-
tion and meta data parsing. Fig. 1(a) below depicts the Lockheed
Martin Kill-Chain.

Another prominent kill-chain model is the Mandiant Attack
Lifecycle published in 2012 (McWorther, 2013). The Mandiant
model differs from the Lockheed Martin model by focusing on
internal network activities, lending to more direct applica-
tion to security analysis use cases than the generic Lockheed
Martin model. Additionally, the Mandiant model accounts for
recursive internal reconnaissance and lateral movement ac-
tivities often exhibited by attackers following the initial breach.
Though the Mandiant model arguably presents a better model
of the actions performed by attackers during a security breach,
it still lends itself to interpretation of what indicators are likely
to be attributed to each action group. This again results in in-
consistent data analysis ultimately leading to less efficient
workflows by security personnel. Fig. 1(b) below depicts the
Mandiant Attack Lifecycle.

A new kill-chain model was devised in order to capitalize
on the phased analysis approach lauded by both of the pre-
vious models, but within the context of organizing data from
each phase into a structured database to support data queries
and correlation routines. The new kill-chain was constructed
consisting of a seven phase model, similar to the Lockheed
Martin model; however, some phases from the Lockheed Martin
model were omitted or shifted within the sequence of events
and two new phases were introduced from the Mandiant model.
The Lockheed Martin “weaponization” phase was omitted as
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it often occurs outside the victim’s network and is not likely
to be observed within sensor data. The delivery phase was
shifted to occur immediately following reconnaissance and the
installation phase was shifted to occur after the delivery phase.
The exploitation phase was replaced by the delivery, installa-
tion and privilege escalation phases respectively, as components
of exploits, e.g. exploit delivery detected by an IDS, exploit in-
stallation detected by a malware detection engine, or privilege
process execution resulting from malicious code injection, are
often observed in these phases with no other unique identi-
fiers warranting a dedicated exploitation phase. The command
and control phase was omitted as the phases of delivery, in-
stallation, lateral movement or exfiltration exhibited evidence
of command and control based on the tools/techniques used.
The privilege escalation phase from the Mandiant model was
added in order to segregate privileged account data from routine
user data and facilitate identification of improper or anoma-
lous use of elevated credentials. The lateral movement phase
from the Mandiant model was introduced to differentiate
between reconnaissance activity originating from an exter-
nal network and reconnaissance activity from an internal
network. Finally, the exfiltration phase was added in order to
provide specific emphasis on anomalous data transfers origi-
nating from the internal network to an external network.

The new kill-chain phases were also designed to align with
natural identifiers leveraged by analysts when performing in-
vestigations within each phase. Reconnaissance activity was
often investigated based on the originating IP address, with data
generally reflecting a one to many relationships between the
source IP address and multiple destination IP addresses being

reconnoitered. Data within the delivery phase often exhib-
ited a single source IP address targeting a single destination
IP address and enumerating through a large number of po-
tential exploits. Installation activity was often investigated based
on the computer name of an infected machine, as IP address
data were often omitted from systems used to detect malware
or software modifications. Data within the privilege escala-
tion phase were investigated based on user credentials and
often exhibited a newly created administrator attempting to
perform multiple command line actions. Lateral movement was
also investigated based on the user credentials used and often
exhibited a single user attempting to access multiple differ-
ent machines. Actions on the objective were most commonly
investigated by the computer name of the system suspected
of compromise in order to determine the nature of changes
to the system. Finally, the egress phase was investigated by
analysis of unusual foreign destination IP addresses.The ability
to apply a natural identifier to each phase during investiga-
tions was assessed to be an advantage over existing kill-
chain models which occasionally resulted in inconsistent
investigation methodologies.

Forensic data were analyzed from a pool of historical data
breaches and sanctioned penetration tests conducted by third
parties in order to identify specific indicators of activity within
each phase of the new model. Analysis indicated distinct traits
identifiable in data extracted from four distinct macro phases:
network, endpoint, domain, and egress. Data extracted from
each of these phases could be further deconstructed into sub-
phases based on attacker actions or anomalous behaviors
observed in data. Fig. 1(c) below depicts the new model which

(a) Lockheed Martin Kill-Chain[13]

(b) Mandiant Attack Lifecycle[14]

(c) Bryant Kill-Chain

Fig. 1 – Three kill-chain models: (a) Lockheed Martin Kill-Chain, (b) Mandiant Attack Lifecycle, and (c) Bryant Kill-Chain.
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will be referred to as the Bryant Kill-Chain Model throughout
the remainder of the paper.

3. Application of Bryant Kill-Chain model in
network forensics

The Bryant Kill-Chain model was applied as a forensics ap-
proach to additional third party penetration tests or postmortem
analysis of suspected security breaches in order to validate the
efficacy of implementing the model within an automated cor-
relation system. In most cases, data analyzed during this
evaluation identified gaps or inconsistencies in auditing con-
figurations by the affected parties, resulting in partial detections
of attacker activities. Partial or omitted detections indicated
that strict enforcement of phase sequencing during auto-
mated correlation would likely be infeasible in most network
environments. However, plotting detected activities along the
spectrum of the kill-chain proved to be an effective tool for
rapidly identifying gaps as well as evaluating the maturity of
disparate security organizations or architectures.

Organized and consistent analysis of data via this frame-
work uncovered several natural patterns in forensic data
conducive to future breach discovery work as specific indica-
tors of compromise were consistently presented within each
phase despite differences in security sensor manufacture. Ad-
ditionally, analyst suspicions of activity within a discrete phase
could be evaluated with prefabricated stored procedures or
queries for all expected data within a related phase, reveal-
ing attacker actions and confirming the lack of data due to
improper audit policies, inadequate sensor configuration, or
suboptimal sensor placement/architecture. Consistent pat-
terns of data recurrence enabled analysts to raise alarm when
expected indicators were not observed prompting audit policy
modifications or sensor configuration changes that often pro-
duced the expected data once implemented. The initial seven
phases of the Bryant Kill-Chain were deconstructed into 13
subtasks in order to reflect slight variations between data and
attacker behaviors. Fig. 2 below depicts the process used by ana-
lysts to plot metadata assessed to be indicators of compromise
along the Bryant Kill-Chain.

During postmortem analysis of security breaches, ana-
lysts who leveraged the Bryant Kill-Chain as an investigative
framework consistently provided more thorough data and
analysis to investigators when compared to their peers imple-
menting an ad-hoc analytical methodology. Likewise,
stakeholders often responded positively to using the model as
a visual representation depicting where breaches were dis-
covered across an event spectrum. Communication of potential
mitigation strategies or security solutions was also simpli-
fied by referring to the “sensor” section of the model. The
improvements in analyst workflow products, process, and stake-
holder reception were deemed to be adequate to validate the
model’s efficacy for inclusion within SIEM software.

4. Applying the kill-chain to SIEM software

The LogRhythm® SIEM platform was selected as the pre-
ferred system to evaluate inclusion of a kill-chain model based

on the author’s prior experience with the system and access
to historical data conducive to evaluating multiple produc-
tion environments. The IBM Qradar®, McAfee Nitro® and
Splunk® platforms also exhibited potential to be modified to
incorporate this model, but were not evaluated within this
paper. Fig. 3 below depicts data flow as sensor information is
transformed into alarms within the LogRhythm® SIEM.

The LogRhythm® dataflow model implements suspicion es-
calation and data triage functions by parsing sensor information
into a threat ontology and applying descriptive “classifica-
tion” labels to observed events. The classification label is
potentially applied in two different stages of the data flow
model; either by the message processing engine, during the
initial parsing and normalization phase, or by the advanced
intelligence engine, during correlation and subsequent reclas-
sification. Classification labels serve a unique function as they
introduce new metadata into an event record that was not
present within the raw log information.This provides a mecha-
nism for combining previously dissimilar data from disparate
sensors into corroborating data sets.The classification field was
determined to be the ideal candidate for implementing the new
kill-chain phased model within the SIEM as this would facili-
tate rapid identification of related events and enable future
event correlation during alarming.

Deconstructing the Bryant kill-chain and analyzing metadata
within each sub-phase yielded insight to potential data parings
for correlation. Each sub-phase was evaluated for suitability
as a table within a relational database and metadata within
each phase was evaluated for suitability as primary or foreign
keys to be used to join adjacent sub-phase data as the
LogRhythm SIEM utilized SQL queries to perform correlation
functions. Fig. 4 below illustrates the primary and foreign key
relationship, with the primary key identified by a red box and
the foreign key identified by a light blue line to the adjacent
phases.

Of note, some logging systems did not provide enough data
for correlation with adjacent phases without fusing data with
another source within the same phase. Correlating network
delivery events with installation events is a prime example of
this phenomenon. Network intrusion detection systems often
omit the host name of machines, while host based malware
solutions often contain the hostname but omit the local IP
address. This issue was resolved by fusing both data sets via
DHCP, DNS, or domain authentication data available on domain
controllers or servers hosting these common services.

Sensor logs, SIEM events or security alarms were aggre-
gated within each phase with SQL queries joining metadata
via classification field and the phase specific aggregate field
depicted in Fig. 4. For example, all events classified as being
associated with the reconnaissance objective group (recon-
naissance, probing or enumeration) with the same source IP
address were aggregated within a single event. In order to
provide the maximum forensic value to analysts, the aggre-
gate event retained all unique meta-data fields observed within
aggregated records.

In most cases, the resultant aggregate event exhibited dras-
tically improved forensic value to security analysts, especially
for attack activities that typically generate a large volume of
logs on sensor devices. A prime example of this phenom-
enon is reconnaissance activity associated with network
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(a) Deconstructed Network Phase

(b) Deconstructed Endpoint Phase
Fig. 2 – Bryant Kill-Chain as an investigation framework.
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(c) Deconstructed Domain Phase

(d) Deconstructed Egress Phase
Fig. 2 – (continued)
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scanning tools. During the evaluation, a single aggregate alarm
was generated from 100 individual events observed during a
vulnerability scan. The resultant alarm fused information from
multiple logging systems and accurately identified all target

machines affected by the attacker, as well as all unique ex-
ploits or signatures observed by logging devices. Fig. 5 below
depicts a screen shot of alarms generated during an OpenVAS
vulnerability scan using the baseline SIEM configuration and

(a) Data Flow Base Ontology

(b) Data Flow Modified Ontology

Fig. 3 – LogRhythm® data flow: (a) data flow base ontology and (b) data flow modified ontology.
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the modified SIEM configuration. The baseline SIEM gener-
ated 41 alarms from 41 normalized events, while the modified
SIEM generated 5 alarms from 401 normalized events.The modi-
fied alarms contained distinct metadata from up to 100 events
in each alarm providing insight pertaining to the number of
target hosts probed, signatures detected, ports used, and kill-
chain phases traversed.

5. Evaluation of SIEM detection rates with
new framework

A virtual network was constructed in order to compare the
quality and quantity of alarms generated by the baseline SIEM
configuration and a modified SIEM configuration implement-
ing the Bryant Kill-Chain. Fig. 6 below depicts the virtual
network topology used during testing. One Logrhythm SIEM
system was installed within a virtual environment and con-
figured with vendor recommended default correlation rules.
The virtual machine was then cloned and modified to incor-
porate the new framework and new correlation rules leveraging
the indicators of compromise discovered via application of the
Bryant Kill-Chain to postmortem incident analysis. The virtual
environment network consisted of two Microsoft Windows
domain controllers, a Microsoft Exchange mail server, a
Microsoft SharePoint server, a Windows 7 workstation, a Linux
based Snort intrusion detection system, a Linux based pFsense
firewall, McAfee© host based intrusion prevention system and
anti-malware software installed on all endpoints, and an
attacker machine configured with the Kali Linux penetration
testing suite of tools installed. Traffic was segregated into mul-
tiple subnets by the pFsense firewall with the Snort IDS platform
resident on the same operating system as the firewall. Email

and web services were hosted from within a segregated DMZ,
domain controllers and workstations resided within a simu-
lated protected LAN, and the attacker machine was connected
to a simulated external LAN interface on the firewall.

A custom attack scenario was created to stimulate all seven
of the attack phases, across multiple machines, generating data
from multiple detection sensors, and ultimately resulting in
successful data theft. A custom scenario was required as certain
attacks do not require complete attack cycle completion, such
as commodity malware that may execute delivery, installa-
tion and exfiltration phases only; or attacks may be eliminated
by security systems, such as exploits interdicted by IPSs or
malware removed by host based security suites. The follow-
ing paragraphs provide a brief summary of the test scenario
which encompassed the 26 test cases depicted in Fig. 7 and
Table 1 in the conclusions section.

The custom scenario involved an attacker located on an ex-
ternal 172.16.x.x network attempting to access an internal
10.x.x.x network simulating a small corporate environment.The
attacker performed initial probing activities to identify victim
systems, determined that all systems probed were not sus-
ceptible to generic exploits due to recent patches, or were
blocked by firewall or IPS policies. The attacker decided to send
a phishing email through the corporate mail server in an
attempt to trick a user into installing a legitimate program with
a known vulnerability and a custom backdoor disguised as a
patch to the vulnerable program. The fake patch was actually
a custom python application that established a remote shell
to the attacker machine. The fake patch was not detected by
host based malware signatures because it was a simple socket
program that executed command redirection and had no known
signature; however, it did generate command execution evi-
dence within operating system logs.The attacker leveraged the

Fig. 4 – Data relationships for correlation.
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(a) Alarms Associated with OpenVAS Scan Using Baseline SIEM Ontology

(b) Alarms Associated with OpenVAS Scan Using Modified SIEM Ontology

Fig. 5 – LogRhythm alarm examples.
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weak shell presented by the python program to conduct privi-
lege escalation by replacing a service installed by the legitimate
program contained within the phishing email with a custom
executable program containing windows “net user” com-
mands to create a local administrative account within the
remote desktop users group on the target machine. The in-
jected executable was executed with system privileges upon
a system restart, as prescribed in the phishing email. The at-
tacker then initiated a remote desktop session on the
compromised machine and disabled the McAfee host based in-
trusion detection system and anti-virus software in order to
upload hacking tools for hash extraction and a reverse
meterpreter shell. The attacker extracted domain administra-
tor hash values from the compromised machine, executed the
reverse meterpreter shell, and copied the hash values into the
meterpreter console of the attacking machine for use in pass-
the-hash techniques later on. The attacker continued to use
the open remote desktop session on the compromised machine
to create a network share to be used for staging stolen data
prior to the final exfiltration from the network, and con-
ducted ping, traceroute and NSLOOKUP commands from the
compromised machine to reconnoiter the corporate network.
The attacker identified the internal IP address of the company
webserver, email server, and domain controllers from the in-
ternal reconnaissance and used the meterpreter shell to log
onto the webserver using the extracted hash associated with
the domain administrator account.

The attacker leveraged the remote shell established via the
pass-the-hash program to execute a series of SQL commands
on the webserver in order to identify the SQL database used

to host the corporate web content and leveraged SQL backup
routines to create an offline copy of the database to the local
c: drive of the web server.The attacker then created a new local
administrative account within the remote desktop users group
on the webserver to be leveraged as a backdoor in case the
initial foothold was eliminated. The attacker then estab-
lished a remote desktop session from the initially compromised
workstation to the webserver in order to validate the new
backdoor account, and copy the offline database to the network
share previously created on the compromised workstation.This
step was designed to stimulate the lateral movement test case
and may be omitted in a legitimate breach scenario.

The attacker then conducted pass-the-hash to access the
corporate email server, created a local administrator backdoor
account with remote access, and traversed the windows server
directory until it located the exchange mailbox *.edb file. The
attacker then stopped the mail service with the “net stop”
command and copied the database to the server’s local hard
drive to be staged for an internal transfer to the compro-
mised workstation.The attacker used the initially compromised
workstation to establish a remote desktop session to the email
server leveraging the backdoor account and copied the email
database to the network share on the workstation. The at-
tacker then copied the email database and SQL databases from
the compromised workstation to a SAMBA share hosted on the
attacker’s Kali Linux machine. Finally, the attacker executed
the command “wevtutil cl application && wevtutil cl security
&& wevtutil cl system” from existing pass-the-hash consoles
on each affected system to purge the operating system audit
logs.

Table 1 – SIEM alarm evaluation results.

Test
case

Case name Baseline
alarms

Baseline
events

Modified
alarms

Modified
events

Raw
logs

1 Nmap Port Scanning 0 0 1 100 87
2 SMB Scan 0 0 0 0 76
3 Open Vas Vulnerability Scan 41 41 5 401 4158
4 Phishing Email 1 1 1 1 92
5 Suspicious Download 0 0 1 1 25
6 Unauthorized Software Installation 0 0 2 18 105
7 Python Reverse Shell 0 0 2 3 344
8 Privilege Escalation New Local Admin 3 3 1 6 997
9 Remote Desktop From Kali to Windows 0 0 2 3 174

10 Disable anti-virus 0 0 1 3 86
11 Launch Meterpreter Reverse Shell 18 18 1 1 106
12 Hash Extraction 0 0 1 3 55
13 Network Share Creation 0 0 3 6 33
14 Internal Reconnaissance Tools 0 0 1 1 54
15 Pass the Hash to Webserver 0 0 3 27 80
16 Copy SQL Database 0 0 2 8 250
17 Privilege Escalation New Local Admin 1 1 2 23 61
18 Remote Desktop Workstation to Webserver 0 0 4 11 353
19 Internal Data Transfer Webserver to Workstation 0 0 1 2 64
20 Pass the Hash to Webserver 0 0 1 1 51
21 Privilege Escalation New Local Admin 1 1 1 8 64
22 Copy Email Database 0 0 1 12 131
23 Remote Desktop Workstation to Email Server 0 0 4 10 204
24 Internal Data Transfer Email Server to Workstation 0 0 1 5 80
25 External Data Transfer Workstation to Kali 18 18 1 1 56
26 Audit Log Purging 0 0 3 11 304
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6. Future research

Research conducted during this study indicated that network
security solutions exhibited differing levels of value across
multiple phases. No sensor was capable of providing cover-
age across all attack phases; however, there were areas where
multiple sensors provided partial redundancy in detections,
though with varying levels of data fidelity or confidence in
detection rates. It may be worth evaluating the efficacy of le-
veraging the Bryant Kill-Chain to assign confidence weights
to security technologies within each phase in order to calcu-
late triage priorities for analysts to reference when dealing
with a high number of alarms. The Dempster-Shafer belief
function has been leveraged to perform this function in past
works related to alarm fusion and confidence ratings, though
the reliance on a robust weighting framework was cited as a
weakness of applied statistical models (Yu and Frincke, 2005).
The Bryant model may overcome some of the shortcomings
of the value models leveraged for statistical weighting cited
in previous works.

7. Conclusions

Table 1 below summarizes the results of the evaluation in terms
of raw logs generated by sensors and provided to the SIEM,
alarms generated by the SIEM, and the number of normal-
ized events contained within resultant alarms. The modified
framework successfully detected 25 out of 26 test cases (96%
detection rate) compared to seven out of 26 test cases (26.9%
detection rate) with the default SIEM framework. It is worth
noting that when both configurations detected an activity, the
modified framework typically produced fewer alarms while si-
multaneously presenting analysts with data aggregated from
a higher number of events, as was depicted in Fig. 5.

SIEM correlation rule construction with the new model was
assessed to be an improvement over the default SEIM data
model.The primary advantage of the new model was the ability
to align log data or SIEM events with more descriptive event
categories populated with real world indicators of compro-
mise discovered by analysts using the same framework for
investigations as the SIEM was leveraging for correlation and

Fig. 6 – SIEM virtual network topology.
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alarm generation. This alignment enabled alarm segregation
into meaningful categories that analysts had become famil-
iar with during postmortem data evaluation.

A secondary benefit of SIEM data alignment with the new
classification model was the ability for analysts to forecast at-
tacker actions along a spectrum of expected events. This
provided context for future events the analysts expected to see
following alarms, or potential areas to investigate that would
have occurred prior to an alarm in order to identify root cause
of the incident. Analyst feedback on SIEM alarm perfor-
mance was easily communicated to SIEM engineers via the
Bryant Kill-Chain as both analysts and engineers had become
familiar with the same model.This provided an efficient mecha-
nism for analysts to identify shortcomings in correlation rules
when alarms were expected but not generated and commu-
nicate candidate indicators of compromise to SIEM engineers
for incorporation as alarm criteria.

The Bryant Kill-Chain is assessed to be an improvement over
the Lockheed Martin Kill-Chain in respect to suitability for

incorporation into a SIEM system. Expanding the Lockheed
Martin Kill-Chain into additional phases based on both at-
tacker action and data similarity provided an elegant
mechanism for aggregating related events into robust alarms
assessed to be more valuable to security analysts.

The resultant aggregate alarms enabled analysts to perform
analysis of alarm metadata without requiring post alarm queries
to explain security incidents. Reducing the number of post
alarm queries reduced the amount of time required for ana-
lysts to identify whether an event warranted escalation to
additional security personnel. The improved detection rate, de-
creased overall alarm volume and additional metadata found
in aggregate alarms were assessed to be improvements to the
existing SIEM system and instrumental in detecting security
threats in a more expeditious manner.

The improved alarm rates in both the number of detected
test cases and decreased number of redundant alarms gen-
erated per test case is assessed to have improved the value of
the modified SIEM system to analysts performing continuous

Fig. 7 – Test case and phase crosswalk: the scenario involves an attacker located on an external 172.16.x.x network
attempting to access an internal 10.x.x.x network.

209c om pu t e r s & s e cu r i t y 6 7 ( 2 0 1 7 ) 1 9 8 – 2 1 0



security monitoring. Analyst response times were assessed to
have been improved due to the increased visibility resulting
from these improvements in alarm quantity and quality.
Metadata nesting within aggregated alarms was also as-
sessed to improve analyst work flow due to the elimination
of manual tasks associated with copying and pasting data from
multiple alarms into investigation reports when escalating in-
cidents to stakeholders.
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